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Rearrangement of two dimensional aggregates of droplets under compression:
Signatures of the energy landscape from crystal to glass

Jean-Christophe Ono-dit-Biot,1 Pierre Soulard,2 Solomon Barkley,1 Eric R. Weeks,3 Thomas Salez,4,5

Elie Raphaël ,2 and Kari Dalnoki-Veress 1,2,*

1Department of Physics & Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4L8
2UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 10 Rue Vauquelin, 75005 Paris, France

3Department of Physics, Emory University, Atlanta, Georgia 30322, USA
4Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France

5Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan

(Received 22 September 2019; revised manuscript received 7 February 2020; accepted 12 March 2020;
published 23 April 2020)

We study signatures of the energy landscape’s evolution through the crystal-to-glass transition by compressing
two dimensional (2D) finite aggregates of oil droplets. Droplets of two distinct sizes are used to compose small
aggregates in an aqueous environment. Aggregates range from perfectly ordered monodisperse single crystals to
disordered bidisperse glasses. The aggregates are compressed between two parallel boundaries, with one acting
as a force sensor. The compression force provides a signature of the aggregate composition and gives insight into
the energy landscape. In particular, crystals dissipate all the stored energy through single catastrophic fracture
events whereas the glassy aggregates break step by step. Remarkably, the yielding properties of the 2D aggregates
are strongly impacted by even a small amount of disorder.
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I. INTRODUCTION

Glassy materials are drastically different from crystals
in their properties and cannot simply be described as crys-
tals with defects [1]. The intrinsic disorder associated with
molecules that do not neatly pack, or polydisperse colloidal
spheres, prevents glasses from crystallizing [2,3]. Intense
effort has been devoted to understanding glasses and the
transition from an ordered crystal to a disordered glass.
Microscopic properties such as the packing configuration
can be accessed experimentally and provide insight into the
crystal-to-glass transition [4–8]. But, these studies did not
yield any conclusion regarding the difference in mechanical
properties between crystals and glasses. To answer this ques-
tion several numerical studies have been conducted, with a
consistent conclusion: adding even a small amount of disorder
to a system with crystalline packing results in properties,
including mechanical properties, that are similar to those of
amorphous structures [9–17]. However, conducting an equiva-
lent experimental study is challenging. A beautiful experiment
by Keim et al. showed that a small amount of disorder in a col-
loidal polycrystal results in a shear modulus similar to the one
observed with a binary mixture of colloids [18]. However, an
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experimental characterization of the transition from a per-
fectly ordered single crystal to a disordered glass probed using
mechanical properties is still lacking, since experimental sys-
tems are often polycrystalline and their properties dominated
by grain boundaries. Here, we experimentally study the yield-
ing properties of two dimensional (2D) finite-size aggregates
of droplets that vary in the extent of disorder from a perfect
crystal to a glass.

We use an emulsion since individual particles can easily be
imaged to obtain both structural and dynamical information
[19–21]. Colloids and emulsions are proven model systems
for the study of glasses and jamming [19,22–25], force chains
[26,27], and phase transitions in crystals [28]. Specifically, we
use an emulsion of oil-in-water confined to a 2D finite-size
aggregate. The droplets have a short-range attraction due to
the depletion force, with an attraction energy much greater
than thermal energy. When the droplets come into contact,
they have an even stronger short-range repulsion. In our
experiment, they act as hard spheres, given that the forces we
exert are much less than those needed to deform the parti-
cles [27]. Such interactions are typical and generic to many
systems. Furthermore, while many glass formers have greater
complexity, it has been shown that even the simplest hard
sphere model captures the main properties of bulk metallic
glasses [29,30]. Thus, the experiments presented stimulate
systems such as metallic and colloidal glasses. The amount
of disorder is tuned by changing the relative fraction of large
and small droplets in aggregates with a total of Ntot = 20 or
23 droplets. We investigate the transition from a perfectly
ordered monodisperse crystal [31] to a disordered bidis-
perse glass [32–34] by systematically adding defects to the
crystalline structure. The transition is studied through the
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force required to globally compress and fracture the 2D
aggregates while simultaneously monitoring microscopic re-
organization.

While there are several advantages to the idealized model
system presented, it is important to address how the inherent
simplifications relate to real bulk systems. First, the droplets
are large (∼20 μm radius) so the system must be treated
as athermal. The results presented are then the analogs of
molecular systems which correspond to an adhesive glass or a
crystal that is well below the solid-melt transition temperature.
A second simplification is the 2D nature of the model system
and it is certainly the case that dimensionality will influence
the results. However, recent works [24,25,35] suggest that the
glass transitions in 2D and 3D are fundamentally the same.
While there may be differences due to the dimensionality,
the underlying physics of the crystal-to-glass transition is
expected to be common. A last point is that the number of
particles studied is small compared to the bulk. However,
the small system provides a unique “bottom-up” opportu-
nity which complements bulk or many-particle approaches.
Specifically, with the system studied, it is possible to (i)
prepare perfect single crystals, rather than a polycrystal as
is typical, (ii) add defects to the single crystals one by one,
and (iii) obtain aggregate-scale force responses during com-
pression, while (iv) simultaneously observing local structural
re-arrangements. With the addition of even a small number
of defects, we find (1) a rapid increase in the number of
fracture events upon compression and (2) that the yield energy
is distributed over many small steps in comparison to a single
large step for a crystal. These experimental findings provide a
signature of the increasingly complex energy landscape as the
system transitions from crystal to glass. Finally, we develop
an analytical model which supports the experimental data.

II. EXPERIMENTAL DETAILS

The experimental setup, illustrated in Fig. 1(a), is a cham-
ber (55 × 30 mm2) is made of two glass slides separated by
a gap of 2.5 mm, which is 103 times greater than the size
of droplets. The chamber is filled with an aqueous solution
of sodium dodecyl sulfate (SDS) at 3% and NaCl at 1.5%.
This concentration of SDS leads to the formation of micelles
acting as a depletant resulting in a short-ranged attraction
between the droplets [36]. The adhesion between droplets
can be clearly seen in Movie M1 in Supplemental Material
[37]. In the absence of SDS, the adhesion is insufficient
for the droplets to stick to each other and the aggregates
cannot be assembled. Three small micropipettes are inserted
into the chamber: the “droplet pipette,” “pushing pipette,”
and “force-sensing pipette.” Pipettes were pulled from glass
capillaries (World Precision Instruments, USA) with a pipette
puller (Narishige, Japan) to a diameter of about 10 μm over
several centimeters in length. The “droplet pipette” produces
monodisperse droplets, with size directly proportional to the
tip radius of the pipette, using the snap-off instability [38]. The
droplets are buoyant and form a 2D aggregate under the top
glass slide [Fig. 1(b)]. The “pushing pipette” is short and stiff
and is used to compress the aggregate. The pushing pipette is
affixed to a translation stage and its speed set to v = 0.3 μm/s
for all experiments. The “force-sensing pipette” is a long

FIG. 1. (a) Schematic top view of the experimental chamber. The
typical dimensions of the wall (dark grey) are 55 × 30 × 2.5 mm3.
The “droplet pipette,” “pushing pipette,” and “force-sensing pipette”
are labeled as (i), (ii), and (iii) respectively. (b) Schematic side
view (not to scale). The buoyant droplets form a quasi-2D aggregate
bounded by the top glass plate. The pushing pipette (black circle on
the left) and the force-sensing pipette (red circle on the right) are
placed near the average equatorial plane of the droplets so forces
are applied horizontally. (c) Optical microscopy image of a typical
crystal (scale bar is 50 μm). Red dashed lines show observed fracture
lines for a crystal when compressed.

