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Origin of the magnetic spin Hall effect: Spin current vorticity in the Fermi sea
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The interplay of spin-orbit coupling (SOC) and magnetism gives rise to a plethora of charge-to-spin conversion
phenomena that harbor great potential for spintronics applications. In addition to the spin Hall effect, magnets
may exhibit a magnetic spin Hall effect (MSHE), as was recently discovered [M. Kimata et al., Nature (London)
565, 627 (2019)]. To date, the MSHE is still awaiting its intuitive explanation. Here, we relate the MSHE to the
vorticity of spin currents in the Fermi sea, which explains pictorially the origin of the MSHE. For all magnetic
Laue groups that allow for nonzero spin current vorticities the related tensor elements of the MSH conductivity
are given. Minimal requirements for the occurrence of a MSHE are compatibility with either a magnetization or
a magnetic toroidal quadrupole. This finding implies in particular that the MSHE is expected in all ferromagnets
with sufficiently large SOC. To substantiate our symmetry analysis, we present various models, in particular
a two-dimensional magnetized Rashba electron gas, that corroborate an interpretation by means of spin current
vortices. Considering thermally induced spin transport and the magnetic spin Nernst effect in magnetic insulators,
which are brought about by magnons, our findings for electron transport can be carried over to the realm of spin
caloritronics, heat-to-spin conversion, and energy harvesting.
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I. FROM THE CONVENTIONAL TO THE MAGNETIC
SPIN HALL EFFECT

The spin Hall effect (SHE) [1] and its inverse are with-
out doubt important discoveries [2–6] in the field of spin-
tronics [7,8]. They serve not only as “working horses” for
generating and detecting spin currents [9], but also as key
ingredients in spin-orbit torque devices for electric magneti-
zation switching [10–12]. Compared to spin-transfer torque
devices [13–17], spin-orbit torque devices are faster, more
robust, and consume less power upon operation [18–20]; for a
recent review, see Ref. [21].

While the anomalous Hall effect (AHE) in a magnet [22]
produces a transverse charge current density upon applying an
electric field E, the SHE in a nonmagnet produces a transverse
spin current density 〈 jγ 〉 = σγ E (γ = x, y, z indicates the
transported spin component). Mathematically, the SHE is
quantified by the antisymmetric part of the spin conductivity
tensor σγ . For example, the σ z

xy element comprises z-polarized
spin currents in the x direction as a response to an electric field
in the y direction.

In a simple picture, the intrinsic SHE [23,24] is explained
by spinning electrons that experience a spin-dependent Mag-
nus force caused by spin-orbit coupling (SOC). It appears
as if “built-in” spin-dependent magnetic fields evoke spin-
dependent Lorentz forces that result in a transverse pure
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spin current. The extrinsic SHE [25–27] is covered by Mott
scattering at defects [28].

Since the SHE does not rely on broken time-reversal
symmetry (TRS), it is featured in nonmagnetic metals [29] or
semiconductors [2]. Imposing few demands on a material’s
properties, a SHE can be expected in any material with
sufficiently large SOC (or, instead of SOC, with a noncollinear
magnetic texture [30]). From a mathematical perspective the
existence of an SHE can be traced to the transformation
behavior of the sum

σ z
xy − σ z

yx + σ x
yz − σ x

zy + σ y
zx − σ y

xz (1)

of antisymmetric spin conductivity tensor elements tradi-
tionally associated with a SHE (applied field, current flow
direction, and transported spin component are mutually or-
thogonal). Taking time-reversal evenness for granted, this
sum behaves like an electric monopole (space-inversion even,
scalar). For there are no crystalline symmetries (reflections,
rotations, inversions) that could render such an object zero, a
SHE can basically occur in any material. For the rest of this
paper, we refer to this SHE as “conventional SHE.”

To combine the virtues of transverse spin transport with
magnetic recording, the conventional SHE was studied in
magnetic materials with broken TRS (ferromagnets [31–44]
or antiferromagnets [30,45–48]), which revealed various phe-
nomena associated with the interplay of SOC and magnetism.
For example, ferromagnetic metals exhibit an (inverse) con-
ventional SHE [31]; unaffected by magnetization reversal [33]
it is time-reversal even.

Since charge currents in ferromagnets are intrinsically spin
polarized, transverse AHE currents are spin polarized as well
and are used to generate spin torques [32,35]. This effect
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is sometimes referred to as anomalous SHE [35], but is
fundamentally a conventional SHE. Since these spin currents
are tied to the AHE charge currents, the spin accumulations
brought about by this effect can be manipulated by varying the
magnetization direction [38,42,43]. This finding can be under-
stood by considering symmetries. For a nonmagnetic cubic
material, only the components in Eq. (1) are allowed nonzero.
In contrast, a ferromagnetic material magnetized along a
generic direction has a lower symmetry: there are no con-
straints that prohibit “populating” the entire spin conductivity
tensor. Upon manipulation of the magnetization, an electric
field in, say, the y direction causes an arbitrary spin polariza-
tion flowing in, e.g., the x direction. This offers greater versa-
tility for spin torque applications than the conventional SHE
in nonmagnetic cubic materials (nonmagnetic and noncubic
materials also admit of greater versatility and nontraditional
tensor elements [49–52], but they do not offer external means,
such as magnetization, to manipulate spin polarizations).

