PHYSICAL REVIEW RESEARCH 2, 023069 (2020)

Online visibility graphs: Encoding visibility in a binary search tree

Delia Fano Yela®,!"" Florian Thalmann®,! Vincenzo Nicosia,? Dan Stowell,! and Mark Sandler

1

Centre for Digital Music, School of Electronic Engineering and Computer Science, Queen Mary University of London,
Mile End Road, London, E14NS, United Kingdom
2School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London, E14NS, United Kingdom

@ (Received 17 July 2019; accepted 6 February 2020; published 23 April 2020)

A visibility algorithm maps time series into complex networks following a simple criterion, and the resulting
visibility graphs have recently proven to be a powerful tool for time series analysis. However, their direct
computation is time-consuming and rigid, motivating the development of more efficient algorithms. Here we
introduce a description of a method to compute visibility graphs online, which is highly efficient, compatible
with batchwise progressive updates, and capable of assimilating new data without having to recompute the graph
from scratch. We use a binary search tree to encode and store visibility relations, which can be decoded at a later
stage into a visibility graph. The proposed encoder/decoder approach offers an online computation solution at
no additional computational cost and makes it possible to use visibility graphs for large-scale time series analysis
and for applications where online data assimilation is required.

DOI: 10.1103/PhysRevResearch.2.023069

I. INTRODUCTION

In the last decade, several methods to map time series
into graphs have been proposed, under the hypothesis that
appropriate graph representations can preserve the original
time series information while providing alternatives to deal
with nonlinearity and multiscale issues typical of complex sig-
nals [1-3]. This line of research represents a bridge between
nonlinear signal analysis and complex network theory, and has
been successfully applied to extract meaningful information
from a variety of different systems in physics [4,5], finance
[6-8], engineering [9], and neuroscience [10,11].

The most notable algorithms to construct a graph from an
ordered sequence of data points are based on either correlation
[12—14], recurrence [15-17], dependence [18,19], or visibility
[20]. However, the visibility algorithms proposed by Lacasa
et al. [20,21] are among the most popular, as they provide
a deterministic and nonparametric symbolization of a time
series preserving full information of its linear and nonlinear
correlations. Visibility algorithms can also effectively deal
with nonstationary signals and are in general computationally
efficient. For this reason they have found numerous appli-
cations in diverse fields including image processing [22,23],
number theory [24], finance [7,25], and neuroscience [26].

The straightforward computation of visibility graphs
presents a worst-case time complexity quadratic in the length
of the series. Even though such complexity should not
be an issue for medium-sized series (10°~10° points), it

“Corresponding author: d.fanoyela@qmul.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2643-1564/2020/2(2)/023069(9) 023069-1

remains inefficient for longer ones. Therefore, faster algo-
rithms have been proposed employing a “divide and conquer”
(DC) approach, reducing the average-case time complexity to
O(nlogn) [27].

Both the direct and the DC method are offline algorithms,
as they require all data points in the time series to be available
before the graph is constructed. Consequently, the integration
of new data points normally requires recomputing the visibil-
ity graph from scratch. This is indeed a major shortcoming,
which limits the real-world applications of visibility graphs.

In this paper we introduce an online algorithm to com-
pute visibility graphs. The proposed algorithm employs an
encoder/decoder approach and is based on the representation
of a time series (or of any ordered sequence of data points)
through an appropriately constructed binary search tree. The
binary search tree associated with a time series can be ef-
ficiently updated every time a new chunk of data becomes
available, by merging the data with the binary search tree asso-
ciated with the new data. The resulting data structure contains
full information about the time series and can subsequently
be decoded to obtain the corresponding visibility graph when
required. The flexibility introduced by the encoder/decoder
approach comes at no significant computational cost, as the
proposed method has the same time complexity as the current
fastest visibility algorithm (DC).

II. VISIBILITY GRAPHS

A visibility graph is obtained from an ordered sequence of
values by associating each datum to a node and connecting
two nodes with an edge if the corresponding data points are
visible from each other. A point a is visible from the point b
if one can draw a straight line from a to b without passing
underneath any intermediate points. In this paper we will
consider visibility as a symmetric relation, so that the resulting
visibility graphs are undirected.

Published by the American Physical Society

https://orcid.org/0000-0001-7999-3241
https://orcid.org/0000-0003-1703-3629
https://orcid.org/0000-0002-5691-8107
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.023069&domain=pdf&date_stamp=2020-04-23
https://doi.org/10.1103/PhysRevResearch.2.023069
https://creativecommons.org/licenses/by/4.0/

DELIA FANO YELA et al.

PHYSICAL REVIEW RESEARCH 2, 023069 (2020)

The natural visibility criterion (NV) allows the visibility
line between a and b to take any slope, whereas the horizontal
visibility criterion (HV) is restricted to horizontal lines, as
shown in Fig. 1(f). More precisely, given a time series

y=f@®

of length n, two points (z,,y,) and (#,y,) are said to be
naturally visible if every intermediate point (¢, y.), such that
t, <t. <ty fulfills the following simple geometrical crite-
rion:

tc - ta

th—1ta

Ye < Ya+ b — Ya)

This natural visibility criterion will therefore establish the
connections between nodes in the resulting natural visibility
graph (NVg).

One can analogously map a time series into a horizontal
visibility graph (HVg) where two points (#,, y,) and (¢, y)
are said to be horizontally visible if

Ve:it, <t.<ty,=y,>y-and y, > y,.