compliant pipette, and its deflection is used to measure forces
applied to the aggregate [39,40]. To be sensitive to forces
as small as ≈100 pN, the force-sensing pipette needs to be
long (≈3 cm) and thin (≈10 μm). This long straight pipette is
locally and temporarily heated to soften the glass such that it
can be shaped to fit within the small chamber [see pipette (iii)
in Fig. 1(a)]. Aggregates of oil droplets are assembled droplet
by droplet and thus can be prepared into any arbitrary shape
(see Movie M1 in Supplemental Material [37]). We use pini

to refer to the initial number of rows of droplets, defined as
parallel to the pipettes as shown in Fig. 1(c), while qini refers to
the initial number of droplets per row. Under compression the
aggregate rearranges to have p rows and q columns, while Ntot

remains fixed. Using two “droplet pipettes” with different tip
radii facilitates the preparation of well controlled bidisperse
aggregates [38]. To increase the disorder in an aggregate, large
droplets are replaced by small droplets (or vice versa). The
chamber is placed atop an inverted optical microscope for
imaging while the aggregates are compressed.

The distance between the pushing pipette and the force-
sensing pipette, δ, is measured using cross-correlation anal-
ysis between images with a precision of ∼0.1 μm [39,40].
Additionally, correlation analysis provides the deflection of
the force-sensing pipette, which is converted to a force us-
ing the calibrated spring constant kp = 1.3 ± 0.1 nN/μm of
the pipette [39,40]. The typical uncertainty on the force is
δF/F ≈ 2%. The aggregate rearranges under compression
by breaking adhesive bonds between droplets. These fracture
events can be directly monitored with optical microscopy and
related to the force measurement.
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FIG. 2. (a) Force measurements, F , as a function of the distance
between the pipettes, δ, for seven aggregates sharing the same lattice
but with different compositions of small (R = 19.2 ± 0.3 μm) and
large (R = 25.1 ± 0.3 μm) droplets. Here δ decreases with time
as the aggregate is compressed and the aggregate changes from
p = 4 to 1 as indicated at the bottom. Traces 1 to 7 correspond
to {0; 1; 6; 10; 14; 19; 20} large droplets with Ntot = 20. The black
dashed lines correspond to the positions δ

p
min of the peak maxima for

the crystal made of small droplets, while the blue dashed lines corre-
spond to the positions δp

max of the peak onsets (i.e., upon compression
as δ decreases) for the crystal made of large droplets. The shaded area
highlights the different transitions during the compression. (b)–(e)
Optical microscopy images of the aggregates, before compression,
corresponding to traces 1 to 4. Blue squares correspond to large
droplets and red circles to small droplets (scale bar is 50 μm).

Our droplets are essentially athermal. This can be seen
by calculating the Péclet number Pe, the nondimensional
ratio between the timescale for diffusive motion τD and the
timescale for the pipette motion τv . τD is the typical time it
takes a droplet to diffuse its own radius, τD = R2/(2D) with
R ≈ 20 μm for our experiments and D the diffusion constant.
For D, we consider the diffusion constant based on three
dimensional diffusion in water, leading to τD ≈ 18 000 s. τv

is the time it takes the pushing pipette to move a distance R,
thus τv = R/v ≈ 67 s. This leads to Pe = τD/τv = 270, and
as this is much larger than 1, it confirms that motion within
our experiment is athermal (driven by the pushing pipette
rather than due to diffusion). Given that our droplets also
have adhesive forces which further diminish diffusion-driven
rearrangements, we are safely in the Pe � 1 limit.

III. RESULTS AND DISCUSSION

A. Effect of disorder on the force curves

Figure 2(a) shows the force measurements as a function
of the distance between the pipettes, δ, for seven different

aggregates with pini = 4 and qini = 5. The proportion of large
and small droplets is varied from aggregate to aggregate.
The top trace (1) corresponds to a crystal (i.e., a monodis-
perse aggregate) made of small droplets with radius R =
r = 19.2 ± 0.3 μm [Fig. 2(b)], and the bottom trace (7) to a
crystal of large droplets with radius R = R = 25.1 ± 0.3 μm.
These traces show three force peaks corresponding to three
fracture events: the transition from p = 4 to p = 3, which we
designate as 4 → 3, followed by 3 → 2, and finally 2 → 1
(see Movie M2 in Supplemental Material [37]). The peak
height is directly linked to the number of bonds broken. Each
fracture event corresponds to a local maximum in the force-
distance curve of Fig. 2(a) and to a corresponding interbasin
barrier in the energy landscape. Clearly, for a p → (p − 1)
transition, a crystal made of small droplets will fracture at
a smaller spacing between the pipettes (trace 1), compared
to a crystal of larger droplets (trace 7). All the bonds are
broken in a catastrophic and coordinated manner, in agree-
ment with other studies of crystals under compression [41,42].
The largest system that shows this catastrophic failure in a
crystal was made of 49 droplets with p = 7 (see Movie M3
in Supplemental Material [37]). Larger aggregates were not
studied but we expect this result to hold even for large values
of p as long as the droplets are monodisperse enough to form a
perfect single crystal. For 2D crystals we find that the fracture
patterns consist of equilateral triangles with (p − 1) droplets
on a triangle’s side as shown in Fig. 1(c). These equilateral
triangles arise because they minimize the number of broken
bonds between droplets as p → (p − 1). After fracture, the
triangles slide past each other and reassemble into a new
crystal with (p − 1) rows of droplets. By design, the force
sensor does not register a friction force during sliding, nor
are we sensitive to viscous drag during compression, because
slow compression (0.3 μm/s) ensures that viscous drag forces
are negligible.

With the introduction of defects in the structure compres-
sion forces are no longer homogeneously distributed within
the aggregate [see Figs. 2(c)–2(e)]. Thus, rather than a single
catastrophic fracture, additional fracture events occur and
extra peaks appear in the force data, as seen in the traces 2
to 6 of Fig. 2(a). When a single defect is introduced (traces
2 and 6), extra peaks are observed but peaks corresponding
to the fracture of the crystalline portion of the aggregate can
still be identified (large peaks at the same values of δ). Defects
are systematically introduced up to trace 4, which corresponds
to the most disordered system that we use to model a glass
(equal fraction of large and small droplets). The force-distance
curves are strongly impacted by increasing disorder: (i) the
number of peaks increases, (ii) the overall magnitude of
the force peaks decreases, and (iii) the peaks correspond-
ing to the underlying crystalline structure can no longer be
differentiated from the others. In order to identify peaks as
corresponding to a specific transition from p to (p − 1) one
can invoke the fact that a restructuring event in a bidisperse
aggregate must occur within the compression range set by the
onset of fracture associated with a crystal of big droplets and
the completion of fracture in an aggregate of small droplets.
Thus, we invoke the following criterion: a peak corresponds
to the p → (p − 1) transition if the peak is found in the com-
pression range δ ∈ [δp

min, δ
p
max], where δ

p
max is defined by the
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onset of the force peak upon compression of aggregates only
made of large droplets and δ

p
min is defined by the completion

of the fracture event in aggregates made of only small droplets
[i.e., corresponding to the compression value at the maximum
force as detailed in Fig. 2(a)]. This criterion is ideal for the
small aggregates used in this study. For larger aggregates,
stacking i large droplets may result in a smaller height than
i + 1 small droplets for large values of i. The value of i for
which overlapping regions could be seen depends on the size
ratio r/R. However, peaks can still be attributed to a given
transition p → (p − 1) by correlating specific fracture events
to bond breaking events in the microscopy pictures.