Since TRS is intrinsically broken in magnets, one expects
that spin accumulations brought about by transverse spin
currents have two components, one that does not reverse under
magnetization reversal (we will refer to this effect as SHE, a
subset of which is the conventional SHE) and a second that is
reversed under magnetization reversal. This opposite behavior
under time reversal causes different restrictions imposed by
the magnetic point-group symmetry [45,50] on the two types
of spin accumulations. In particular, the latter magnetism-
induced accumulations do not have to be parallelly polarized
to the SHE spin accumulations. Such signatures were ob-
served in Ref. [36].

The disentanglement of spin current contributions odd or
even under time reversal has been elucidated in Ref. [45].
In essence, the spin conductivity tensor in Kubo transport
theory is decomposed into a time-reversal even part and
a time-reversal odd part. Upon disregarding spin-dependent
scattering, skew scattering, and side jumps, the time-reversal
even part is associated with “intrinsic” contributions to the
spin conductivity, a contribution given solely in terms of band
structure properties (in the so-called clean limit) [45]. Like-
wise, the time-reversal odd part is associated with “extrinsic”
contributions that depend on relaxation times [45]. The latter
gives rise to the magnetism-induced effects. In systems with
low symmetry, both parts contribute to all components of σγ

and, in particular, to its antisymmetric part: the time-reversal
even part gives rise to the SHE and the odd part to the
magnetic spin Hall effect (MSHE) [45,47,48].

The MSHE has recently been experimentally detected in
the noncollinear antiferromagnet Mn3Sn [48], and the afore-
mentioned results of Ref. [36] on ferromagnets can also be
considered proof of the MSHE (in Ref. [53] referred to as
“transverse SHE with spin rotation”). Although instances of
the MSHE have been identified, an intuitive picture that ex-
plains how and under which circumstances this effect comes
about is missing.

II. CHIRAL VORTICES OF SPIN CURRENTS:
SUMMARY OF THIS PAPER

We offer a vivid microscopic picture of the MSHE by
relating it to the spin current vorticity (SCV) of the Fermi sea

or, equivalently, to the circulation of spin currents about the
Fermi surface.

In a rough draft, magnetic materials feature spin cur-
rent whirlpools (or vortices) in reciprocal space for each of
the three spin directions γ = x, y, z; as usual for angular
quantities, we denote the axis of a vortex by a vector ωγ .
Similar to water whirlpools (in real space), whose handedness
leads to an asymmetric deflection of plane water waves,
the spin current whirlpools (in reciprocal space) cause an
asymmetric deflection of the respective spin component. Since
the spin current vortices occur in reciprocal space, they are
delocalized in real space and, hence, do not act as scattering
centers (like defects) but rather like an overall vortical back-
ground. To rephrase this statement in mathematical terms,
note the following: Although spin transport is treated within
the constant relaxation time approximation that does not
capture asymmetric scattering at defects (thereby ruling out
extrinsic skew scattering and side jump contributions), the
MSHE is captured because the spin current itself, but not the
scattering, is chiral.

In terms of SCVs, the time-reversal odd nature of the
MSHE is easily understood as a reversal of a vortex’s hand-
edness that results in opposite deflection. Then, a reversal of
the magnetic texture has to reverse the spin accumulations
brought about by the MSHE spin currents as well; recall that
SHE spin currents remain unaffected.

In order to show that these spin current vortices may exist,
we analyze all magnetic Laue groups (MLGs) with respect to
their compatibility with a nonzero SCV, thereby identifying all
possible MSHE scenarios. One especially simple scenario is
a ferromagnet with SOC: assuming a tetragonal ferromagnet
with magnetization M in the z direction we find the SCVs

ωx � ŷ, ωy � −x̂, and ωz = 0. (2)

For the z spin component, the Fermi sea is loosely speaking
“calm” and does not cause an MSHE. In contrast, the x and
y spin components “experience a rough chiral Fermi sea”:
the nonzero vorticities cause MSHEs. More precisely, the
MSHE for the x (y) spin component takes place in the xz
(yz) plane. Consequently, such ferromagnets exhibit nonzero
antisymmetric parts of σ

γ
γ z (and σ

γ
zγ ) as long as γ = x, y; the

transported spin component, the electric field, and the flow
direction of the spin current lie within a plane that contains
the magnetization. This is why the MSHE spin currents are
pure: the transverse AHE charge currents compatible with a
magnetization in the z direction flow within the xy plane (i.e.,
normal to the magnetization).