From the definition of visibility it immediately follows
that, for a set visibility criterion, the visibility graph associated
with a given time series is unique. Moreover, any two subse-
quent data points of the time series are always connected by
an edge, thus visibility graphs are connected and Hamiltonian
[21]. In addition, visibility graphs are also locally invariant
to rescaling on both horizontal and vertical axes (i.e., the first
point on either side of a node i remains visible from i no matter
how far apart they are), and invariant to vertical and horizontal
translations (i.e., only the relative values of point determine
visibility relations).

In Fig. 1(f) we show both the natural and horizontal visi-
bility criteria at work on an arbitrary time series. Notice that
horizontal visibility is a more stringent criterion than natural
visibility, meaning that if two points are horizontally visible,
then they are also trivially visible when using the natural vis-
ibility criterion. Consequently, the horizontal visibility graph
of a time series is always a subgraph of the natural visibility
graph associated with the same time series.

III. STATE OF THE ART

A straightforward approach to compute visibility graphs
consists in checking whether any of the points of the time se-
ries is visible or not from every other point. This corresponds
to evaluating the visibility criteria for every pair of points in
the time series. Since we consider visibility as a symmetric re-
lation, the total number of checks needed to obtain a visibility
graph of a time series of n data points is equal to n(n — 1)/2,
corresponding to a O(n?) time complexity.

In the case of HV, one can take a step further and safely
assume that no point after a value larger than the current
value 7, will be horizontally visible from 7,. This observation
effectively reduces the time complexity of the construction to
O(nlogn), and, in the case of noisy (stochastic or chaotic)
signals, it can be proved that this algorithm has an average-
case time complexity O(n) [21]. Nevertheless, all pairs of

0123 456 728 910

2 6 10 : 2 6 10

0123436782910

2. Natural Visibility (NV) ‘

2 6 10

L, ¥ ¥ ¥ ¢ v ¥y,

0123456 738 910
time

FIG. 1. Representation of the different steps of the proposed
algorithm for visibility graphs computation. (a) The sample time
series and its correspondent maximum binary search tree. (b) The
connections deduced by the first connectivity rule. The second
(c) and third connectivity rules (d). (e) The remaining checks needed
to ascertain natural visibility. (f) The horizontal and natural visibility
graph associated with the original time series.

023069-2

ONLINE VISIBILITY GRAPHS: ENCODING ...

PHYSICAL REVIEW RESEARCH 2, 023069 (2020)

0123456 78910 012345678910

FIG. 2. Illustration of the encode/decode approach of the pro-
posed method to calculate visibility graphs.

points need to be checked in the case of NV. From now on,
this simple approach will be referred to as the basic method
for both natural and horizontal visibility computation [28].

As an improved alternative for visibility computation, Lan
et al. presented a “divide and conquer” (DC) approach [27].
This algorithm reduces the average-case time complexity of
the construction of the natural visibility graph to O(nlogn),
and it significantly reduces computation time for most bal-
anced time series.

The basic idea behind the DC algorithm is related to the
horizontal visibility optimization mentioned above. Once the
maximum value M of the time series is known, one can safely
assume that the points on the right of M will not be naturally
visible from the points on the left of M (the point M is
effectively acting as a wall between the two sides of the time
series). The same argument is then applied recursively to the
two halves of the time series separated by M, where the local
maxima subsequently found at each level are connected with
an edge to the maxima at the level immediately above them.
From now on, this improved method will be referred to as
“divide and conquer” (or DC for short).

Both the basic method and DC are offline approaches,
meaning that they require all the points of the time series
to be accessible at the beginning of the computation. This
rigid requirement limits the applicability of visibility graphs,
especially in fields like telecommunications or finance, where
there is a constant incoming flow of new data to be processed
and assimilated. Moreover, in such big data scenarios, one
tends to favor an initial overall high level analysis that will
reveal the need for further processing. This work flow would
benefit from dynamic algorithms unlike the ones presented
above.

IV. PROPOSED METHOD: BINARY SEARCH TREE FOR
VISIBILITY ENCODING

Here we present an encoding/decoding approach to com-
pute visibility graphs. In the proposed method, the necessary
visibility information is first encoded into an appropriately
constructed binary search tree, which can then be successively
decoded into a visibility graph when needed, as illustrated in
Fig. 2.

As discussed in the following section, the binary search
tree can be updated when new data arrive, and so the visi-
bility can be decoded without having to reprocess old data

points, thus allowing us to compute and update visibility
graphs online. The proposed method maintains the same time
complexity as the state-of-the-art natural visibility graphs
computation, but it represents a substantial improvement for
the computation of horizontal visibility graphs.

A. Encoding—Maximum binary search tree

The construction of a maximum binary search tree is fairly
straightforward, and its corresponding pseudocode is shown
in Algorithm 1. The first step is to sort the given time series in
descending order of values, while storing the original position
of each value in the time series. From now on, we will refer
to the original positions as indices (i.e.,) and to the values
of the times series simply as values [i.e., y(¢)]. For repeated
values in the sequence, the first encountered index will come
first after sorting (stable sort).

Once we have a list of values sorted in descending or-
der, together with the corresponding indices, we follow the
standard procedure to build a binary search tree based on the
indices. Every entry in the index list becomes a node, and each
node has a left and right child, as shown in the data structure
proposed in Algorithm 1 (i.e., Node). The first node of the
binary tree (the one with no parent) is called root. In our
case, the root is the index of the datum corresponding to the
maximum value in the time series, which is also the first entry
in the index list.