From Fig. 2 it is evident that fracture properties are
strongly dependent on the aggregate composition. In the sim-
plest case, that of compressing a crystal cluster, the droplets
deform and the stored elastic energy increases with com-
pression. Eventually the stored elastic energy exceeds the
depletion-induced adhesive energy, and a coordinated frac-
ture occurs as discussed above [shown in Fig. 1(c)], such
that a minimal number of bonds are broken. We now turn
to the more complex bidisperse aggregates. As defects are
introduced, the most striking feature is the rapid increase in
the number of force peaks [Fig. 2(a)]. To further quantify
this observation, we perform experiments for two different
aggregate geometries: (i) pini = 4 with qini = 5 and (ii) pini =
3 with the three rows initially made of 8, 7, and 8 droplets. The
composition of the cluster is given by the number fraction of
small droplets in the aggregate, φ = Nsmall/Ntot, which varies
from zero to one. Both φ = 0 and φ = 1 correspond to crys-
tals while φ = 0.5 corresponds to the maximum amount of
disorder: a model glass. The defects are purposely distributed
throughout the whole structure to avoid clumps of defects. In
Fig. 3(a), we plot the total (i.e., until we reach p = 1) number
N pini→1 of detectable force peaks as a function of the defect
fraction.

B. Analytical model

We propose a minimal model that rationalizes the experi-
mental observations. A given (p, q) aggregate is approximated
by an ensemble of q independent columns, each with p rows
of droplets. By allowing this simplification, one can treat each
column as a random packing of droplets belonging to two
different species which correspond to the two different radii:
small droplets with R = r and large droplets with R = R.
Since droplets are arranged in a nearly hexagonal lattice, each
column consists of alternating layers of a single droplet or
two droplets side by side (see Appendix A). The probabilities
associated with finding a small or large droplet at a specific
site are given by the number fractions φ and 1 − φ. The
total resulting height, H , of a given column depends on the
specific composition in that column, and takes values ranging
from Hr to HR, for columns made of small (φ = 1) and
large (φ = 0) droplets. We define the dimensionless height
h = 2H/(HR + Hr ). One can compute (see Appendix B) the
associated probability distribution, P(h), plotted in Fig. 3(c)
for various φ (black bars). Compression of an aggregate
then proceeds as follows: First, the tallest columns are com-
pressed and broken, which creates a force peak whose mag-
nitude reflects the abundance of these highest columns in the

FIG. 3. (a) Measured total number of force peaks as a function
of defect fraction, for a compression from pini to p = 1. (•) pini = 4
with qini = 5 from two data sets (different colors); (�) pini = 3 with
the three rows initially made of 8, 7, and 8 droplets each, from two
data sets (different colors). (b) Evolution of the normalized excess
number of peaks compared to a crystal, with the black dashed line
corresponding to Eq. (2). (c) Theoretical probability distribution
of the dimensionless column height h, in an aggregate with q →
∞ and p = 4, for four defect fractions φ = {0; 0.1; 0.3; 0.5} (see
Appendix B). Gaussian curves (blue solid lines) with same standard
deviation, σ , and average, μ, as the discrete distribution are over-
layed as a guide to the eyes. Typical radii of large and small droplets
are ≈22 μm and ≈18 μm (see Appendix D).

aggregate. Then, the pushing pipette starts compressing the
second highest columns and the process repeats.

The simple model predicts that the average number of
force peaks observed during the p → p − 1 transition of an
aggregate can be identified with the average number N p(φ, q)
of different column heights present in the aggregate composed
of q columns. For a monodisperse aggregate, there is only
one possible column height, and thus N p(0, q) = N p(1, q) =
1 resulting in one force peak for the p → p − 1 transition.
In contrast, as the defect fraction increases, the number of
possible different heights and thus the number of force peaks
increase. The number of different heights can be calculated
numerically according to the scheme described above (see
Appendix B). In addition, a simple argument provides an
analytical estimate for the average number of force peaks
in a sample with a given φ. The increase in the average
number of different column heights in comparison to a crys-
tal is expected to be proportional to the standard deviation,
σ (φ, p) ∝ √

φ(1 − φ), of the height distribution centered at
μ(φ, p) shown in Fig. 3(c). This results from the random
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packings of the columns described above and gives

N p(φ, q) − 1 = [N p(φ = 0.5, q) − 1]2
√

φ(1 − φ). (1)

Finally, in order to determine all the force peaks encoun-
tered on average as the aggregate is compressed, we sum
Eq. (1) over all the transitions starting from a cluster with
pini rows to one row, in order to construct N pini→1

qini (φ) =∑pini
p=2 N p(φ, q), where q = Ntot/p. Defining the average num-

ber of peaks compared to a crystal, �N (φ, pini, qini ) =
N pini→1

qini (φ) − N pini→1
qini (0), we obtain (see Appendix C)

�N

�Nmax
(φ) = 2

√
(1 − φ)φ, (2)

where �Nmax = �N (φ = 0.5, pini, qini ) corresponds to the
average maximum excess number of peaks, observed when
compressing the most disordered aggregate. The experimental
value of �Nmax is obtained by fitting Eq. (2) to each set of
data presented in Fig. 3(a). Figure 3(b) shows that this simple
model captures well the rapid increase of the number of force
peaks as defects are added. The derivative of Eq. (2) at φ = 0
is infinite; thus, a small change in the fraction of defects in an
aggregate results in a drastic change in the yield properties as
observed in experiments. We note that the minor discrepancy
between the data and the model reflects experimental error
as well as three main departures of the real aggregate from
the proposed idealization: (i) neighboring columns are not
independent, (ii) the real aggregate has a finite number of
columns, and (iii) some peaks may not be detected.

C. Probing the energy landscape through
the crystal-to-glass transition

The compression experiments can also be used to measure
the yield energy of the aggregate as a function of the defect
fraction, which reflects the character of the underlying energy
landscape. The energy landscape is a high dimensional space,
and we observe one specific pathway through this space as
the system is compressed. The changes in these pathways as
the sample is varied from a crystal to a glass reveal hints
of how the energy landscape changes based on the sample
structure. Specifically, the work Wtot exerted (and then fully
dissipated in the fluid) in order to generate a p → (p − 1)
rearrangement is obtained by integrating the force-distance
curve [Fig. 2(a)], for the corresponding transition; this gives
the height of the barrier traversed in the energy landscape. As
explained previously, a p → (p − 1) transition corresponds
to δ ∈ [δp

min, δ
p
max], so the integration is performed over this

interval. Moreover, we only consider the rising (along the
compression orientation, i.e., upon decreasing δ) elastic part
Fs of the force peaks, as the subsequent decay corresponds
to the viscous relaxation of the force-sensing pipette. The
overlap of a decaying part of a peak and a rising part of
the following peak constitute a possible source of uncertainty
in the measurement. However, because of the small size of
the aggregate, these overlapping events are in fact extremely
rare. For this analysis, we focus on the collection of force
traces presented in Fig. 2(a) and in particular the transition
p = 4 → p = 3. Within our resolution, the total work Wtot =∫ δ

p
max

δ
p
min

dδ′ Fs(δ′) = 2.2 ± 0.7 fJ is found to be nearly constant

FIG. 4. Normalized partial work (see definition in text) as a func-
tion of distance, for the p = 4 → p = 3 transition, for aggregates of
different relative compositions (number of small droplets / number
of large droplets) as indicated. Top: Experimental results correspond-
ing to the force curves shown in Fig. 2(a). Bottom: Corresponding
theoretical results, according to Eq. (3).

for all the different experiments and is not correlated to the
composition of the aggregate when the initial geometry (pini,
qini) is kept constant (see Appendix E). The remarkable result
that the work is nearly independent of the composition of the
aggregate is an indication that the number of bonds broken
must be nearly constant.

