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Modeling temporal networks with bursty activity patterns of nodes and links
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The concept of temporal networks provides a framework to understand how the interaction between system
components changes over time. In empirical communication data, we often detect non-Poissonian, so-called
bursty behavior in the activity of nodes as well as in the interaction between nodes. However, such reconciliation
between node burstiness and link burstiness cannot be explained if the interaction processes on different links are
independent of each other. This is because the activity of a node is the superposition of the interaction processes
on the links incident to the node, and the superposition of independent bursty point processes is not bursty in
general. Here we introduce a temporal network model based on bursty node activation, and we show that it leads
to heavy-tailed interevent time distributions for both node dynamics and link dynamics. Our analysis indicates
that activation processes intrinsic to nodes give rise to dynamical correlations across links. Our framework offers
a way to model competition and correlation between links, which is key to understanding dynamical processes
in various systems.
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I. INTRODUCTION

Temporal networks have become an important framework
to understand the dynamics of complex systems over the past
decade [1–3]. By integrating the topological knowledge of a
system, described by a graph, with the information about the
temporal nature of the interaction between its components,
represented by time series, we can precisely track who in-
teracts with whom and when. The interaction dynamics can
be captured at several different levels. First, the interaction
between each pair of nodes specifies the dynamics of the link.
Second, by aggregating the interaction between a node and
all of its neighbors, one obtains the dynamics of the node,
which shows how the node interacts with others. Lastly, by
collecting all the interaction between every pair of nodes,
one can tell about the dynamics of the entire system. For
instance, in communication systems in which people interact
by sending messages, the link dynamics corresponds to the
message correspondence between a pair of individuals, while
the node dynamics corresponds to the inbox of messages sent
or received by an individual.
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Human communication is known to exhibit non-
Markovian, inhomogeneous temporal patterns that are
commonly referred to as being bursty [4,5]. When each
communication event is instantaneous or lasts for a short
period so that its duration can be neglected compared to other
time scales, one can regard the communication sequence as
a realization of a point process. The burstiness of a point
process is mainly characterized by a heavy-tailed distribution
of time intervals between consecutive events, or interevent
times (IETs), in contrast to Poisson processes for which the
IET distributions are exponential.

Interestingly, empirical data suggest that in communica-
tion systems, the communication sequences of nodes and of
links are both characterized by power-law distributions with
a similar scaling exponent [6,7]. This cannot be taken for
granted for the following reason. As mentioned above, the
communication sequence of a node is the superposition of
the communication events on all the links between the node
and its neighbors. However, a superposition of independent
renewal processes does not retain the statistics of the original
processes in general. In fact, the IET distribution for the
superposed process tends to an exponential distribution in
the limiting case in which the number of independent source
processes is large [8–10]. Therefore, the observation that both
node dynamics and link dynamics are bursty suggests the
presence of correlations across communication processes on
different links. Such link-link correlations can have a signif-
icant impact on the dynamical processes taking place in the
network [7,11–13], but their origin has yet to be understood.
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Here, we study the mechanisms behind the burstiness in
node and link activity patterns by considering a model in
which the nodes are activated randomly in time with non-
Poissonian statistics, and two nodes may communicate only
if they are simultaneously activated. In Sec. II, we introduce
two variants of the model with different communication rules.
In Sec. III, we report the results of numerical simulations
performed on networks with various topologies. We show that,
for both models and for all the networks, the communication
patterns are characterized by heavy-tailed IET distributions
for both nodes and links. Section IV is devoted to explaining
the origin of the burstiness in node and link activity patterns
for each model. We describe the behavior of the model in a
system of two nodes by relating it to the statistics of the sum
of a random number of random variables. We use the same
approach to derive the activity patterns of nodes and links in
larger networks. Finally, we conclude our work in Sec. V.