To elaborate on the difference to the SHE, let us assume
that an electric field E ‖ M ‖ ẑ is applied, as depicted in
Fig. 1. Due to the (conventional) SHE spin conductivity
tensor elements (antisymmetric) spin is accumulated within
the surface planes of the sample (blue arrows). The polar-
ization of these spin accumulations is orthogonal to both E
and the surface normal. Being time-reversal even, it does
not flip under magnetization reversal [compare Figs. 1(a)
vs 1(b)]. In contrast, the MSHE (σ x

xz = σ
y
yz) causes additional

accumulations polarized normal to the surface planes (red
arrows). Their time-reversal odd nature forces a flip upon
magnetization reversal, as is represented by the reversed red
arrows in Fig. 1(b).
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FIG. 1. Conventional and magnetic spin Hall effect in ferromag-
nets with magnetization M along (a) the z direction and (b) the −z
direction (e.g., MLG 4/mm′m′). Upon application of an electric field
E in the z direction (and a charge current in the same direction) spin
accumulates at the boundaries of the sample. Those associated with
the conventional spin Hall effect (SHE) are indicated by blue arrows,
those with the MSHE by red arrows. Magnetization reversal acts only
on the MSHE accumulations.

Thus, the MSHE allows to generate a spin accumulation
orthogonal to the conventional SHE spin accumulation. In
scenarios in which the magnetization of the ferromagnet is
fixed, this feature may result in the decisive spin accumulation
direction necessary to perform a particular spin torque switch-
ing. For example, the field-free magnetization switching of a
perpendicularly magnetized film observed in Ref. [40] may
be explained in terms of MSHE spin accumulations. We
emphasize that the existence of spin current vortices is a
bulk property that gives rise to bulk MSHE spin currents,
which, in turn, cause spin accumulations at the edges or
interfaces. Additional interface effects, as those accounted for
in Refs. [37,40,54], come on top.

That the SHE and MSHE cause spin accumulations point-
ing in orthogonal directions is a speciality of the MLGs
4/mm′m′, 4′/mm′m, and m′m′m, which allow for the “clear-
est” disentanglement of MSHE and SHE. For other MLGs
there is at least one element of the spin conductivity tensor
that carries simultaneously contributions from the SHE and
the MSHE, leaving the behavior under time reversal (texture
reversal) as the only distinguishing characteristic.

Apart from three-dimensional ferromagnets, two-
dimensional electron gases (2DEGs) appear highly attractive.
2DEGs are well known for their efficient charge-to-spin
conversion due to large Rashba SOC [55], magnetism
in combination with superconductivity [56–61], and
electrical controllability [62]. Recent progress in achieving
room-temperature magnetism in 2DEGs [63] suggests to
investigate the MSHE in these systems. To do so, we consider
a minimal Rashba Hamiltonian with warping and an exchange
field whose direction provides a handle to switch between
different MLGs. It turns out that upon in-plane rotation of the
field, the MSHE of in-plane polarized spins is manipulated but
also that of out-of-plane polarized spins. Similar conclusions
hold for topological Dirac surface states, as in Sn-doped
Bi2Te3 [64] (e.g., in the presence of exchange fields due to
proximity to a ferromagnetic normal insulator [65]), and for
the noncollinear antiferromagnet Mn3Sn.

Instead of an electric field, a temperature gradient may
be utilized to cause thermodynamic nonequilibrium and spin
transport. As above for the SHE and the MSHE, time-reversal
even transverse spin transport is then referred to as spin Nernst
effect (SNE), and the time-reversal odd partner is termed
magnetic SNE (MSNE). Since the spin current vortices in
reciprocal space exist irrespective of the driving force, the
existence of an MSHE immediately implies that of an MSNE.
Recalling that the symmetry analysis is independent of the
type of spin carriers, it applies just as well to magnetic insu-
lators, in which spin is transported by magnons. We present
a proof of principle by considering antiferromagnetic spin
textures, as in Mn3Sn, and demonstrate that the magnetic
excitations give rise to nonzero spin current vortices and, thus,
to a magnonic MSNE. Therefore, the results of this paper can
be carried over to the realm of spin caloritronics in magnetic
insulators, where they may inspire studies of novel heat-to-
spin conversion mechanisms and energy harvesting concepts.

The remainder of the paper is organized as follows. In
Sec. III the theoretical framework within which we describe
spin transport is introduced. We disentangle time-reversal
even from odd contributions in Sec. III A, isolate the MSHE,
and introduce the SCV interpretation in Sec. III B. Then, we
turn to the symmetry analysis of all MLGs and summarize key
findings in Sec. III C. These are elaborated on in Sec. IV by
considering specific toy models; the latter serve to underline
the minimal requirements for a nonzero MSHE (Sec. IV A), to
make connection to magnetized Rashba materials (Sec. IV B),
and to demonstrate the magnonic MSNE (Sec. IV C). We
discuss the relation of our work to literature in Sec. V and
summarize in Sec. VI.