The next index, corresponding to the point with the second-
largest value, is then added to the tree. If its index is smaller
than the index of the root, it becomes the left child of root,
whereas if its index is larger than that of the root, it be-
comes the right child of root (see function add in Algorithm
1). The procedure continues by comparing following index
to the root; if it is smaller, the index recursively travels through
the left subtree of root, while if it is larger it will travel
through the right subtree. Each index continues descending
the tree until an empty spot is found, as in the standard
procedure to populate a binary search tree, until all the
data points have been considered (see function build_tree in
Algorithm 1).

In the case of the sample time series in Fig. 1(a), the
maximum is in position 5 and therefore becomes the root
of the binary tree. The point whose value is immediately
smaller than the maximum is in position 4 (less than 5),
so it becomes the left child of the root. The third point in
the list is in position 2 and travels down the tree on the
leftmost branch (smaller than both 5 and 4). The right branch
of the tree is populated by the fourth point (in position 8),
whose index is larger than the root. In Fig. 1(b) one may
appreciate the correspondence between the time series and
its associated binary tree structure. The time complexity of
the procedure needed to encode the time series into the
maximum binary search tree is O(S + T) where O(S) is the
time complexity of sorting the series and O(T') is the time
complexity of the algorithm to construct the binary search
tree. Sorting by comparison is known to be O(nlogn) (e.g.,
by using either MergeSort of QuickSort), while constructing
a binary search tree costs on average O(nlogn). Hence the
overall average-case time complexity of the encoding step is
O(nlogn).

023069-3

DELIA FANO YELA et al.

PHYSICAL REVIEW RESEARCH 2, 023069 (2020)

Algorithm 1. Pseudocode of the algorithm used to build a
maximum binary search tree.

{

index : # x, input, argument

value : # f(x), output

left # left child subtree

right : # right child subtree

}
def buildTree (values : { }, indexes: { }):

root < ()

sorted_values = sort_descending(values)
sorted_indexes= indexes[getIndex (sorted_values)]

for (i, v) in (sorted_indexes, sorted_values):

root.add ((index = i, value = v))
return root
def add(self : { }, node : { 1)

if self is :
self.index
self.value

= node.index
= node.value
else:
if node.index < self.index:
self.left.add(node)
else:
self.right.add (node)

B. Decoding—Connectivity rules

The structure of the maximum binary search tree encodes
sufficient information about the time series to allow an effi-
cient construction of the corresponding horizontal visibility
graph. The decoding procedure is based on the following
connectivity rules, also illustrated in Fig. 1:

(1) All the nodes connected by an edge in the maximum
binary search tree are visible to each other and therefore
connected in the visibility graph [Fig. 1(b)]

(2) Each node of the maximum binary search tree sees all
the nodes in the leftmost branch of the subtree rooted at its
right child, as well as all the nodes in the rightmost branch of
the subtree rooted at its left child [Fig. 1(c)]

(3) The nodes of the left subtree of a node i are not visible
from the nodes of the right subtree of node i [Fig. 1(d)].

Note that, if there are no adjacent repeated values, the HVg
is fully determined by these connectivity rules. In particular,
when checking the connectivity rules, we simply skip a node
if it has the same value as the current node. One can think of
adjacent points with equal values as an interconnected ‘““super
node,” which takes the smallest index value when “seen” from
the left and the largest index value when “seen” from the right
or from above.

Since the horizontal visibility decoding will always be
fully determined by the three connectivity rules above, its
time complexity is the sum of the time complexity of the
rules. Essentially, each rule can be reduced to a series of
look-ups in a binary search tree, and each look-up operation
has time complexity O(logn) in a balanced tree. These con-
nectivity rules are applied to every node in the tree, and so
the overall time complexity of decoding a HVg is O(nlogn).
This represents a major improvement over the state-of-the-art
algorithms, which can ramp up to O(n?) in the worst-case
scenario.

The construction of the NVg, instead, requires the cre-
ation of some connections that are not captured by the three
connectivity rules above. Hence, in this case we need to
perform additional visibility checks, as shown in Fig. 1(e). In
particular, for each node i we must check the natural visibility
criterion with each node in the subtree rooted at the right
child of i and with each node in the subtree rooted at the
left child of i. These additional checks do not modify the
average-case time complexity [which remains O(nlog n)], but
the worst-case scenario still depends on the actual structure of
the time series and yields a worst-case time complexity O(n?)
for monotonically increasing or decreasing time series.

C. Time complexity

In order to determine the time complexity of the proposed
method, we will follow the standard procedure by considering
the worst-case and average-case scenarios. In both NV and
HV scenarios, the time complexity of the encoding stage is
determined by the time complexity of the sorting algorithm
used, which in general is O(nlogn), and of the construction
of the binary search tree, which is O(n logn). So in both cases
encoding into a binary search tree costs O(nlogn).

Decoding into a HVg is done via the three rules [illustrated
in Figs. 1(b) to 1(d)], which require only a visit of the binary
search tree [with time complexity O(n)]. Hence, the overall
time complexity of encoding and decoding into a horizontal
visibility graph is O(nlogn).