II. MODEL

We consider a network of size N with a given structure,
in which each node is activated randomly at discrete times
and its activation pattern is modeled by a renewal process
with a given interactivation time (IAT) distribution, denoted
by P(r). To start the activation process at equilibrium, the first
activation time t0 � 0 of each node is assigned according to
the residual time distribution [14]

P0(t0) = 1

〈r〉
∞∑

r=t0

P(r), (1)

where 〈r〉 denotes the average IAT. The node is then activated
at times tl = t0 + ∑l

l ′=1 rl ′ for l = 1, 2, . . . , where each IAT,
denoted by r, is independently drawn from P(r) [15]. In our
work, we adopt a power-law IAT distribution,

P(r) = r−α

ζ (α)
for r = 1, 2, . . . , (2)

where ζ (α) ≡ ∑∞
x=1 1/xα is the Riemann zeta function. We

choose α > 2 to make Eq. (1) converge.
At each time step t (0 � t � T ), pairs of activated nodes

communicate with each other. As depicted in Fig. 1, here we
consider two variants of the model. The first variant, which
we call the polyvalent model, assumes that an activated node
communicates with all the activated neighbors. The case in
which an activation does not lead to communication only
occurs when the node does not have any simultaneously
activated neighbors. In the second variant, which we refer
to as the monovalent model, an activated node is randomly
paired with one of its activated neighbors to have at most one
communication partner at the same time, as is the case for one-
to-one phone calls. An activated node cannot communicate
with others if none of the neighbors are simultaneously acti-
vated or all the simultaneously activated neighbors are already
paired with other nodes. Algorithmically, the matching is
implemented as follows: (i) At each time step, we sequence
the activated nodes in a random order. (ii) We remove the
first node, say i, from the sequence. (iii) We remove from
the sequence the first node in the rest of the sequence that
is adjacent to i and match it with i. If we do not find any

FIG. 1. Schematically illustrated snapshots of communication
according to the two models given the same set of activated nodes,
which are enclosed by thick solid lines. The red filled circles and red
solid lines represent the nodes and links with a communication event,
respectively. (a) The polyvalent model assumes that the activated
nodes communicate with all the neighbors that are simultaneously
activated. (b) In the monovalent model, each activated node commu-
nicates with at most one neighbor.

node adjacent to i, then i does not communicate with anyone.
(iv) We iterate (ii) and (iii) until the sequence is empty. In
this way, an activated node is guaranteed to be assigned a
communication partner when it has at least one neighbor that
is activated and available.

In both models, the communication events between a pair
of adjacent nodes can be associated not only with the link
but also with the nodes. In other words, we can define a
communication event sequence for each link as well as for
each node, the latter being the union of the communication
events on all the links attached to the node. Hereafter, we
refrain from the wording “interevent time” to avoid confusion
and instead use “intercommunication time” (ICT) to represent
the time interval between consecutive communication events
on the sequence affiliated with a node or with a link. Note
that the communication sequence of a node does not agree
with the activation sequence of the node in general, because an
activated node may not communicate with anyone, as shown
in Fig. 1. We denote the ICTs by τ . Whenever necessary,
subscripts i and i j will distinguish between node i’s properties
and link i j’s properties; sub- or superscripts p and m will
indicate variables and functions related to the polyvalent and
monovalent models, respectively. In the following sections,
we discuss the statistics of node and link ICTs.

III. NUMERICAL RESULTS

We carry out numerical simulations for synthetic networks
with different topologies such as complete graphs, random
regular graphs, and scale-free graphs, as well as Zachary’s
karate club network [16] as an example of a real-world
network. Figure 2 summarizes the node and link ICT distri-
butions ψ (τ ). Here we set α = 2.5.