While the total work may be nearly constant, there is an
important distinction between the disordered and crystalline
systems in how that work is distributed during a p → (p − 1)
transition of the aggregate. To access that information, we

consider the partial work W (δ) = ∫ δ
p
max

δ
dδ′ Fs(δ′), with δ ∈

[δp
min, δ

p
max]. For the crystals, the bonds are broken simulta-

neously as the system is driven out of a deep minimum in
the landscape. For instance, the crystal made of large droplets
breaks near δ = δ

p
max [Fig. 2(a)], with the normalized partial

work going abruptly from zero to one upon compression (i.e.,
decreasing δ) near that point. This fracture event is detailed
in the top panel of Fig. 4 where we plot the normalized
work as a function of the interpipette distance, δ. The crystal
made of small droplets exhibits a similar sudden transition,
except that the fracture event happens at δ = δ

p
min. In contrast,

when defects are introduced, several intermediate steps are
observed. For an aggregate with a single defect, a major step
(corresponding to the crystalline fraction) is still observed but
rapidly fades away as more defects are added. The curves for
six defects (φ = 0.3) and for the model glass (φ = 0.5) both
show many discrete jumps in the work; thus, the failure of
disordered systems is more progressive and has a much lower
yield threshold than for crystals. These compression experi-
ments give a microscopic view into well-known macroscopic
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FIG. 5. Schematics of the columns with p = 6 considered in the
theoretical model. The left part shows how rectangles and circles
are assembled to build a column. The right part shows the different
choices for circles and rectangles along with their probability of
appearing.

properties. Finally, one can compare the experiment to the
theoretical model developed above. In the model, the average
normalized partial work is given by the fraction of columns
that have a height H larger than δ. Invoking the probability
distribution P of column heights, one gets on average

W (δ)

Wtot
=

∫ δ
p
max
�

δ
�

dh P(h, φ, p), (3)

where � = μ(p, φ = 0.5) = (Hr + HR)/2. This expression is
plotted in the bottom panel of Fig. 4 for various compositions,
and is consistent with the experimental data. The theory
predicts more steps than the experiment; this is because the
experiment probes one configuration, while the theory is an
average over all the configurations. We have thus shown that
model 2D crystals and glasses are markedly different under
compression: crystals deform elastically until a catastrophic
global fracture event occurs, whereas glasses rearrange locally
with many intermediate fracture events that each have lower
individual yield thresholds. This deviation from the well-
established response of a crystal to an external stress has
also been observed in a recent analytical study [43], and
it was shown numerically that materials go from brittle to
ductile when transitioning from crystal to glass [13]; a fact
that is tested here directly with the idealized microscopic
experiments.

IV. CONCLUSIONS

In summary, we present a study of aggregates composed of
a finite number of athermal particles which provide a unique

bottom-up opportunity to investigate the transition from crys-
tal to glass by systematically adding disorder to 2D colloidal
crystals. Upon addition of defects the mechanical properties
of the aggregates rapidly transition from crystalline to glassy.
The number of force peaks, corresponding to fracture events,
increases steeply with the defect fraction, before saturating to
the glass value. Additionally, the yield energy as a function of
disorder has been investigated. We find that for a 2D crystal a
high energy barrier must be overcome, while glasses fracture
progressively through failure in many small steps. In the sys-
tem studied the adhesion energy between particles exceeds the
thermal energy, thus the aggregates correspond to a glass or a
crystal well below the solid-melt transition temperature. In a
system that is closer to the solid-melt transition, the thermal
energy would trigger the rearrangements we observe with less
compression than observed in the experiments and would blur
the energy landscape. The peaks of our force measurement
would shift to smaller compressions and have reduced mag-
nitude. This does not change the physics of such thermal
clusters, but would make the precise force spectra harder to
observe. Nonetheless, the major finding of our work would
remain: perfect crystals require more force to compress, and
adding in a dilute amount of defects dramatically decreases
the force necessary to deform and rearrange a material, even
at finite temperatures. The fracture events observed reflect the
substructure introduced by disorder in the underlying energy
landscape. The observations are consistent with the brittle
failure of crystals as opposed to the plasticity of glasses. A
minimal analytical model captures the essential experimental
features. From the combination of experiments and theory,
we quantify the crystal-to-glass transition using macroscopic
yield observables that are consistent with a simple micro-
scopic picture.
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APPENDIX A: HEIGHT OF A COLUMN
AND PROBABILITY

In this section, the theoretical model used to predict the
number of peaks in the force measurement as a function of
φ is derived. In this calculation, each transition from p rows
of droplets to (p − 1) rows is studied individually. In the
following, p and q are constant values.

The theoretical model developed for this study is based
on geometrical arguments. An assembly of droplets is com-
pressed if its lateral unstrained extent is larger than the spacing
between the pipettes. The aggregate is modeled as q indepen-
dent columns of height Hi stacked next to each other, the index
i, going from 1 to q, labels the columns. The total height of a
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column depends the composition of droplets. For a crystal,
all the columns are the same so they break at the same time,
which results in a single peak in the force measurement. When
defects are introduced, large droplets are substituted by small
ones (or vice versa). Columns constituting the aggregate now
have different heights and break for different values of δ,
resulting in several peaks in the force measurement.

A column is made of alternating layers of two droplets,
which are modeled as a rectangle, and single droplets, mod-
eled as circles, as shown in Fig. 5. The number fraction φ

of small droplets in an assembly of Nsmall small droplets and
Ntot − Nsmall large droplets is defined as φ = Nsmall/Ntot. De-
pending on the composition of the two droplets, the rectangles
can take three heights {2R̃, 2r̃, (R̃ + r̃)} with probabilities
{(1 − φ)2, φ2, 2(1 − φ)φ} respectively. The circles can only

have two diameters resulting in two distinct heights {2R, 2r}
with probabilities {(1 − φ), φ} respectively. Finally, we take
the relation between (R, r) and (R̃, r̃) to be a geometrical factor
α. It is the sum of the heights of the rectangles and the heights
of the circles that determine the overall height of a column, as
shown in Fig. 5.