The worst case for decoding into a NVg occurs with
monotonically increasing, monotonically decreasing, or con-
stant series, whose corresponding binary search trees take the
form of a single branch. In this case, the second and third
connectivity rules are trivial, leaving only the first rule and
the additional natural visibility checks. More precisely, if the
tree is a single branch, we need to check the natural visibility
among (n — 1)(n — 2)/2 pairs of nodes, while the visibility
of the remaining (n — 1) pairs of nodes is determined by
the first connectivity rule. Even though this requires (n — 1)
checks less than the basic implementation [which requires
n(n — 1)/2], the time complexity is still O(n?) for the worst-
case scenario.

For the average case we assume the maximum binary
search tree to be balanced. This means that the connectivity
rules of the decoder will significantly reduce the overall num-
ber of visibility checks. If we consider a perfectly balanced
binary tree as shown in Fig. 3, the inner left branch of the
right subtree and the inner right branch of the left subtree of a
node are visible to the parent node. These are represented in
green in Fig. 3, where the root is the parent node. This means
that the visibility between the root and all the rest of the nodes
is unknown and needs to be checked.

Therefore we can deduce that the number of remaining
visibility checks for the root in a balanced tree of height A,
is equal to 2Meet! — 1 — 2/, where 2=F1 — [is the total
number of nodes below the root while 2/, is the number of
nodes whose visibility can be deduced by the three decoding
rules (the green nodes in Fig. 3). Notice that the height of the
root Ao corresponds to the maximum height of the balanced
tree hmax. The same reasoning applies to all other nodes. More

023069-4

ONLINE VISIBILITY GRAPHS: ENCODING ...

PHYSICAL REVIEW RESEARCH 2, 023069 (2020)

Height Number of nodes
h = hmax = 20
. ; ;;2 ;1.
. ; ;fl ;2.
e /\ / \ .
h =0 23

FIG. 3. Representation of a perfectly balanced tree of height 4.
The nodes in green are visible to the root and this visibility can be
deduced by the proposed decoder (i.e., the connectivity rules). The
number of nodes at each height in a balanced tree can always be
expressed in base 2.

precisely, for a node at height /, there will be (2! — 1 — 2h)
remaining visibility checks to be performed.

In order to calculate the total number of remaining visi-
bility checks, one needs to multiply the individual expression
above by the number of nodes at that height 2/m~" and sum
across all heights where the checks are needed (all except
the last two). Therefore, one can express the total number
of remaining natural visibility checks in a perfectly balanced
binary tree as follows:

Nimax

> 2k — 2R 4 1))
h=2

hmmx hmax
= 2limax [2(1%ax D= m=3" 2—’1}

h=2 h=2
Since the maximum height of a balanced tree with n nodes is
hmax = log, (n), the total number of operation is dominated by
the first term of the expression above,

2" 2 (hnax — 1) = 2n[logy(n) — 11,

while the remaining terms will only introduce logarithmic cor-
rections. In conclusion, the time complexity of the decoding
for NVg is on average O(nlogn).

The proposed method has the same average-case time
complexity than the DC algorithm, thus improving on the
original basic algorithm for both horizontal and natural vis-
ibility graphs. In the Numerical Experiment section below we
will see that in practice our algorithm outcompetes the basic
algorithm and performs as well as the DC approach, with the
additional property of allowing for online assimilation of new
data points.

V. ONLINE VISIBILITY GRAPHS: MERGING
BINARY TREES

Every time a node is added to an existing binary search
tree it “travels” down the tree, going left if smaller and right if

larger, until it finds an empty space (see the pseudocode of the
add function in Algorithm 1). Therefore when a node is added
to an existing binary tree there is no need to recalculate the
tree structure from scratch. Due to the fact that the proposed
encoder is a binary search tree, it is possible to efficiently
update it online.

In many applications, streaming data become available in
small batches. There may also be the need to merge two
or more sets of already-processed data. Thus, given a time
series and its correspondent binary search tree, we consider
how to integrate a new batch of data points into the tree
without recomputing it from scratch. One could process the
points of the newly available batch of data individually and
include them in the existing tree structure by comparing
both values and indices. However, other than being a time-
consuming approach for large numbers of points, processing
points individually fails to include useful information about
both the new batch and the current tree structure. For instance,
in the case of data coming in real time, e.g., financial time
series or meteorological data, the newly available data points
will all come later in time than the data points we already
had stored. Consequently, all the corresponding nodes of the
new batch to be added will have larger indices than the
nodes of the current tree structure, and in particular larger
indices than the current root. This means that all nodes of the
new batch will populate only the right subtree of the current
root. If the nodes were treated individually, this valuable
information would be overlooked, resulting in an inefficient
algorithm.