III. LINEAR-RESPONSE THEORY OF THE MAGNETIC
SPIN HALL EFFECT

The elements of the optical spin conductivity tensor read
as [50]

σγ
μν (� ) = 1

V

∫ ∞

0
dt ei� t

∫ β

0
dκ

〈
JνJγ

μ (t + ih̄κ )
〉

(3)

in Kubo linear-response theory [66,67]. Jν , Jγ
μ , � , V , and β

are the total charge and spin current operators, the frequency
of E(� ), the system’s volume, and the inverse temperature,
respectively. The shape of σγ was derived for all MLGs by
symmetry arguments in Ref. [50]. However, such a super-
ordinate symmetry approach neither provides insights into
the character of the MSHE nor does it identify the MSHE
contributions to the tensor elements. The latter requires to
decompose σγ .

A. Decomposition of the spin conductivity tensor

We work in the limit of noninteracting electrons described
by the Hamiltonian

H =
∑

k

Ψ †kHkΨ k (4)

in crystal momentum (k) representation. Ψ †k (Ψ k) is a vector of
electronic creation (annihilation) operators; its index runs over
spin, orbitals, and basis lattice sites. The eigenenergies εnk and
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corresponding eigenvectors |n〉 = |unk〉, which represent the
lattice-periodic part of a Bloch wave function with band index
n, are obtained from diagonalizing the Hamilton kernel Hk.

The dc spin conductivity then reads as

σγ
μν ≡ Re

[
lim
�→0

σγ
μν (� )

] = σγ ,odd
μν + σγ ,even

μν , (5)

with the two contributions [45]

σγ ,odd
μν = h̄2Γ

V

∑
n,m,k

fmk − fnk

εnk − εmk

Re
(〈n|Jγ

k,μ
|m〉〈m|Jk,ν |n〉)

(εnk − εmk)2 + (h̄Γ )2
,

(6a)

σγ ,even
μν = − h̄

V

∑
n,m,k

( fmk − fnk)
Im

(〈n|Jγ

k,μ
|m〉〈m|Jk,ν |n〉)

(εnk − εmk)2 + (h̄Γ )2 .

(6b)

fnk = (eβ(εnk−εF ) + 1)−1 is the Fermi distribution function
with Fermi energy εF. h̄Γ is an artificial spectral broaden-
ing and the total currents are decomposed into their Fourier
kernels Jγ

k,μ
and Jk,ν = −evk,ν = −eh̄−1∂Hk/∂kν (in the Ψ k

basis), respectively, and e > 0 is the elementary charge.
The superscripts of σ

γ ,odd
μν and σ

γ ,even
μν indicate their behav-

ior under time reversal. We recall that spin (charge) current
is time-reversal even (odd) and that the time reversal operator
comprises complex conjugation [45]. The behavior under time
reversal can be addressed by a reversal of the magnetic texture
(a collection {mi} of magnetic moments):

σγ ,odd
μν [{mi}] = −σγ ,odd

μν [−{mi}],
σ γ ,even

μν [{mi}] = σγ ,even
μν [−{mi}]. (7)

In an experiment, these contributions can be disentangled by
measuring the spin accumulations brought about by the spin
currents for both the original and the reversed texture.

Following up on Eq. (6a), a MSHE was identified by
symmetry arguments for Mn3X (X = Sn, Ga, Ge) in Ref. [45]
(see the first entry in the right column of Table I of that paper
and consider σ x

xy 	= σ x
yx, which makes the antisymmetric part

of σ x nonzero). The term MSHE was coined in Refs. [47,48],
the latter of which reported on its experimental observation in
Mn3Sn.

In what follows, we concentrate on σ
γ ,odd
μν because σ

γ ,even
μν

is related to the intrinsic SHE [24] which is of minor interest in
this paper. We decompose σ

γ ,odd
μν into intraband contributions

(n = m)

σ
γ ,odd
μν,intra = 1

Γ V

∑
n,k

Jγ

nk,μ
Jnk,ν

(
−∂ fnk

∂ε

)
(8)

and interband contributions given by Eq. (6a) with the sum
restricted to n 	= m. Jγ

nk,μ
≡ 〈n|Jγ

k,μ
|n〉 is the spin and Jnk,ν ≡

−e〈n|vk,ν |n〉 = −evnk,ν the charge current expectation value;
vnk,ν = h̄−1∂εnk/∂kν is the group velocity. We note in passing
that Eq. (8) can also be derived within the semiclassical
Boltzmann transport theory, assuming a constant relaxation
time.

In the clean limit Γ → 0, σ
γ ,odd
μν,intra diverges due to the Γ −1

factor while the interband contributions converge to zero if
there are no band degeneracies. To see the latter, notice that

Eq. (6a) with m 	= n and εnk 	= εmk has the form of a nascent
delta function

lim
Γ →0

h̄Γ

(εnk − εmk)2 + (h̄Γ )2 = π δ(εnk − εmk) = 0.