Random walk statistics can be applied to this model. To
simplify, we consider p being even. The results for p being
odd would be similar. Thus, for the even case, building such
a column is equivalent to two random walks of p/2 steps:
one with the circles and one with the rectangles. Using
the random walk statistics formalism [44], we can express
the probability Pcirc(H1, φ, p, r, R) of finding a height H1 by
stacking p/2 circles of two different sizes for a given φ, and
Prect(H2, φ, p, r̃, R̃), the probability of finding a height H2 by
stacking p/2 rectangles of three different heights:

Pcirc(H1, φ, p, r, R) = 1

2π

∫ π

−π

[φe2iθr + (1 − φ)e2iθR]
p
2 e−iθH1 dθ,

Prect(H2, φ, p, r̃, R̃) = 1

2π

∫ π

−π

[φ2e2iθ r̃ + (1 − φ)2e2iθ R̃ + 2φ(1 − φ)eiθ (R̃+r̃)︸ ︷︷ ︸
[φeiθ r̃+(1−φ)eiθ R̃]2

]
p
2 e−iθH2 dθ, (A1)

Pcirc(H1, φ, p, r, R) =
p
2∑

k=0

( p
2

k

)
φk (1 − φ)

p
2 −kδ

[
2kr + 2

( p
2 − k

)
R − H1

]
,

Prect(H2, φ, p, r̃, R̃) =
p∑

l=0

(
p

l

)
φl (1 − φ)p−lδ[l r̃ + (p − l )R̃ − H2]. (A2)

It turns out that the random walk of p/2 steps with three different step sizes is equivalent to p steps of two different sizes [see
Eq. (A1)]. The Dirac δ function in Eq. (A2) is a geometrical constraint on the total height. Only the combinations of droplets that
lead to the right total heights H1 and H2 are considered. The distribution of probability of the total height H is the convolution
product of Pcirc(H1, p, φ, r, R) and Prect(H2, p, φ, r̃, R̃):

P(H, φ, p, r, R, r̃, R̃) =
∫ ∞

0
Pcirc(H − H2, φ, p, r, R)Prect(H2, φ, p, r̃, R̃) dH2. (A3)

Using Eq. (A2) we find

P(H, φ, p, r, R, r̃, R̃) =
p
2∑

k=0

p∑
l=0

( p
2

k

)(
p

l

)
φk+l (1 − φ)

3p
2 −k−lδ

[
l r̃ + (p − l )R̃ + 2kr + 2

( p
2 − k

)
R − H

]
. (A4)

To simplify the notation we consider r, R, r̃, and R̃ fixed so the
probability distribution is P(H, φ, p). Equation (A4) is used
to calculate numerically the discrete distribution presented
in the main text [Figs. 3(c)–3(e) histograms]. The height H
can take discrete values Hi, with probability Pi = P(Hi, φ, p),
ranging from Hr for a column made of small droplets (φ = 0)
to HR for a column made of large droplets (φ = 1). The
total number of different heights Hi only depends on p and
is denoted mp. Finally, the height H is renormalized as h =
2H/(Hr + HR). With this renormalization, a column made of
50% large droplets and 50% small droplets (φ = 0.5) has a
dimensionless height h = 1.

APPENDIX B: NUMBER OF PEAKS

The column model gives access to the probability Pi of
finding the height Hi in an aggregate for any fraction of

defects φ. The number of peaks in the force measurement
is calculated from the height distribution. Let us denote the
average number of force peaks during the compression of an
aggregate with p rows to an aggregate with (p − 1) rows by
N p(φ, q). Observing a single peak in the force measurement
means that all the columns share the same height. Measuring
two peaks means that there are two and only two different
heights. Thus N p(φ, q) corresponds to the average number
of different heights composing an aggregate of p rows and q
columns.

For a given fraction of defects φ, an aggregate of size
p × q is built by choosing randomly q columns from a
pool of columns. Correlation between two adjacent columns
are neglected. Experimentally, a small fraction of the peaks
in the force measurement is due to the correlation be-
tween columns, but most of the peaks are indeed due to
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compression of independent columns. From the discrete prob-
ability distribution, Eq. (A4), there is a finite number mp of
possible heights Hi with a nonzero probability. To predict the
number of peaks we calculate the probability An(φ, p, q) of
finding strictly n different columns heights in an aggregate of
size p × q at a given fraction of defects φ.

Building an aggregate is equivalent to drawing q columns
which can take mp different heights Hi with probability Pi.
{i jk · · · }n defines n different numbers between 1 and mp. Let
P̃{i jk··· }n denote the probability that the aggregate is composed
only of the n heights {Hi, Hj, Hk, . . . } and each height appears
at least once. As the order in which the heights are drawn is
not important, one gets

An(φ, p, q) = �(q − n)

n!

∑
{i jk··· }n⊂�1,mp�

P̃{i jk··· }n , (B1)

where � is the Heaviside function and
∑

{i jk··· }n⊂�1,mp�
denotes

the sum over all the n-tuples {i jk · · · }n in �1, mp�. We define
P{i jk··· }n as the probability of drawing one of the n heights
{Hi, Hj, Hk, . . . }, and obtain

P{i jk··· }n =
∑

κ∈{i jk··· }
Pκ . (B2)

Hence, the probability that an aggregate of q columns is
composed only of the heights {Hi, Hj, Hk, . . . } is given by
(P{i jk··· }n )q. However, this probability is not equal to P̃{i jk··· }n

since it does not take into account that each height must
appear at least once. The difference between (P{i jk··· }n )q and
P̃{i jk··· }n is the probability that one or more of the heights
{Hi, Hj, Hk, . . . } does not appear. To calculate P̃{i jk··· }n we
subtract from (P{i jk··· }n )q the probabilities that the aggregate is
only composed of n − κ different types of columns of heights
{Ha, Hb, Hc, . . . } with {abc · · · } ⊂ {i jk · · · }n summed over all
the possible (n − κ )-tuples in {i jk · · · }n and summed over all
the κ from 1 to n − 1:

P̃{i jk··· }n = (
P{i jk··· }n

)q −
n−1∑
κ=1

∑
{abc··· }n−κ⊂{i jk··· }n

P̃{abc··· }n−κ
.

(B3)

Noticing that the sum over the κ and the other sums can be
switched, and using Eq. (B1), one finds

An(φ, p, q)

= �(q − n)

n!

∑
{i jk··· }n⊂�1,mp�

(
P{i jk··· }n

)q

− 1

n!

n−1∑
κ=1

∑
{i jk··· }n⊂�1,mp�

∑
{abc··· }n−κ⊂{i jk··· }n

P̃{abc··· }n−κ

︸ ︷︷ ︸
Bκ

.

(B4)

Let us focus on the second term of the right-hand side, called
Bκ , in Eq. (B4). P̃{abc··· }n−κ

depends on n − κ indices and it is
summed over n indices. So if we fix the n − κ indices that

(a) (b)

FIG. 6. (a) Probability distribution An as a function of φ for an
aggregate made of p = 2 rows and q = 50 droplets per row. (b) Pre-
diction of the average number of peaks in the force measurement as
a function of φ based on the distribution An. Note that we only plot
the function for φ ∈ [0, 0.5] by symmetry about φ = 0.5.

P̃{abc··· }n−κ
depends on, it will appear

(n
κ

)
times. Thus

Bκ =
∑

{i jk··· }n⊂�1,mp�

(
n

κ

)
P̃{i jk··· }n−κ

. (B5)

By splitting the sum into two parts, one finds

Bκ = κ!

(
n

κ

)⎡
⎣n−1∏

β=κ

(mp − β )

⎤
⎦Aκ , (B6)

leading to

An(φ, p, q) = �(q − n)

n!

∑
{i jk··· }n⊂�1,mp�

(P{i jk··· }n )q

− 1

n!

n−1∑
κ=1

(
n

κ

)
κ!

⎡
⎣n−1∏

β=κ

(mp − β )

⎤
⎦Aκ . (B7)

The average number of peaks N p(φ, q) is given by

N p(φ, q) =
mp∑

n=1

nAn(φ, p, q). (B8)

Equations (B7) and (B8) can be evaluated numerically, see
Fig. 6. The importance of this distribution An(φ, p, q) can
be easily understood for both extreme values of φ. If φ = 0,
there is only one possible height for the column, meaning that
An(φ = 0, p, q) = δ1n, where δi j is the Kronecker symbol. On
the other hand, if φ = 0.5, it is unlikely to find only one
height so A1 � 0. It is more likely to find all the different
heights in the aggregate leading to Amp � 1. This is illustrated
in Fig. 6(a) which shows the probabilities, An, for p = 2 (with
n takes values from 1 to m2 = 6) as a function of φ. Note
that in Figs. 6(a) and 6(b) we restrict the range to φ ∈ [0, 0.5]
as the function is symmetric about φ = 0.5. For φ = 0, only
A1 = 0. As φ increases, finding two different heights becomes
more likely and A2 becomes dominant. For φ = 0.5, it is very
likely to find the maximum number of columns, m2 = 6, in
the aggregate and A6 � 1.