We propose to compute the binary search tree of the new
nodes and to subsequently merge it with the previous tree
structure. In this way, if all the new nodes indices are larger
than the current root, one can use this information to sub-
stantially reduce the number of comparisons to be performed,
and could potentially merge all the new data performing just
one comparison. The proposed merge approach covers both

Algorithm 2. Pseudocode of the proposed algorithm to merge
two binary trees defined by their root (class Node). The input is a list
of roots to be merged.

def merge (input: { }):
if input is : return

r < min_index (maxima_value (input))
pool < input \ {r}

pool.append (r.left, r.right)
for n in input \ {r} :
for ¢ in [n.left, n.right] :

if sign(n.index - r.index)
sign(c.index - r.index):

pool.append (c)
n.remove (c)

return (
index = r.index,
value = r.value,
left =
merge ({p | p € pool, p.index < r.index }),
right =

merge ({p | p € pool, p.index > r.index }))

023069-5

DELIA FANO YELA et al. PHYSICAL REVIEW RESEARCH 2, 023069 (2020)
() ©
ﬁ 1' ‘ H M M \“‘ ‘ : P /
| ”] /
~ LRt I y | I \ “Wi Il |V \ ; v SN
_'Jv N il .\'l”‘l i L ~N
—W/ /J\ \/ \/
time I ‘ ‘ time ‘ ' ' ' ' time I I ‘
? 1031- Basic 10?« 1031-
£ 10" DC 10" 10"
a 10° BST 10 10° 4
g 107 107" 10"
© o) bl 2
20107 102 102
Z 1073 . . 107 . ' 107 . .
102 103 102 103 102 103
@ 102 10 10%4
g 10'] 10'4 10'4
i 10° 10° 10°
. i
=)) 4. &]
E 107 : . 1074 . . 1073 . .
10 10° 10 10° 10 10°

series size n

series size n

series size n

FIG. 4. Computation time of the natural and horizontal visibility graph (NVg, second row; HVg, third row) of different time series
[examples on first row of a random (a), random walk (b), and Conway (c) series] using the current visibility algorithms: Basic, Divide and
Congquer (DC), and the proposed Binary Search Tree (BST) method. Each point at every series size is the mean of the computation time for 10

series of that size.

append and insert operations, i.e., either the addition of points
coming later in time or the assimilation of newly available
information at a higher temporal resolution.

In order to merge two trees, we compare them recursively
level by level, increasing depth at every step. The proposed
merge function is outlined in Algorithm 2, and takes as input
the list of trees (class Node) to be merged. The comparison
happens in two steps: first, the node values at the currently
considered levels are compared to determine which node
will occupy that location in the resulting tree; second, the
node indices are compared to determine on which side the
remaining nodes will be placed.

Following the construction of the proposed binary search
tree, the node with a larger value will be chosen and the rest
of the nodes will travel left if their indices are smaller than the
chosen one and right otherwise. The nodes to be compared are
the children of the chosen node and the not-yet-chosen nodes
from previous levels, starting by comparing the two roots of
the trees to be merged.

Usually, the children of the nodes that travel down are
ignored during comparison. However, when new data are to
be inserted into the existing series, the child of the node
traveling down may have an index corresponding to the other
branch of the resulting tree. In this case, the connection
between the node and that child will be broken thereafter.
For further detail please refer to the code freely available
online [29].

VI. NUMERICAL EXPERIMENTS

In this section we present empirical results in order to
show how the proposed visibility algorithm compares to the
state of the art in synthetic and real-world time series. All
the code used to run the following experiments is imple-
mented in Python 2.7 and freely available online [29]. The
machine used in the simulations is an early 2015 MacBook
Pro Retina with a 2.9 GHz Intel Core i5 processor and 16 GB
of RAM.

To put the presented algorithm into context, in Fig. 4
we report the computation time needed by current visibility
algorithms on different synthetic time series of increasing
length. Since the actual efficiency of each algorithm depends
to some extent on the nature of the original time series, we
chose to use uniform random noise [which has no structure
and on average produces almost-balanced binary search trees;
Fig. 4(a)], a Conway series [which has a quite rich struc-
ture and corresponds to a quite unbalanced tree; Fig. 4(c)],
and a random walk series [which represents the more re-
alistic scenario of a signal with both structure and noise;
Fig. 4(b)].

Following Ref. [27], we deﬁne a recursively generated
Conway series of size n as a(t) — 5, where

at) =ala(t — D] +alt —a —1)] Vt e[2,n] (1)

023069-6

ONLINE VISIBILITY GRAPHS: ENCODING ...

PHYSICAL REVIEW RESEARCH 2, 023069 (2020)

(@ ()

"

=1

time time

3, 10,
= 84 Basic
g 2 6 DC
E= BST
= :
S 24
Q

01 X - 04 . -

NVvg HVg NVg HVg
visibility visibility

FIG. 5. Current and proposed visibility algorithms computation
time for 100 speech (a) and finance (b) time series of 1000 points.
The speech time series are sampled from the training TIMIT data set
[30]. The finance time series corresponds to the 2013 quarterly data
used in Ref. [8].

and a(1) = a(2) = 1. The random walk time series w(t) is
generated by the discrete map

wit)=wk—1)+¢€, 2)

where € is a Bernoulli distributed variable such that P(e =
H=Pe=-1)=1.

In the case of uniform random noise we observe the largest
gap in computation time between the basic algorithm and the
more efficient ones. Indeed, this case corresponds to the av-
erage case where both algorithms (DC and the proposed one)
significantly reduce the number of operations with respect to
the basic algorithm. Notice that these differences are more
pronounced in the computation of the horizontal visibility
graph, where the proposed algorithm based on the maxima
binary search tree outperforms the other ones.

In Fig. 5 we present the results for two real-world data
sets: samples of speech [English language; Fig. 5(a)] [30]
and prices of stocks in a financial market [Fig. 5(b)] [8]. We
sampled 100 time series (first 1000 points) from the TIMIT
acoustic-phonetic continuous speech corpus (630 Ameri-
can English speakers reading 10 phonetically rich sentences
recorded at 16 kHz) [30], as well as 100 time series from the
daily prices of U.S. stocks traded in 2013 used in Ref. [8].
Figure 5 is particularly interesting as it clearly shows a corre-
lation between time computation and the time series structure
(please note the different scale for time computation). Even
though the time computation may differ, the computation time
for both DC and the proposed method seem to vary very little
between data types, in stark difference with the relatively high
spread observed for the basic algorithm.