Thus, as long as the “almost clean” limit is a good approxi-
mation, i.e., h̄Γ 
 |εnk − εmk|, the intraband contribution in
Eq. (8) is the dominating contribution. From here on, we thus
drop the interband contributions altogether. In the derivations
and examples to follow, we also suppress the specifiers “odd”
and “intra”; we always refer to the time-reversal odd intraband
contributions.

B. Identification of the MSHE contributions

The antisymmetric part

σγ ,(a) ≡ σγ − σγ ,T

2
(9)

of the time-odd spin conductivity tensor describes the MSHE.
Since any antisymmetric matrix can be represented by a
vector, we introduce the γ -spin MSHE vector as [σγ

MSHE]× =
σγ ,(a), written compactly as [cf. Eq. (8)]

σ
γ

MSHE ≡

⎛
⎜⎝σ

γ ,(a)
yz

σ
γ ,(a)
zx

σ
γ ,(a)
xy

⎞
⎟⎠ = 1

2Γ V

∑
n,k

Jγ

nk × Jnk

(
−∂ fnk

∂ε

)
. (10)

At zero temperature, −∂ fnk/∂ε = δ(εnk − εF) allows to re-
place the k summation by an integral over the Fermi surface,

σ
γ

MSHE = e

2h̄Γ (2π )3

∑
n

∮
εn=εF

v̂nk × Jγ

nk dS (11)

(v̂nk = vnk/vnk is the local normal of the Fermi surface). This
integral measures the tangential vector flow of Jγ

nk on the
Fermi surface. σγ

MSHE is nonzero if there is an integrated sense
of rotation of the spin current about the Fermi surface.

Alternatively, we write Eq. (11) as a Fermi sea integral

σ
γ

MSHE = e

2h̄Γ (2π )3
ωγ (εF) (12)

over the net spin current vorticity (SCV)

ωγ (εF) ≡
∑

n

∫∫∫
εn�εF

ω
γ

nk d3k, ω
γ

nk ≡ ∇k × Jγ

nk, (13)

that is defined in analogy to the vorticity of a fluid [68].
ω

γ

nk describes the local rotation, shear, or curvature of Jγ

nk.
Figuratively speaking, the vorticity of a vector field is nonzero
at those points at which a paddle wheel would start to rotate
(note that integrals over fully occupied bands are zero, i.e.,
each band has a vanishing total SCV).

Equations (11)–(13) are our main findings. They show that
a MSHE is a result of the spin current circulation about the
Fermi surface [Eq. (11)] or, put differently, a result of a finite
SCV in the Fermi sea [Eq. (12)].

For illustration, we stretch the analogy to fluid vortices
and recall the time-reversal-asymmetric propagation of an
acoustic wave through a fluid with a vortex [69], briefly
presented in the Introduction. The broken TRS in magnets
causes SCVs ωγ for each spin component γ = x, y, z in the
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TABLE I. Symmetry analysis of the MSHE. The columns give magnetic Laue groups (MLGs), components of the spin current vorticity
(SCV) ω, and elements of spin conductivity σγ that are compatible with an MSHE.

Admitted elements of SCV tensor ω MSHE part of spin conductivity tensor σγ

MLGa ω Ω W b σ x,(a) σ y,(a) σ z,(a)