The polyvalent model yields the node and link ICTs, both
of which are distributed almost indistinguishably from the
power-law IAT distributions for the various network topolo-
gies. In contrast, the monovalent model results in different
communication patterns depending on the network structure.
For homogeneous graphs such as complete and random regu-
lar graphs, the node ICT distributions are almost identical to
those of IATs, while the link ICT distributions show a hump at
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FIG. 2. The intercommunication time (ICT) distributions ψ (τ ) of nodes and links for the polyvalent model (top panels) and for the
monovalent model (bottom panels). The network structures are, from left to right, a complete graph (a),(f), random regular graphs with degree
k = 15 (b),(g) and with k = 6 (c),(h), a scale-free graph with degree distribution ∝ k−2.1 (d),(i), and Zachary’s karate club network (e),(j). The
parameters used are N = 100 and T = 107 for the complete and random regular graphs, N = 1000 and T = 106 for the scale-free graph, and
N = 34 and T = 107 for Zachary’s karate club network. The interactivation time (IAT) distribution, which follows Eq. (2) with α = 2.5, is
represented by the dashed line.

short time scales that is not in the power-law IAT distributions.
As we make the network sparser by reducing the degree of
random regular graphs, the hump becomes smaller and the
range of τ in which the distribution approximately follows
a power law becomes wider, implying that the sparseness of
networks plays an important role in realizing bursty commu-
nication patterns on links.

Figure 2(i) shows that for scale-free graphs, the node
and link ICT distributions are both heavy-tailed and both of
them deviate from the IAT distribution. These deviations are
attributed to the degree heterogeneity of scale-free graphs. To
show this, we group the nodes by degree and consider the node
ICT distribution for each group. Figure 3(a) shows that the
deviation between the ICT and IAT distributions is larger for
nodes with smaller degrees. This can be understood intuitively
as follows: When activated, a node with more neighbors is
more likely to find a communication partner, i.e., a neighbor
who is simultaneously activated and available. In the extreme

FIG. 3. (a) Node ICT distributions grouped by degree ki. (b) Link
ICT distributions grouped by the product of the degrees of the end
nodes, kik j . Both figure panels are based on the simulation results for
the monovalent model on the scale-free graph shown in Fig. 2(i).

case in which the degree of a node is large enough so that
the node almost always finds a partner whenever activated,
the node ICT distribution would coincide with the IAT distri-
bution. On the other hand, the ICT distribution would deviate
more from the IAT distribution for nodes with fewer neighbors
because of the difficulty of finding a partner.

Similarly, we group the links by the product of the degrees
of the end nodes of the link, ki and k j , and we measure
the distribution of τi j conditioned on each value of kik j . As
shown in Fig. 3(b), the ICT distributions for links with larger
values of kik j show larger deviations from the IAT distri-
bution. Suppose that two adjacent nodes are simultaneously
activated. If the degrees of the nodes are larger, then the nodes
are likely to have larger numbers of other simultaneously
activated neighbors with which they potentially communicate.
Therefore, the probability that the two nodes communicate
with each other is smaller. In contrast, if the degrees are small,
then the two nodes are more likely to communicate with each
other. We discuss these intuitions more quantitatively in the
following section.

Finally, for Zachary’s karate club network, the results are
similar to those for the homogeneous graphs. The node ICT
distribution shows a small deviation from the IAT distribution,
which is due to the degree heterogeneity.

IV. ANALYTICAL RESULTS

In this section, we provide an analytical examination of
the behavior of the models. For that, we start by considering
a minimal system that consists of a pair of adjacent nodes,
which we call a dimer. We show that the number of IATs
that compose each ICT is a random variable that follows
a power-law distribution. Thus, we can describe an ICT as
the sum of a random number of random variables, and we
show that the sum is also distributed as a power law. Then,
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FIG. 4. Schematic illustrations of communication sequences between a pair of nodes i and j. The red and white rectangles represent
activations with and without communication, respectively. The solid vertical lines identify communication events between the pair. In (b) and
(c), nodes are activated with the same temporal pattern as in the left panel of (a). (a) The case in which the two nodes form a dimer. Variable ni

denotes the number of activations (represented by rectangles) of node i between two communication events (red rectangles). The right panel in
(a) shows how the activation pattern of node j can be mapped to an activation-modulated Poisson process in which each IAT is associated with
an activation probability λ j . Variable ñi denotes the number of activations of i in each period segmented by activations of j. (b) The polyvalent
model. The communication pattern on the link is the same as that of the dimer, while each node also communicates with other neighbors and
experiences more frequent communication with smaller ICANs and ICTs, which are denoted by np