The computation time for horizontal visibility remains sta-
ble in both DC and the proposed method, and could potentially
be considered independent of the data type, up to a scaling
factor. This behavior was expected as the proposed method
is fully defined by the aforementioned connectivity rules and

103_:
7] Nbatch]{
1 v
] 10 J/
~ 1l %= 100 e
s 1000 v
51073 /
~] 4
8 E 4
S . 4
Lo /
#S 1 7
~— 7
x
= /
[y} E /4
S 7] /2
(<D} 4
g])
3 ’
I /
/
10° 4 d
. I I I I
1 10 100 1000

size ratio (nssries/nbal,ch)

FIG. 6. Given a random time series (Size 7gics) and a batch of
new random points (size nuyen) to be added to it, the advantage, in
terms of computation time, of the proposed online approach versus
the offline alternative. For the proposed method we measure the
time it takes to build the maxima tree of the new points and to
merge it with the existing tree (i.e. fonine)- For the offline alternative
computation we measure the time it takes to build the whole new
maxima binary tree from scratch including the new points to the
time series (i.€. fofine)- The time ratio is the logarithm of Zo¢gine /ontine
and indicates how much quicker the proposed method is. The size
Tatio iS Mgeries /Mbatch 1.€., how much longer the existing time series is
compared to the batch to be added. Both append and insert scenarios
are represented here, with 10 random series for each case in every
size configuration. Each point of the graph is therefore the mean of
the combined 20 samples, while the error bars indicate the associated
standard deviation.

has average-case time complexity O(nlogn). On the other
hand, Fig. 5 suggests that the efficiency of the computation
of natural visibility graphs is subject to wider fluctuations.
The position of the maximum in the time series affects the
efficiency of both the DC and the proposed method, as it will
determine the number of additional visibility checks needed
to obtain the natural visibility graph.

The English speech time series considered here will typ-
ically have its maximum somewhere towards the middle
section of the signal (since we rarely tend to raise our voice
at the end of our speech). Therefore the proposed method
will most probably produce an almost balanced binary search
tree for the speech time series, yielding a time complexity of
O(nlogn). For this reason, one may observe a wider gap in
computation time between the basic method and the faster
alternatives for the speech data in Fig. 5(a) than for the
financial time series in Fig. 5(b).

In terms of computation time, the proposed method and
the DC one are closely related. They are both quicker than the
basic implementation in both natural and horizontal visibility,

023069-7

DELIA FANO YELA et al.

PHYSICAL REVIEW RESEARCH 2, 023069 (2020)

and they both present similar trends for increasing time series
size (Fig. 4). However, the proposed algorithm has proven to
consistently be the quickest option for horizontal visibility
graph computation. On the other hand, the DC algorithm in
general does perform better than the proposed method for
natural visibility computation. Even though at this point both
DC and the proposed method seem equally good options for
fast visibility computation, the presented algorithm has the
additional property of allowing online assimilation of new
data, which is something not easily achievable in either the
DC or basic approach.

The most straightforward way to asses the online func-
tionality of the proposed method is to compare it with the
equivalent offline approach. In our case, it directly relates to
the search binary tree construction. Given a batch of npyc, new
points to be added to the ngies long time series, in the offline
visibility analysis approach, the new batch is simply added to
the time series itself, and then the search binary tree must be
recomputed from scratch. In the proposed online approach,
the next batch is encoded into its own binary tree that is then
merged to the existing one using the procedure detailed in
Algorithm 2. Note that the decoding step remains the same for
the online and offline approach, and so the comparison will
essentially be between computing a binary search tree from
scratch (offline) and merging two trees into a single binary
search tree (online).

Figure 6 shows how much quicker the computation of
the online method (time 7,_jine to build binary tree of new
data and merge to existing tree) is in comparison to the
computation time of the offline approach (time #,fqipe to build
binary tree from scratch), for different time series and batch
sizes. In particular, the online approach is always better if the
new batch to be added is equal or longer than the existing time
series, especially for large time series.

VII. CONCLUSION

The proposed visibility algorithm based on an
encoder/decoder approach is, to the authors’ knowledge,
the first efficient online algorithm to compute visibility
graphs. The analysis and the numerical experiments shown
in the paper confirm that the proposed algorithm represents
a substantial improvement over the state-of-the art for
horizontal visibility computation, and is on par with the
most efficient natural visibility algorithm (i.e., DC) available.
Moreover, the procedure to assimilate new data by means of
merging the corresponding binary search tree encoding into
the existing tree allows for efficient online computation of
visibility graphs and represents a substantial speed-up with
respect to the existing offline algorithms. This novel online
capability broadens the applications for visibility graphs at no
additional computational cost.

[1] R. V. Donner, M. M. Small, J. F. Donges, N. Marwan, Y. Zou, R.
Xiang, and J. Kurths, Recurrence-based time series analysis by
means of complex network methods, Intl. J. Bifurcation Chaos
21, 1019 (2011).