1. Finite-size effect

The number of force peaks is a function of the size of
the cluster: in the model, the number of force peaks depends
explicitly on the number of columns q since An depends on
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FIG. 7. Impact of the size of the aggregate on the number of
peaks in the force measurement for p = 2 and different values
of q.

q (in Fig. 6, q = 50). In an infinitely large cluster (q → ∞)
all the heights will appear and so N p(φ > 0, q → ∞) = mp,

with mp the number of possible heights one can get with the
random packing described previously at a given p. For a finite
q, one has N p(φ, q) < mp because all the possible heights will
not appear simultaneously in the same cluster. As a simple
consequence, one has N p(φ, q1) < N p(φ, q2), for q1 < q2.

Moreover, even if the total number of different possible
heights mp is large, we cannot find more different heights than
the number of columns, q. This is the reason for the Heaviside
function in the definition of An. For the experimental aggre-
gates, q varies from 3 to 15. In particular for p = 3 or p = 4,
the number of columns is usually ∼5 and the value of q gives
an upper limit for the number of force peaks. Figure 7 shows
the impact of the number of columns on the number of peaks
for p = 2.

2. A simpler approach to estimate the number of force peaks

The approach discussed above predicts accurately the av-
erage number of force peaks observed during the compression
of an aggregate. However the number of force peaks estimated
for a transition p → p − 1 is strongly dependent of the size
of the cluster. In this section, we take a simpler approach that
leads to an analytical expression for the number of force peaks
observed during the compression of a cluster. In addition, with
this approach we are able to define a quantity that allows
us to renormalize our results with respect to the size of the
cluster. This analytical expression characterizes the transition
of a cluster from being crystal-like to glass-like.

We define the excess number of force peaks as the number
of force peaks for a given φ compared to the number of force
peaks observed in the crystal case N p(φ = 0, q) = 1 for the
same transition p → p − 1: N p(φ, q) − 1. This quantity can
be normalized by its value for a glassy case where φ = 0.5:
N p(φ = 0.5, q) − 1. The normalized quantity quantifies how
crystalline or glassy a cluster is, and takes values ranging from
0 for a crystal to 1 for a glass.

Instead of numerically calculating the average number
of different column heights in a p × q cluster, we propose
the following statistical argument: the average number of
different heights in a p × q cluster is well approximated by the
number of different highly probable heights in the probability
distribution of heights. To define if a height Hi is highly
probable, one has to invoke a threshold for the probability,

FIG. 8. Comparison between the analytical expression for the
standard deviation of the height distribution and the numerically
calculated values for different φ for p = 2.

P(Hi ), which is strongly dependent on the total number of
columns, q, in the cluster. The larger q is, the smaller the
threshold must be, and should go to zero in the limit of
infinitely large clusters (q → ∞). Since the columns are built
as a 1D random walk, the distribution follows a binomial law
and the number of probable heights can be characterized using
the standard deviation σ of the height distribution. Using σ

to define the threshold, the excess number of peaks is then
directly proportional to the width of the height distribution.
As we are interested in the ratio between the excess number
of peaks at a given fraction of defects, φ, and its maximum
value, observed at φ = 0.5, the choice of the threshold is not
critical, for the range of q values explored in the experiments.
This leads to

N p(φ, q) − 1

N p(φ = 0.5, q) − 1
� σ (φ, p)

σ (φ = 0.5, p)
. (B9)

The standard deviation, σ , as well as the average value, μ,
of the continuous height distribution can be calculated analyt-
ically in this simplified approach. We find μ(φ, p) = p(α +
1)[(1 − φ)R + rφ] and σ 2(φ, p) = p(2 + α2)(R − r)2φ(1 −
φ). The analytical expression for σ as a function of φ is
tested against the numerically calculated values from the dis-
crete model, described in the previous sections, for different
values of φ. Figure 8 shows perfect agreement between both
approaches for p = 2.

FIG. 9. Comparison between the average number of peaks pre-
dicted by the discrete calculation (for different values of q) and
the continuous approximation, for p = 2. The continuous model
does not take into account the number of droplets per row q in the
aggregate.
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Using the expression found for the standard deviation, σ ,
Eq. (B9) can be rewritten as

N p(φ, q) − 1

N p(φ = 0.5, q) − 1
� 2

√
φ(1 − φ). (B10)

Note that the result is now independent of the size of the
cluster. Indeed, this ratio simply compares the excess number
of peaks to its maximum value, but it does not predict the
exact number of peaks observed in the force curves. This
simplified approach can be tested against the discrete model
by comparing the number of peaks predicted by each model
with p = 2. The left-hand side of Eq. (B10) is calculated nu-
merically for the discrete model and compared to 2

√
φ(1 − φ)

as shown in Fig. 9. Both models are in good agreement for the
number of peaks as long as q < 50. The analytical prediction
overestimates the number of force peaks in the range of q
values experimentally explored.

APPENDIX C: TOTAL NUMBER OF PEAKS N pini→1
qini

(φ)

In the main text, we compare the experimental results and
the total number of peaks when compressing a cluster initially
made of pini rows and qini columns to a single row (p = 1),
at a given percentage in defects φ: N pini→1

qini (φ). Equation (2)
in the main text is obtained by summing Eq. (B10) over the
different transitions:

N pini→1
qini

(φ) =
pini∑
p=2

N p(φ, q)

= 2
√

(1 − φ)φ
pini∑
p=2

[N p(φ = 0.5, q) − 1] +
pini∑
p=2

1.

(C1)

During these transitions, the total number of droplets Ntot is
conserved and thus p × q = pini × qini. Noticing that

∑pini
p=2 1

is the number of peaks observed when compressing a crystal
initially made of pini rows, this quantity is independent of qini

and will be denoted N pini→1(φ = 0). Equation (C1) can then
be written as

N pini→1
qini

(φ) = 2
√

(1 − φ)φ
[
N pini→1

qini
(φ = 0.5) − N pini→1(0)

]
+ N pini→1(0), (C2)

TABLE I. Size of the droplets used for the crystal-to-glass tran-
sition study; Fig. 4 in the main text.

Data set Point color R (μm) r (μm)

1 red 21.5 ± 0.2 19.1 ± 0.2
2 salmon 21.4 ± 0.4 19.1 ± 0.4
3 light blue 20.9 ± 0.3 17.3 ± 0.5
4 dark blue 25.1 ± 0.3 19.2 ± 0.3

TABLE II. Total work needed to transition from p = 4 to p = 3
for different compositions.