i and τ
p
i , respectively. (c) The monovalent

model. Simultaneous activation of adjacent nodes may fail to trigger communication, as indicated by light blue rectangles and vertical dotted
lines. Variable mi j denotes the number of events in which nodes i and j are simultaneously activated (represented by vertical lines) between
two consecutive communication events on link i j (solid vertical lines), while mi denotes the number of activations of i that concurred with
activations of any of its neighbors (colored rectangles) between two consecutive communication events of i with one of its neighbors (red
rectangles). See the main text for details.

we derive the statistics of the link and node ICTs for the
polyvalent model directly from the results for a dimer. Finally,
we describe the monovalent communication as a result of
random success and failure of the polyvalent communication.
This leads to expressions of link and node ICTs for the
monovalent model as a geometric sum of polyvalent link and
node ICTs, respectively. We obtain power-law statistics in this
case as well.

A. Case of dimers

A dimer is a pair of nodes connected only to each other.
Under this setup, the monovalent model is equivalent to the
polyvalent model because the nodes have no other nodes
to communicate with except for each other. Moreover, the
communication sequences of the two nodes are identical to
each other as well as to that of the link connecting them.

In general, each of the two nodes of the dimer, denoted
by i and j, can be activated more than once between two
consecutive communication events, as sketched in Fig. 4(a).
This leads to expressions of an ICT, denoted by τ , as the sum
of successive IATs of each node:

τ =
ni∑

n′=1

ri,n′ =
n j∑

n′=1

r j,n′ , (3)

where rω,n′ denotes the nth IAT of node ω (ω = i, j) within
the ICT, and nω denotes the number of times that node ω is
activated between the two communication events. We call nω

an intercommunication activation number (ICAN) of node ω.

The random variables ni and n j will have the same statistics
by symmetry, which allows us to focus on node i’s point of
view from now on. Keeping Eq. (3) in mind, our goal is (i) to
derive the statistics of ni and (ii) to compute the statistics of τ

as the sum of the ni independent random variables ri.
Let us consider the activation processes of the two nodes

between two consecutive communication events as follows
[see the right panel of Fig. 4(a)]. Node j is activated and
communicates with node i at time t j,0 for the first time, and
then is activated at t j,1, t j,2, . . . , t j,n j−1 until it communicates
with i again at t j,n j for the second time. The number of
activations of node i between the two consecutive activations
of node j at time t j,n′−1 and t j,n′ is denoted by ñi,n′ , where
1 � n′ � n j . The ICAN is then written as the sum of the
numbers of activations in each segment indexed by n′,

ni =
n j∑

n′=1

ñi,n′ . (4)

To derive the distribution of ICANs, we map the renewal
process of the activations of node j to an inhomogeneous
Bernoulli process, in which the activation probability is a
time-dependent parameter. In particular, we adopt the frame-
work of mapping a continuous renewal process into an event-
modulated Poisson process [17]. An event modulated Poisson
process is a process in which the event rate λ is independently
redrawn from a distribution F (λ) after every event and re-
mains constant until the next event occurs with that rate. The

023073-4



MODELING TEMPORAL NETWORKS WITH BURSTY … PHYSICAL REVIEW RESEARCH 2, 023073 (2020)

cumulative IET distribution is then shown to be the Laplace
transform of F (λ) [17].

In our case, we should instead consider an activation-
modulated Bernoulli process since time is discrete. In this
framework, node j is activated at each time step with a proba-
bility λ j , which is independently redrawn from a distribution
F (λ j ) upon every activation. Then, from node i’s point of
view, each of its ñi,n′ activations between two consecutive
activations of node j can be considered as an independent
Bernoulli trial with the success probability λ j,n′ that node j
is activated at the same time [see the right panel of Fig. 4(a)].