[2] A. M. Nuiiez, L. Lacasa, J. P. Gomez, and B. Luque, Vis-
ibility algorithms: A short review, New Frontiers in Graph
Theory, edited by Y. Zhang (IntechOpen, 2012), Chap. 6,
p. 120.

[3] T. Tanizawa, T. Nakamura, F. Taya, and M. Small, Con-
structing directed networks from multivariate time series
using linear modeling technique, Physica A 512, 437
(2018).

[4] A. H. Shirazi, G. R. Jafari, J. Davoudi, J. Peinke, M. R. R. Tabar,
and M. Sahimi, Mapping stochastic processes onto complex
networks, J. Stat. Mech.: Theory Exp. (2009) P07046.

[5] L. Lacasa and R. Toral, Description of stochastic and chaotic
series using visibility graphs, Phys. Rev. E 82, 036120 (2010).

[6] P. Fiedor, Networks in financial markets based on the mutual
information rate, Phys. Rev. E 89, 052801 (2014).

[7] L. Lacasa, V. Nicosia, and V. Latora, Network structure of
multivariate time series, Sci. Rep. 5, 15508 (2015).

[8] N. Musumeci, V. Nicosia, T. Aste, T. D. Matteo, and V.
Latora, The multiplex dependency structure of financial mar-
kets, Complexity 2017, 9586064 (2017).

[9] L. G. Torre, B. Luque, L. Lacasa, J. Luque, and A. Herndndez-
Fernandez, Emergence of linguistic laws in human voice, Sci.
Rep. 7, 43862 (2017).

[10] E. Bullmore and O. Sporns, Complex brain networks: Graph
theoretical analysis of structural and functional systems, Nat.
Rev. Neurosci. 10, 186 (2009).

[11] E. Bullmore and O. Sporns, The economy of brain network
organization, Nat. Rev. Neurosci. 13, 336 (2012).

[12] R. Mantegna, Hierarchical structure in financial markets, Eur.
Phys. J. B 11, 193 (1999).

[13] G. Bonanno, F. Lillo, and R. Mantegna, High-frequency cross-
correlation in a set of stocks, Quantitative Finance 1, 96 (2001).

[14] Y. Yang and H. Yang, Complex network-based time series
analysis, Physica A 387, 1381 (2008).

[15] R. V. Donner, Y. Zou, J. F. Donges, N. Marwan, and J. Kurths,
Recurrence networks: A novel paradigm for nonlinear time
series analysis, New J. Phys. 12, 033025 (2010).

[16] J. F. Donges, R. V. Donner, and J. Kurths, Testing time series
irreversibility using complex network methods, Europhys. Lett.
102, 10004 (2013).

[17] J. H. Feldhoft, R. V. Donner, J. F. Donges, N. Marwan, and
J. Kurths, Geometric signature of complex synchronisation
scenarios, Europhys. Lett. 102, 30007 (2013).

[18] D. Marinazzo, M. Pellicoro, and S. Stramaglia, Kernel Method
for Nonlinear Granger Causality, Phys. Rev. Lett. 100, 144103
(2008).

[19] W. Liao, J. Ding, D. Marinazzo, Q. Xu, Z. Wang, C. Yuan,
Z. Zhang, G. Lu, and H. Chen, Small-world directed networks
in the human brain: Multivariate Granger causality analysis of
resting-state FMRI, Neurolmage 54, 2683 (2011).

[20] L. Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C. Nuno,
From time series to complex networks: The visibility graph,
Proc. Natl. Acad. Sci. USA 105, 4972 (2008).

[21] B. Luque, L. Lacasa, F. Ballesteros, and J. Luque, Horizontal
visibility graphs: Exact results for random time series, Phys.
Rev. E 80, 046103 (2009).