Composition φ Wtot (fJ)

20/0 0 1.2
19/1 0.05 2.8
14/6 0.3 2.8
10/10 0.5 2.1
6/14 0.3 3.1
1/19 0.05 1.5
0/20 0 2.0

leading to

N pini→1
qini (φ) − N pini→1(0)

N pini→1
qini (φ = 0.5) − N pini→1(0)

= 2
√

(1 − φ)φ. (C3)

Finally, we define �N (φ, pini, qini ) = N pini→1
qini (φ) −

N pini→1(0) as the average excess number of peaks
observed when compressing an aggregate with a defect
fraction φ in comparison to a crystal of same geometry
pini × qini. The maximum excess number of peaks
�Nmax = N pini→1

qini (φ = 0.5) − N pini→1(0) corresponds to
the excess number of peaks observed when compressing the
most disordered aggregates (model for a glass, φ = 0.5). The
ratio of these two quantities �N/�Nmax does not depend on
the size of the cluster pini × qini but only on the fraction of
defects φ. We can thus write Eq. (C3) in a simpler form and
obtain Eq. (2) of the main text

�N

�Nmax
(φ) = 2

√
(1 − φ)φ. (C4)

The maximum number of peaks, N pini→1
max (q) = N pini→1(φ =

0.5, q), depends on the system size as shown in the previous
section. The experimental value is obtained by fitting Eq. (C4)
to each set of data presented in Fig. 3(a).

APPENDIX D: SIZE OF THE DROPLETS IN THE
CRYSTAL-TO-GLASS TRANSITION STUDY

The data shown in Figs. 4(a) and 4(b), in the main text,
come from four different sets of experiments. The droplets
used during a given set of experiments are the same, while the
defect fraction is varied. New droplets were produced for each
new set. Table I summarizes the sizes of the droplets used in
these experiments.

APPENDIX E: WORK ANALYSIS

In the main text, we study how the work is distributed
along a compression as a function of the composition of the
aggregate. This analysis relies on the assumption that the total
work for a given transition does not depend on φ. We found
that, within the uncertainty of the experiments, the total work
for the transition p → (p − 1) is constant and is not correlated
to the fraction of defects φ. Table II summarizes the total
work, Wtot, exerted to go from four to three rows for the
different aggregates.
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and H. A. Makse, 3D bulk measurements of the force distribu-
tion in a compressed emulsion system, Faraday Discuss. 123,
207 (2003).

[27] K. W. Desmond, P. J. Young, D. Chen, and E. R. Weeks,
Experimental study of forces between quasi-two-dimensional
emulsion droplets near jamming, Soft Matter 9, 3424
(2013).

[28] B. Li, D. Zhou, and Y. Han, Assembly and phase transitions of
colloidal crystals, Nat. Rev. Mater. 1, 15011 (2016).

[29] D. V. Denisov, K. A. Lorincz, W. J. Wright, T. C. Hufnagel,
A. Nawano, X. Gu, J. T. Uhl, K. A. Dahmen, and P. Schall,
Universal slip dynamics in metallic glasses and granular matter
– linking frictional weakening with inertial effects, Sci. Rep. 7,
43376 (2017).

[30] K. Zhang, M. Fan, Y. Liu, J. Schroers, M. D. Shattuck, and
C. S. O’Hern, Beyond packing of hard spheres: The effects
of core softness, non-additivity, intermediate-range repulsion,
and many-body interactions on the glass-forming ability of bulk
metallic glasses, J. Chem. Phys. 143, 184502 (2015).

[31] P. N. Pusey and W. van Megen, Phase behaviour of concentrated
suspensions of nearly hard colloidal spheres, Nature (London)
320, 340 (1986).

[32] Z. Zhang, N. Xu, D. T. N. Chen, P. J. Yunker, A. M. Alsayed,
K. B. Aptowicz, P. Habdas, A. J. Liu, S. R. Nagel, and A. G.
Yodh, Thermal vestige of the zero-temperature jamming transi-
tion, Nature (London) 459, 230 (2009).

[33] J. M. Lynch, G. C. Cianci, and E. R. Weeks, Dynamics and
structure of an aging binary colloidal glass, Phys. Rev. E 78,
031410 (2008).

[34] L. Assoud, F. Ebert, P. Keim, R. Messina, G. Maret, and H.
Löwen, Ultrafast Quenching of Binary Colloidal Suspensions
in an External Magnetic Field, Phys. Rev. Lett. 102, 238301
(2009).

[35] H. Shiba, Y. Yamada, T. Kawasaki, and K. Kim, Unveiling
Dimensionality Dependence of Glassy Dynamics: 2D Infinite
Fluctuation Eclipses Inherent Structural Relaxation, Phys. Rev.
Lett. 117, 245701 (2016).

[36] J. Bibette, D. Roux, and B. Pouligny, Creaming of Emulsions -
the Role of Depletion Forces Induced By Surfactant, J. Phys. II
2, 401 (1992).

[37] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.2.023070 for Movies M1 and M2.
Movie M1 illustrates the preparation of an aggregate of oil
droplets in a droplet-by-droplet manner. Movie M2 shows the