Now, we hypothesize that a large ni is likely to be domi-
nated by the numbers of activations that occur within a few
long IATs of node j governed by small activation rates. This
leads to a simplification of the argument: instead of calculat-
ing ni by a combination of processes with different activation
rates, we regard the process between two communication
events as almost entirely homogeneous, and we approximate
the distribution of large ni by a geometric distribution with
parameter

λ j � min
n′

λ j,n′ . (5)

In other words, we replace the activation-modulated process
by a communication-modulated process. The distribution of
ICANs is then given as

φ(ni ) =
∫ ∞

0
λ j (1 − λ j )

ni−1G(λ j )dλ j

�
∫ ε

0
λ j exp(−λ jni )G(λ j )dλ j, (6)

where G(λ j ) is the distribution of the activation probability
for each ICT. The approximation in the second line is derived
from the fact that the tail behavior of φ(ni ) will be dominated
by the contributions from small λ j . We put a small finite cutoff
ε and perform the integration up to this value.

To estimate the functional form of G(λ), we go back to the
original activation-modulated picture. For a given activation
rate λ, the IATs are distributed as

p(r|λ) = λe−λr . (7)

Conversely, the distribution of λ conditional on r is given by
the Bayes’ theorem,

p(λ|r) = p(r|λ)p(λ)∫ ∞
0 p(r|λ)p(λ)dλ

. (8)

As we do not assume anything about the prior p(λ) except
λ > 0, we adopt the noninformative density, which is uniform
throughout its domain. Equation (8) then reads

p(λ|r) = r2λe−λr (9)

with the normalization factor r2. When the IAT distribution
scales as P(r) ∼ r−α at the tail, the following scaling holds
for small values of λ:

F (λ) =
∫ ∞

0
p(λ|r)P(r)dr

∼ λ

∫ ∞

0
r2−αe−λrdr ∼ λα−2. (10)

This is consistent with the fact that for the event-modulated
Poisson processes, P(r) will have a power-law tail with
exponent α when F (λ) is a gamma distribution with shape
parameter α − 1 [17], which scales as F (λ) ∼ λα−2 for small
λ. We assume that G(λ) � F (λ) for 0 < λ � ε, and we plug
the scaling into Eq. (6) to obtain

φ(ni ) ∼
∫ ε

0
λα−1

j exp(−λ jni )dλ j ∼ ni
−α. (11)

This derivation tells us that the statistics of the ICANs of node
i is determined by the activation process of node j. If the IAT
distributions for node i and j are characterized by different
exponents αi and α j , respectively, then φ(ni ) ∼ n

−α j

i .
We now turn to our second question regarding the statistics

of ICTs as the sum of an ICAN of IATs. Since the ICAN
and IAT are independent random variables, we exploit the
analytical results in Ref. [18]: We consider the following sum:

τ =
n∑

n′=1

rn′ , (12)

where the summands r and the number of summands n are
independent random variables and they both follow power-
law distributions, P(r) ∼ r−α and φ(n) ∼ n−β . Then, τ also
asymptotically obeys a power-law distribution ψ (τ ) ∼ τ−α′

,
where

α′ = min{(α − 1)(β − 1) + 1, α, β}. (13)

In our case, since the IAT ri and ICAN ni in Eq. (3) are
shown to have the same scaling exponent as β = α, the ICT
distribution also follows a power law with the same exponent
α′ = α, that is,

ψ (τ ) ∼ τ−α. (14)

B. Polyvalent model

The polyvalent model assumes that communication occurs
on a link every time the two end nodes are activated at the
same time, irrespective of the states of other nodes in the
system. Therefore, the dimer case discussed in the previous
subsection directly translates into the communication patterns
on links [compare the left panel of (a) to (b) in Fig. 4]. Indeed,
Fig. 5(a) shows that the link ICAN distributions follow power
laws, and that the scaling given by Eq. (11) agrees well with
the numerical results. The distribution of polyvalent link ICTs
is the same as that of ICTs for the dimer case and is given by

ψp
(
τ

p
i j

) ∼ [
τ

p
i j

]−α
. (15)

To investigate the node communication processes, we in-
troduce a time frame defined by counting the number of
activations of a node, formally expressed as