1̄ ω Ωx , Ωy, Ωz W x
x , W y

y , W z
z , W y

x , W z
x , W z

y

⎛
⎜⎝ 0 σ x

xy σ x
xz

−σ x
xy 0 σ x

yz

−σ x
xz −σ x

yz 0

⎞
⎟⎠

⎛
⎜⎝ 0 σ y

xy σ y
xz

−σ y
xy 0 σ y

yz

−σ y
xz −σ y

yz 0

⎞
⎟⎠

⎛
⎜⎝ 0 σ z

xy σ z
xz

−σ z
xy 0 σ z

yz

−σ z
xz −σ z

yz 0

⎞
⎟⎠

2/m ω Ωy W x
x , W y

y , W z
z , W z

x

⎛
⎜⎝ 0 σ x

xy 0

−σ x
xy 0 σ x

yz

0 −σ x
yz 0

⎞
⎟⎠

⎛
⎜⎝ 0 0 σ y

xz

0 0 0

−σ y
xz 0 0

⎞
⎟⎠

⎛
⎜⎝ 0 σ z

xy 0

−σ z
xy 0 σ z

yz

0 −σ z
yz 0

⎞
⎟⎠

mmm ω W x
x , W y

y , W z
z

⎛
⎜⎝0 0 0

0 0 σ x
yz

0 −σ x
yz 0

⎞
⎟⎠

⎛
⎜⎝ 0 0 σ y

xz

0 0 0

−σ y
xz 0 0

⎞
⎟⎠

⎛
⎜⎝ 0 σ z

xy 0

−σ z
xy 0 0

0 0 0

⎞
⎟⎠

4/m

6/m

3̄

ω Ωz W x
x = W y

y , W z
z

⎛
⎜⎝ 0 0 σ x

xz

0 0 σ x
yz

−σ x
xz −σ x

yz 0

⎞
⎟⎠

⎛
⎜⎝ 0 0 −σ x

yz

0 0 σ x
xz

σ x
yz −σ x

xz 0

⎞
⎟⎠

⎛
⎜⎝ 0 σ z

xy 0

−σ z
xy 0 0

0 0 0

⎞
⎟⎠

4/mmm

6/mmm

3̄m

ω W x
x = W y

y , W z
z

⎛
⎜⎝0 0 0

0 0 σ x
yz

0 −σ x
yz 0

⎞
⎟⎠

⎛
⎜⎝ 0 0 −σ x

yz

0 0 0

σ x
yz 0 0

⎞
⎟⎠

⎛
⎜⎝ 0 σ z

xy 0

−σ z
xy 0 0

0 0 0

⎞
⎟⎠

m3̄

m3̄m
ω W x

x = W y
y = W z

z

⎛
⎜⎝0 0 0

0 0 σ x
yz

0 −σ x
yz 0

⎞
⎟⎠

⎛
⎜⎝ 0 0 −σ x

yz

0 0 0

σ x
yz 0 0

⎞
⎟⎠

⎛
⎜⎝ 0 σ x

yz 0

−σ x
yz 0 0

0 0 0

⎞
⎟⎠

2′/m′ Ωx , Ωz W y
x , W z

y

⎛
⎜⎝ 0 0 σ x

xz

0 0 0

−σ x
xz 0 0

⎞
⎟⎠

⎛
⎜⎝ 0 σ y

xy 0

−σ y
xy 0 σ y

yz

0 −σ y
yz 0

⎞
⎟⎠

⎛
⎜⎝ 0 0 σ z

xz

0 0 0

−σ z
xz 0 0

⎞
⎟⎠

m′m′m Ωz W y
x

⎛
⎜⎝ 0 0 σ x

xz

0 0 0

−σ x
xz 0 0

⎞
⎟⎠

⎛
⎜⎝0 0 0

0 0 σ y
yz

0 −σ y
yz 0

⎞
⎟⎠

4′/m W y
x , W x

x = −W y
y

⎛
⎜⎝ 0 0 σ x

xz

0 0 σ x
yz

−σ x
xz −σ x

yz 0

⎞
⎟⎠

⎛
⎜⎝ 0 0 σ x

yz

0 0 −σ x
xz

−σ x
yz σ x

xz 0

⎞
⎟⎠

4′/mm′m W y
x

⎛
⎜⎝ 0 0 σ x

xz

0 0 0

−σ x
xz 0 0

⎞
⎟⎠

⎛
⎜⎝0 0 0

0 0 −σ x
xz

0 σ x
xz 0

⎞
⎟⎠

4/mm′m′

6/mm′m′

3̄m′
Ωz

⎛
⎜⎝ 0 0 σ x

xz

0 0 0

−σ x
xz 0 0

⎞
⎟⎠

⎛
⎜⎝0 0 0

0 0 σ x
xz

0 −σ x
xz 0

⎞
⎟⎠

aThe MLGs 1̄1′, 2/m1′, mmm1′, 4/m1′, 6/m1′, 4/mmm1′, 6/mmm1′, 3̄1′, 3̄m1′, m3̄1′, and m3̄m1′ contain pure time-reversal symmetry and are
incompatible with a spin current vorticity and, thus, a MSHE. The MLGs 6′/m′, 6′/m′mm′, and m3̄m′ are MSHE incompatible as well.
bSince W is symmetric, admittance of W j

i implies admittance of W i
j .

Fermi sea, which is experienced by the γ -spin component of
an electron’s Bloch wave propagating through the crystal. A
consequence is a Hall-type deflection within the plane normal
to ωγ of that spin component. Time reversal is equivalent to
inversion of the vortex’s circulation direction (ωγ → −ωγ ),
which signifies the time-odd signature of the MSHE.

Considering reciprocal space, a simple picture may be
helpful. In a two-dimensional crystal with a single Fermi
line, the spin current vector field Jγ

k may look as depicted
in Fig. 2 (we suppressed the band index). The integral of
the k-dependent vorticity over the Fermi sea is proportional

to the magnetic spin Hall conductivity. In scenario (a), Jγ

k
is irrotational and, thus, has zero vorticity. In (b), Jγ

k shows
local vorticity that integrates to zero due to symmetry. And in
(c), the Fermi surface cuts out a region with nonzero vorticity
causing a MSHE. To check the behavior under time reversal,
recall the mapping Jγ

k to Jγ

−k, which reverses the circulation
direction.