023069-8

https://doi.org/10.1142/S0218127411029021
https://doi.org/10.1142/S0218127411029021
https://doi.org/10.1142/S0218127411029021
https://doi.org/10.1142/S0218127411029021
https://doi.org/10.1016/j.physa.2018.08.137
https://doi.org/10.1016/j.physa.2018.08.137
https://doi.org/10.1016/j.physa.2018.08.137
https://doi.org/10.1016/j.physa.2018.08.137
https://doi.org/10.1088/1742-5468/2009/07/P07046
https://doi.org/10.1088/1742-5468/2009/07/P07046
https://doi.org/10.1088/1742-5468/2009/07/P07046
https://doi.org/10.1103/PhysRevE.82.036120
https://doi.org/10.1103/PhysRevE.82.036120
https://doi.org/10.1103/PhysRevE.82.036120
https://doi.org/10.1103/PhysRevE.82.036120
https://doi.org/10.1103/PhysRevE.89.052801
https://doi.org/10.1103/PhysRevE.89.052801
https://doi.org/10.1103/PhysRevE.89.052801
https://doi.org/10.1103/PhysRevE.89.052801
https://doi.org/10.1038/srep15508
https://doi.org/10.1038/srep15508
https://doi.org/10.1038/srep15508
https://doi.org/10.1038/srep15508
https://doi.org/10.1155/2017/9586064
https://doi.org/10.1155/2017/9586064
https://doi.org/10.1155/2017/9586064
https://doi.org/10.1155/2017/9586064
https://doi.org/10.1038/srep43862
https://doi.org/10.1038/srep43862
https://doi.org/10.1038/srep43862
https://doi.org/10.1038/srep43862
https://doi.org/10.1038/nrn2575
https://doi.org/10.1038/nrn2575
https://doi.org/10.1038/nrn2575
https://doi.org/10.1038/nrn2575
https://doi.org/10.1038/nrn3214
https://doi.org/10.1038/nrn3214
https://doi.org/10.1038/nrn3214
https://doi.org/10.1038/nrn3214
https://doi.org/10.1007/s100510050929
https://doi.org/10.1007/s100510050929
https://doi.org/10.1007/s100510050929
https://doi.org/10.1007/s100510050929
https://doi.org/10.1080/713665554
https://doi.org/10.1080/713665554
https://doi.org/10.1080/713665554
https://doi.org/10.1080/713665554
https://doi.org/10.1016/j.physa.2007.10.055
https://doi.org/10.1016/j.physa.2007.10.055
https://doi.org/10.1016/j.physa.2007.10.055
https://doi.org/10.1016/j.physa.2007.10.055
https://doi.org/10.1088/1367-2630/12/3/033025
https://doi.org/10.1088/1367-2630/12/3/033025
https://doi.org/10.1088/1367-2630/12/3/033025
https://doi.org/10.1088/1367-2630/12/3/033025
https://doi.org/10.1209/0295-5075/102/10004
https://doi.org/10.1209/0295-5075/102/10004
https://doi.org/10.1209/0295-5075/102/10004
https://doi.org/10.1209/0295-5075/102/10004
https://doi.org/10.1209/0295-5075/102/30007
https://doi.org/10.1209/0295-5075/102/30007
https://doi.org/10.1209/0295-5075/102/30007
https://doi.org/10.1209/0295-5075/102/30007
https://doi.org/10.1103/PhysRevLett.100.144103
https://doi.org/10.1103/PhysRevLett.100.144103
https://doi.org/10.1103/PhysRevLett.100.144103
https://doi.org/10.1103/PhysRevLett.100.144103
https://doi.org/10.1016/j.neuroimage.2010.11.007
https://doi.org/10.1016/j.neuroimage.2010.11.007
https://doi.org/10.1016/j.neuroimage.2010.11.007
https://doi.org/10.1016/j.neuroimage.2010.11.007
https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.1103/PhysRevE.80.046103
https://doi.org/10.1103/PhysRevE.80.046103
https://doi.org/10.1103/PhysRevE.80.046103
https://doi.org/10.1103/PhysRevE.80.046103

ONLINE VISIBILITY GRAPHS: ENCODING ...

PHYSICAL REVIEW RESEARCH 2, 023069 (2020)

[22] L. Lacasa and J. lacovacci, Visibility graphs of random scalar
fields and spatial data, Phys. Rev. E 96, 012318 (2017).

[23] J. Iacovacci and L. Lacasa, Visibility graphs for image pro-
cessing, IEEE Trans. Pattern Anal. Mach. Intell. 42, 974
(2020).

[24] L. Lacasa, B. Luque, I. Gémez, and O. Miramontes, On a
dynamical approach to some prime number sequences, Entropy
20, 131 (2018).

[25] R. Flanagan and L. Lacasa, Irreversibility of financial time
series: A graph-theoretical approach, Phys. Lett. A 380, 1689
(2016).

[26] S. Sannino, S. Stramaglia, L. Lacasa, and D. Marinazzo, Visibil-
ity graphs for FMRI data: Multiplex temporal graphs and their

modulations across resting-state networks, Netw. Neurosci. 1,
208 (2017).

[27] X. Lan, H. Mo, S. Chen, Q. Liu, and Y. Deng, Fast transfor-
mation from time series to visibility graphs, Chaos 25, 083105
(2015).

[28] The original Fortran 90 implementations of basic algorithms to
construct visibility graphs can be found at http://www.maths.
gmul.ac.uk/~lacasa/Software.html.

[29] Available at https://github.com/delialia/bst.

[30] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and
D. S. Pallett, TIMIT Acoustic-Phonetic Continuous Speech
Corpus, LDC93S1, Web Download, Linguistic Data Consor-
tium, Philadelphia, 1993.

023069-9

https://doi.org/10.1103/PhysRevE.96.012318
https://doi.org/10.1103/PhysRevE.96.012318
https://doi.org/10.1103/PhysRevE.96.012318
https://doi.org/10.1103/PhysRevE.96.012318
https://doi.org/10.1109/TPAMI.2019.2891742
https://doi.org/10.1109/TPAMI.2019.2891742
https://doi.org/10.1109/TPAMI.2019.2891742
https://doi.org/10.1109/TPAMI.2019.2891742
https://doi.org/10.3390/e20020131
https://doi.org/10.3390/e20020131
https://doi.org/10.3390/e20020131
https://doi.org/10.3390/e20020131
https://doi.org/10.1016/j.physleta.2016.03.011
https://doi.org/10.1016/j.physleta.2016.03.011
https://doi.org/10.1016/j.physleta.2016.03.011
https://doi.org/10.1016/j.physleta.2016.03.011
https://doi.org/10.1162/NETN_a_00012
https://doi.org/10.1162/NETN_a_00012
https://doi.org/10.1162/NETN_a_00012
https://doi.org/10.1162/NETN_a_00012
https://doi.org/10.1063/1.4927835
https://doi.org/10.1063/1.4927835
https://doi.org/10.1063/1.4927835
https://doi.org/10.1063/1.4927835
http://www.maths.qmul.ac.uk/~lacasa/Software.html
https://github.com/delialia/bst