νi(t ) =
∞∑

l=0

θ (t − ti,l ), (16)

where t is the wall-clock time, ti are the times that node i
is activated, and θ (·) is the Heaviside step function. Simply
put, the activation-based time νi is measured by a clock that
ticks one unit forward upon every activation of node i. This
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FIG. 5. (a),(b) The scaling exponents of ICT and ICAN distributions, each for nodes and links, as a function of the scaling exponent
α of IAT distributions in the cases of (a) the polyvalent and (b) monovalent models, respectively. The results are obtained from numerical
simulations run for T = 4 × 107 time steps on a random regular graph with N = 100 and k = 6. The dotted lines represent identity. The insets
show the ICAN distributions when α = 3.2. (c) The probability qi j of communication between pairs of simultaneously activated adjacent nodes
of degree ki and k j in a scale-free graph. The parameters are the same as in Fig. 2(i). The continuous lines, for each ki, represent the theoretical
curves given by Eq. (21) with a numerically obtained value of ρ. (d),(e) The distributions of (d) link ICCANs and (e) node ICCANs, both
obtained from simulations of the monovalent model with α = 3.2. The network topology is the same as in (b).

time transformation t 
→ νi(t ) rescales an ICT τ = t ′ − t ′′ into
an ICAN ni = νi(t ′) − νi(t ′′), meaning that an ICAN is an
“intercommunication time” for the processes in the time frame
νi. We note that similar concepts of time frame transformation,
named “relative clock” and “activity clock,” are used in recent
studies [19–21].

In the wall-clock time frame, the communication processes
on adjacent links i j and i j′ are correlated because of the
underlying activation process of node i. However, in the
activation-based time frame νi, in which the activations of
node i are regularized, the two communication processes are
independent because when i is activated, communication be-
tween nodes i and j depends only on whether j is simultane-
ously activated and is not affected by the behavior of node j′.
Since the communication process on each link is characterized
by power-law distributed ICANs as in Eq. (11), the node
communication process as the superposition of independent
link processes has a thinner-tailed ICAN distribution, that
is,

φp
(
np

i

) ∼ [
np

i

]−β
(17)

with β > α [see Fig. 5(a)].
By taking the same approach as in the previous subsection,

we write a node ICT as follows:

τ
p
i =

np
i∑

n′=1

rn′ , (18)

where P(r) ∼ r−α . Then, by following the scaling relation
given by Eq. (13), we find that the polyvalent node ICTs are
distributed as

ψp
(
τ

p
i

) ∼ [
τ

p
i

]−α
. (19)

C. Monovalent model

In contrast to the polyvalent model, simultaneous acti-
vation of two adjacent nodes does not necessarily trigger

communication between them in the monovalent model. To
study the statistics of link ICTs, we first need to account for
the random pattern of successful communication when a pair
of adjacent nodes are simultaneously activated.

Suppose that node i with degree ki is activated at a time
step along with κi + 1 activated neighbors including node j.
Because activation processes of different nodes are indepen-
dent of each other, variable κi is binomially distributed as

κi ∼ B(κi; ki − 1, ρ) =
(

ki − 1

κi

)
ρκi (1 − ρ)(ki−1)−κi , (20)

where ρ = 1/〈r〉 denotes the probability that each neighbor
of node i is activated when node i is activated. If κi > 0,
the communication between nodes i and j occurs only if i
selects j as the counterpart as a result of random matching.
Although the probability of selecting each of the activated
neighbors is not uniform in general, we assume the uniformity
for simplicity so that the probability that node j is selected is
equal to 1/(κi + 1). The same goes for node j for its κ j + 1
activated neighbors including node i. Then, the probability
that simultaneous activation of nodes i and j leads to com-
munication between them is approximated by

qi j =
ki−1∑
κi=0

B(κi; ki − 1, ρ)

κi + 1

k j−1∑
κ j=0

B(κ j ; k j − 1, ρ)

κ j + 1

= [1 − (1 − ρ)ki ][1 − (1 − ρ)k j ]