023070-11

https://doi.org/10.1051/jphys:01987004805070900
https://doi.org/10.1051/jphys:01987004805070900
https://doi.org/10.1051/jphys:01987004805070900
https://doi.org/10.1051/jphys:01987004805070900
https://doi.org/10.1038/35099513
https://doi.org/10.1038/35099513
https://doi.org/10.1038/35099513
https://doi.org/10.1038/35099513
https://doi.org/10.1103/PhysRevLett.104.015701
https://doi.org/10.1103/PhysRevLett.104.015701
https://doi.org/10.1103/PhysRevLett.104.015701
https://doi.org/10.1103/PhysRevLett.104.015701
https://doi.org/10.1088/0034-4885/77/5/056601
https://doi.org/10.1088/0034-4885/77/5/056601
https://doi.org/10.1088/0034-4885/77/5/056601
https://doi.org/10.1088/0034-4885/77/5/056601
https://doi.org/10.1039/c3sm50471a
https://doi.org/10.1039/c3sm50471a
https://doi.org/10.1039/c3sm50471a
https://doi.org/10.1039/c3sm50471a
https://doi.org/10.1103/PhysRevLett.113.148001
https://doi.org/10.1103/PhysRevLett.113.148001
https://doi.org/10.1103/PhysRevLett.113.148001
https://doi.org/10.1103/PhysRevLett.113.148001
https://doi.org/10.1038/s41586-019-1178-3
https://doi.org/10.1038/s41586-019-1178-3
https://doi.org/10.1038/s41586-019-1178-3
https://doi.org/10.1038/s41586-019-1178-3
https://doi.org/10.1103/PhysRevE.68.011306
https://doi.org/10.1103/PhysRevE.68.011306
https://doi.org/10.1103/PhysRevE.68.011306
https://doi.org/10.1103/PhysRevE.68.011306
https://doi.org/10.1038/nphys3006
https://doi.org/10.1038/nphys3006
https://doi.org/10.1038/nphys3006
https://doi.org/10.1038/nphys3006
https://doi.org/10.1103/PhysRevLett.103.025701
https://doi.org/10.1103/PhysRevLett.103.025701
https://doi.org/10.1103/PhysRevLett.103.025701
https://doi.org/10.1103/PhysRevLett.103.025701
https://doi.org/10.1038/srep15378
https://doi.org/10.1038/srep15378
https://doi.org/10.1038/srep15378
https://doi.org/10.1039/C5SM02200B
https://doi.org/10.1039/C5SM02200B
https://doi.org/10.1039/C5SM02200B
https://doi.org/10.1039/C5SM02200B
https://doi.org/10.1103/PhysRevX.8.041023
https://doi.org/10.1103/PhysRevX.8.041023
https://doi.org/10.1103/PhysRevX.8.041023
https://doi.org/10.1103/PhysRevX.8.041023
https://doi.org/10.1103/PhysRevE.99.020901
https://doi.org/10.1103/PhysRevE.99.020901
https://doi.org/10.1103/PhysRevE.99.020901
https://doi.org/10.1103/PhysRevE.99.020901
https://doi.org/10.1209/0295-5075/104/56001
https://doi.org/10.1209/0295-5075/104/56001
https://doi.org/10.1209/0295-5075/104/56001
https://doi.org/10.1209/0295-5075/104/56001
http://arxiv.org/abs/arXiv:1912.06021
https://doi.org/10.1039/C4SM02446J
https://doi.org/10.1039/C4SM02446J
https://doi.org/10.1039/C4SM02446J
https://doi.org/10.1039/C4SM02446J
https://doi.org/10.1126/science.287.5453.627
https://doi.org/10.1126/science.287.5453.627
https://doi.org/10.1126/science.287.5453.627
https://doi.org/10.1126/science.287.5453.627
https://doi.org/10.1006/jcis.1996.0217
https://doi.org/10.1006/jcis.1996.0217
https://doi.org/10.1006/jcis.1996.0217
https://doi.org/10.1006/jcis.1996.0217
https://doi.org/10.1016/0021-9797(73)90224-5
https://doi.org/10.1016/0021-9797(73)90224-5
https://doi.org/10.1016/0021-9797(73)90224-5
https://doi.org/10.1016/0021-9797(73)90224-5
https://doi.org/10.1073/pnas.1017716108
https://doi.org/10.1073/pnas.1017716108
https://doi.org/10.1073/pnas.1017716108
https://doi.org/10.1073/pnas.1017716108
https://doi.org/10.1088/0034-4885/75/6/066501
https://doi.org/10.1088/0034-4885/75/6/066501
https://doi.org/10.1088/0034-4885/75/6/066501
https://doi.org/10.1088/0034-4885/75/6/066501
https://doi.org/10.1073/pnas.1612964114
https://doi.org/10.1073/pnas.1612964114
https://doi.org/10.1073/pnas.1612964114
https://doi.org/10.1073/pnas.1612964114
https://doi.org/10.1073/pnas.1607226113
https://doi.org/10.1073/pnas.1607226113
https://doi.org/10.1073/pnas.1607226113
https://doi.org/10.1073/pnas.1607226113
https://doi.org/10.1039/b204414e
https://doi.org/10.1039/b204414e
https://doi.org/10.1039/b204414e
https://doi.org/10.1039/b204414e
https://doi.org/10.1039/c3sm27287g
https://doi.org/10.1039/c3sm27287g
https://doi.org/10.1039/c3sm27287g
https://doi.org/10.1039/c3sm27287g
https://doi.org/10.1038/natrevmats.2015.11
https://doi.org/10.1038/natrevmats.2015.11
https://doi.org/10.1038/natrevmats.2015.11
https://doi.org/10.1038/natrevmats.2015.11
https://doi.org/10.1038/srep43376
https://doi.org/10.1038/srep43376
https://doi.org/10.1038/srep43376
https://doi.org/10.1038/srep43376
https://doi.org/10.1063/1.4935002
https://doi.org/10.1063/1.4935002
https://doi.org/10.1063/1.4935002
https://doi.org/10.1063/1.4935002
https://doi.org/10.1038/320340a0
https://doi.org/10.1038/320340a0
https://doi.org/10.1038/320340a0
https://doi.org/10.1038/320340a0
https://doi.org/10.1038/nature07998
https://doi.org/10.1038/nature07998
https://doi.org/10.1038/nature07998
https://doi.org/10.1038/nature07998
https://doi.org/10.1103/PhysRevE.78.031410
https://doi.org/10.1103/PhysRevE.78.031410
https://doi.org/10.1103/PhysRevE.78.031410
https://doi.org/10.1103/PhysRevE.78.031410
https://doi.org/10.1103/PhysRevLett.102.238301
https://doi.org/10.1103/PhysRevLett.102.238301
https://doi.org/10.1103/PhysRevLett.102.238301
https://doi.org/10.1103/PhysRevLett.102.238301
https://doi.org/10.1103/PhysRevLett.117.245701
https://doi.org/10.1103/PhysRevLett.117.245701
https://doi.org/10.1103/PhysRevLett.117.245701
https://doi.org/10.1103/PhysRevLett.117.245701
https://doi.org/10.1051/jp2:1992141
https://doi.org/10.1051/jp2:1992141
https://doi.org/10.1051/jp2:1992141
https://doi.org/10.1051/jp2:1992141
http://link.aps.org/supplemental/10.1103/PhysRevResearch.2.023070


JEAN-CHRISTOPHE ONO-DIT-BIOT et al. PHYSICAL REVIEW RESEARCH 2, 023070 (2020)

compression of a perfect single crystal (left panel) while simul-
taneously measuring the compression force (right panel).

[38] S. Barkley, S. J. Scarfe, E. R. Weeks, and K. Dalnoki-Veress,
Predicting the size of droplets produced through Laplace pres-
sure induced snap-off, Soft Matter 12, 7398 (2016).

[39] M. Backholm, W. S. Ryu, and K. Dalnoki-Veress, Viscoelastic
properties of the nematode Caenorhabditis elegans, a self-
similar, shear-thinning worm, Proc. Natl. Acad. Sci. USA 110,
4528 (2013).

[40] M. Backholm and O. Bäumchen, Micropipette force sensors for
in vivo force measurements on single cells and multicellular
microorganisms, Nat. Protoc. 14, 594 (2019).

[41] Y. Gai, C. M. Leong, W. Cai, and S. K. Y. Tang, Spatiotem-
poral periodicity of dislocation dynamics in a two-dimensional
microfluidic crystal flowing in a tapered channel, Proc. Natl.
Acad. Sci. USA 113, 12082 (2016).

[42] D. McDermott, C. J. O. Reichhardt, and C. Reichhardt,
Avalanches, plasticity, and ordering in colloidal crystals under
compression, Phys. Rev. E 93, 062607 (2016).

[43] G. Biroli and P. Urbani, Breakdown of elasticity in amorphous
solids, Nat. Phys. 12, 1130 (2016).

[44] I. M. Sokolov and J. Klafter, First Steps in Random Walks:
From Tools to Applications. (Oxford University Press, Oxford,
2011).

023070-12

https://doi.org/10.1039/C6SM00853D
https://doi.org/10.1039/C6SM00853D
https://doi.org/10.1039/C6SM00853D
https://doi.org/10.1039/C6SM00853D
https://doi.org/10.1073/pnas.1219965110
https://doi.org/10.1073/pnas.1219965110
https://doi.org/10.1073/pnas.1219965110
https://doi.org/10.1073/pnas.1219965110
https://doi.org/10.1038/s41596-018-0110-x
https://doi.org/10.1038/s41596-018-0110-x
https://doi.org/10.1038/s41596-018-0110-x
https://doi.org/10.1038/s41596-018-0110-x
https://doi.org/10.1073/pnas.1606601113
https://doi.org/10.1073/pnas.1606601113
https://doi.org/10.1073/pnas.1606601113
https://doi.org/10.1073/pnas.1606601113
https://doi.org/10.1103/PhysRevE.93.062607
https://doi.org/10.1103/PhysRevE.93.062607
https://doi.org/10.1103/PhysRevE.93.062607
https://doi.org/10.1103/PhysRevE.93.062607
https://doi.org/10.1038/nphys3845
https://doi.org/10.1038/nphys3845
https://doi.org/10.1038/nphys3845
https://doi.org/10.1038/nphys3845