One may discuss the effect in terms of a shift of the Fermi
surface that is caused by the redistribution of electrons. An
electric field E along the −x direction produces a shift in
positive kx direction (accounting for the negative electron
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FIG. 2. Vorticities of spin current vector fields in reciprocal
space. Red/white/blue color indicates positive/zero/blue vorticity
in a region about the origin. The integral over the vorticity within
the Fermi surface, indicated by black circles, is proportional to the
magnetic spin Hall conductivity. (a) The irrotational source field has
zero vorticity. (b) The quadrupolar field has locally nonzero vorticity
but zero integral. (c) A general vortex with vorticity of varying sign.

charge). For the situation in Fig. 2(a), this displacement does
not yield a transversal response since 〈 jγ 〉 ‖ x̂. However, for
Figs. 2(b) and 2(c) 〈 jγ 〉 ‖ ŷ and 〈 jγ 〉 ‖ −ŷ, respectively. If
E is along the −y direction (shift in positive ky direction),
〈 jγ 〉 ‖ x̂ for both Figs. 2(b) and 2(c). Hence, only a finite
SCV, as depicted in Fig. 2(c), fixes the sign of 〈 jγ 〉 × E,
thereby causing a nonzero antisymmetric part of σγ , that is
a MSHE. The scenario Fig. 2(b) gives rise to a symmetric part
of σγ , conceivably referred to as “planar magnetic spin Hall
effect,” which is related to the quadrupole of the spin current
expectation value in reciprocal space.

C. Symmetry analysis

Although breaking of TRS is necessary for a nonzero
local SCV ω

γ

nk, it is not sufficient because symmetries of the
magnetic crystal may render the SCV integral in Eq. (13) zero
[cf. Fig. 2(b)]. In what follows, we derive which MLGs do or
do not allow for a MSHE. The restriction to MLGs, instead
to magnetic point groups, is feasible because σγ is related
to the correlation function of a spin current and a charge
current [Eq. (3)]. Both currents change sign upon inversion;
thus, the presence or absence of inversion symmetry does
not impose restrictions on the shape of the spin conductivity
tensor. One may then augment each magnetic point group
with the element of space inversion to map it onto the set
of MLGs. Recall that the considerably smaller number of
MLGs facilitates the analysis. This argumentation is in line
with Refs. [50,70–72]. We like to refer the reader to Ref. [50]
for mappings of magnetic point groups onto MLGs.

We combine the three spin-dependent MSHE vectors of
Eq. (12) to the MSHE tensor

σ MSHE ≡ (
σx

MSHE, σ
y
MSHE, σz

MSHE

) ∝ ω ≡ (ωx,ωy,ωz ).

(14)

Equation (14) links the elements of σ MSHE to those of the
SCV tensor ω, the latter itself constructed from the three
spin current vorticity vectors given in Eq. (13) (argument εF

suppressed). ω can be decomposed into three contributions:

ω = ωI + [Ω]× + W , (15)

that is a scalar ω = Tr(ω)/3, a vector [Ω]× = (ω − ωT)/2,
and a traceless symmetric tensor W = (ω + ωT)/2 − ωI , with

I the 3 × 3 identity matrix. Recalling that ω is time-reversal
odd but space-inversion even and calling to mind the trans-
formation properties of electromagnetic multipoles [73], one
finds that ω, Ω, and W transform as a magnetic toroidal
monopole (Jahn symbol a, Ref. [74]), a magnetic dipole
(eaV ), and a magnetic toroidal quadrupole (a[V 2]), respec-
tively. Such a multipole decomposition is in line with Ref. [75]
[cf. Eqs. (D20) and (D21) of that publication].

Utilizing the MTENSOR application [76] of the Bilbao Crys-
tallographic Server [77–79], we identified all MLGs permit-
ting these multipoles. By virtue of Eqs. (10) and (14) these
results are carried forward to σ MSHE and σγ ,(a); a summary
is given in Table I. The results of the symmetry analysis
are not restricted to the intraband approximation (i.e., the
interpretation in terms of SCVs) but apply to Eq. (6a) as well
[one may consider the summand in Eq. (6a) as a generalization
of the SCV to interband contributions]. We now list and
discuss illustrative key findings.

(i) Any MLG that contains pure time reversal 1′ (reversal
of the magnetic texture maps the crystal onto itself modulo a
translation) is incompatible with a SCV and a MSHE because
ω, Ω, and W transform as magnetic multipoles.

(ii) The MLG m3̄m of cubic systems does not allow for a
magnetization (Ω = 0) but for ω and W x

x = W y
y = W z

z , from
which

Eq. (15)→ ωx
x = ωy

y = ωz
z

Eq. (14)→ σ x
MSHE,x = σ

y
MSHE,y = σ z

MSHE,z

Eq. (10)→ σ x,(a)
yz = σ y,(a)

zx = σ z,(a)
xy

follows. MSHEs with mutually orthogonal spin, flow, and
force directions are expected, a situation known from the SHE
in nonmagnetic cubic materials. The SHE and MSHE can be
disentangled by their opposite time-reversal signature which
can be probed by a reversal of the magnetic texture [48].