ρ2kik j
. (21)

This form reduces to qi j = 1 for the dimer case of ki = k j =
1, in which they communicate with each other every time they
are simultaneously activated. In the limit where ki, k j � 1,
we have qi j � 1/ρ2kik j . Equation (21) is, on the whole, nu-
merically supported as shown in Fig. 5(c), although deviations
and fluctuations are notable. We think they originate from the
higher-order effects involving more than two nodes, which we
do not take into account in the estimation. Specifically, we
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assume that the active nodes select each other independently
and uniformly among their active neighbors. However, these
two assumptions are not satisfied in the actual matching algo-
rithm described in Sec. II, i.e., the communication probability
between two nodes is also affected by their other neighbors,
the neighbors of the neighbors, and so on. Nevertheless, the
first-order approximation in Eq. (21) captures the overall
behavior of the communication probability as a function of
degrees of two nodes.

Let mi j be the number of times that adjacent nodes i and j
are simultaneously activated between two consecutive com-
munication events, including their activation that triggered
the latter of the two communication events but excluding the
one that triggered the former [see Fig. 4(c)]. We call mi j an
intercommunication coactivation number (ICCAN) of link i j.
Because random pairing is done independently at each time
step, mi j is geometrically distributed [see Fig. 5(d)] as

χ (mi j ) = (1 − qi j )
mi j−1qi j . (22)

As depicted in Fig. 4(c), a monovalent link ICT, denoted
by τm

i j , is equal to the sum of mi j successive polyvalent link
ICTs,

τm
i j =

mi j∑
m′=1

τ
p
i j,m′ . (23)

The distribution of τm
i j is written as

ψm
(
τm

i j

) =
∞∑

mi j=1

h
(
τm

i j ; mi j
)
χ (mi j ), (24)

where

h(τ ; m) ≡
∞∑

τ1=0

· · ·
∞∑

τm=0

ψp(τ1) · · · ψp(τm)δ

(
τ −

m∑
m′=1

τm′

)

(25)

is the probability that a monovalent link ICT is equal to τ and
it is composed of m polyvalent link ICTs. Here δ(·) denotes
the Dirac delta function.

Our goal is to derive an asymptotic expression for the
monovalent link ICT distribution given by Eq. (24). However,
the discrete power-law distribution ψp(τ ) in Eq. (25) makes
analytical treatments difficult. Instead, we substitute ψp(τ ) by
a continuous power-law distribution given by

ψp
(
τ

p
i j

) = (α − 1)
[
τ

p
i j

]−α
θ
(
τ

p
i j − 1

)
, (26)

where α > 1. The Laplace transform of Eq. (26) is given as

ψ̃p(s) = (α − 1)sα−1�(1 − α, s), (27)

where �(·, ·) denotes the upper incomplete gamma function.
In the asymptotic limit of s → 0, one gets

ψ̃p(s) = 1 + bsα−1 + cs + O(s2) (28)

with b ≡ �(1 − α)(α − 1), where �(·) is the gamma function,
and c ≡ (α − 1)/(2 − α).

The Laplace transform of Eq. (24) is given by

ψ̃m(s) = qi jψ̃p(s)

1 − (1 − qi j )ψ̃p(s)
. (29)

By substituting Eq. (28) and only keeping the leading terms
of expansion with respect to s, we have

ψ̃m(s) � 1 + bsα−1 + cs

qi j
. (30)

The inverse Laplace transform of Eq. (30) in the limit of
τ → ∞ yields

ψm
(
τm

i j

) � α − 1

qi j

[
τm

i j

]−α
. (31)

Equation (31) is valid for any values of α because considering
higher-order terms in the expansion of Eq. (30) does not affect
the asymptotic form given by Eq. (31). This result indicates
that the link ICT distribution for the monovalent model has
a power-law tail with the same exponent as the link ICT
distribution for the polyvalent model, which is consistent with
the numerical results presented in Fig. 5(b). At the same time,
the geometric distribution of ICCANs contributes to the hump
at the bulk part of the monovalent link ICT distribution. For
a dense network where the degrees are generally large, qi j is
small and the geometric decay of χ in Eq. (22) is slow; this is
why the hump is larger in denser networks as shown in Fig. 2.

Lastly, we discuss the node ICT distribution for the mono-
valent model. Unlike the polyvalent case, the monovalent
communication events on adjacent links (i.e., links sharing a
node) are not independent of each other even in the activation-
based time frame because communication between a pair of
nodes forbids the nodes from communicating with other nodes
at the same time. Nevertheless, Fig. 5(e) shows that node
ICCANs mi, i.e., the numbers of times that node i is activated
simultaneously with any of its neighbors until it communi-
cates with one of them, are geometrically distributed. This
observation suggests that the probability that a node succeeds
in communicating with another node is constant every time it
is simultaneously activated with at least one of its neighbors.

A monovalent node ICT, denoted by τm
i , can be written as

the sum of mi successive polyvalent node ICTs as follows:

τm
i =

mi∑
m′=1

τ
p
i,m′ . (32)

Equation (32) is analogous to the relation between the mono-
valent and polyvalent link ICTs given by Eq. (23). Again
using the scaling relation given by Eq. (31), one obtains the
monovalent node ICT distribution with a power law at its tail
as follows:

ψm
(
τm

i

) ∼ [
τm

i

]−α
. (33)

This result is in good agreement with the numerically obtained
scaling relations shown in Fig. 5(b).

V. CONCLUSION

To explain the origin of the bursty activity patterns of nodes
and links observed in empirical communication systems,
we have proposed a temporal network model in which the
nodes communicate with each other according to their non-
Poissonian random activation. The two variants of the model
that we introduced are both able to reproduce heavy tails in
the intercommunication time (ICT) distributions for nodes and
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links for various network topologies. We have analytically
shown the origin of the heavy tails: The polyvalent ICTs
are power-law distributed because each of them is a sum of
interactivation times (IATs) where both the summands and the
number of summands are power-law distributed random num-
bers, which stem from the node activation processes. A mono-
valent ICT is described as a sum of polyvalent ICTs, where
the number of summands is geometrically distributed because
the activated nodes are paired randomly and independently at
each time step. As a result, an exponential hump appears in the
bulk part of the ICT distributions, especially prominently for
small-degree nodes and for links between large-degree nodes;
nevertheless, the tail part of the distributions follows a power
law with the same scaling exponent as the power law in the
IAT distribution.

The superposition of independent communication se-
quences with power-law distributed ICTs does not yield a se-
quence with the ICTs distributed as a power law with the same
scaling exponent. Therefore, the assumption of independence
between links cannot account for the real-world observations.
Our results suggest a possible mechanism behind the reconcil-
iation between bursty dynamics of nodes and links. Link-link
correlations emerge as a result of the combination of two
factors: burstiness in underlying node activation patterns, and
realization of communication only between simultaneously
activated nodes.

Further steps can be taken in this line of research. In
this work, we have considered a homogeneous population
of nodes that shares the same activation statistics. In reality,
the activity levels of nodes and the weights of links, i.e.,
the frequency of communication between pairs of individu-

als, are heterogeneous [22]. It would be straightforward to
include such heterogeneity into our modeling framework if
we consider nodes endowed with different scaling exponents
of the IAT distribution. We have also assumed that a node
behaves in an equal manner toward every neighbor. However,
empirical data show that individuals allocate their efforts to
communicate with others unevenly among alters [23]. This
effect can be taken into account in the monovalent model by
setting biases toward certain links when pairing communi-
cation partners. Another possible extension is to implement
communication among a group of nodes, which corresponds
to “conference calls” or “group chats,” in a direction similar
to Ref. [24]. One can also tailor the temporal structure of node
activation patterns to account for the empirical observation
of long-range correlated node ICTs in human communica-
tion [25,26]. Future work also includes how the presence
of link-link correlations affects dynamical processes taking
place in temporal networks and the associated network control
problems [27].
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