(iii) The MLG 4/mm′m′ admits of a magnetization Ω =
(0, 0,Ωz )T, but neither of ω nor of W . We find

W y
x = 0, Ωz 	= 0

Eq. (15)→ ωy
x = −ωx

y
Eqs. (14),(10)→

σ y,(a)
yz = −σ x,(a)

zx .

In contrast to the AHE, for which a magnetization (along z)
causes transverse charge transport within a plane perpendic-
ular to it (xy plane), the MSHE takes place in planes that
contain the magnetization (xz and yz planes). Only the trans-
ported spin component has to be normal to the magnetization
(x and y). Moreover, it has to lie within the plane of transport.
Thus, although tetragonal ferromagnets allow both for the
AHE and the MSHE, the spin current attributed to the MSHE
is a pure spin current because the AHE-induced current flows
in a different plane. This scenario was outlined in Sec. II via
Eq. (2).

(iv) A magnetic toroidal quadrupole W also allows for the
spin transport discussed in (iii). Consider the MLG 4′/mm′m
that permits only a nonzero W y

x , which translates to σ
y,(a)
yz =

σ x,(a)
zx . Compared to (iii), only the relation of the signs of

nonzero components has changed. For a geometry as depicted
in Fig. 1 (fourfold rotational axis aligned with the z direction),
this reversed sign translates into a MSHE spin accumulation
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with a polarization that alternates between pointing parallel
and antiparallel to the surface normal.

(v) The MLG m′m′m combines the scenarios of (iii) and
(iv): Ωz, W y

x , σ
y,(a)
yz , and σ x,(a)

zx may be nonzero but there is no
additional symmetry-imposed relation between the latter two.

(vi) An MSHE has been experimentally established in the
noncollinear antiferromagnet Mn3Sn [48] that, depending on
the spin orientation, belongs either to the MLG 2′/m′ or to
2/m.1 These are the same MLGs we shall discuss in the
context of a magnetized Rashba electron gas with warping
(Sec. IV B). Please note that the MLG 2/m allows for σ z

xy 	= 0,
that is a MSHE in the xy plane with out-of-plane polarized
spin currents (a geometry similar to the conventional SHE),
whereas 2′/m′ does not. Thus, upon rotation of the coplanar
magnetic texture of Mn3Sn, one could switch the MLGs and
thereby engineer the transport of out-of-plane polarized spins;
this effect awaits experimental verification (the experimental
setup in Ref. [48] was sensitive to in-plane spin polarizations).

IV. EXAMPLES

With the above results at hand, we now address selected
examples for various MLGs. Section IV A focuses on minimal
requirements for a MSHE and illustrates its interpretation in
terms of spin current vorticities. In Sec. IV B we make contact
with Rashba materials whose MLGs cover Mn3Sn. Finally, we
consider a magnetic spin Nernst effect in insulating materials
(Sec. IV C).

A. Minimal requirements for a MSHE

According to the points (iii) and (iv) in Sec. III C, com-
patibility of a MLG with either a magnetization (e.g., MLG
4/mm′m′) or a magnetic toroidal quadrupole (e.g., MLG
4′/mm′m) suffices for a MSHE. To show explicitly the spin
current vortex about the Fermi surface [in the sense of
Eq. (11)], we consider the sd Hamiltonian

H =
∑
〈i j〉

c†i (t + iατ · d̂ i j )c j + J
∑

i

c†i (τ · m̂i )ci (16)

on the pyrochlore lattice [Fig. 3(a)] which consists of corner-
sharing tetrahedra [80]. c†i (ci) creates (annihilates) an elec-
tron spinor at site i, τT = (τ x, τ y, τ z ) is the vector of Pauli
matrices. The hopping (with amplitude t) of electrons is
accompanied by a spin rotation due to SOC (with amplitude
α). The unit vectors

d̂12 =
√

2

2

⎛
⎝−1

0
1

⎞
⎠, d̂13 =

√
2

2

⎛
⎝ 1

−1
0

⎞
⎠, d̂14 =

√
2

2

⎛
⎝ 0

1
−1

⎞
⎠,

d̂23 =
√

2

2

⎛
⎝0

1
1

⎞
⎠, d̂24 =

√
2

2

⎛
⎝−1

−1
0

⎞
⎠, d̂34 =

√
2

2

⎛
⎝1

0
1

⎞
⎠

(17)

1If the spin orientation breaks all crystal symmetries, Mn3Sn
belongs to the MLG 1̄, which is, however, unlikely in the absence
of a magnetic field because of anisotropies along high-symmetry
directions of the lattice.

FIG. 3. MSHE in the pyrochlore lattice for (a) ferromag-
netic (MLG 4/mm′m′) and (b) antiferromagnetic textures (MLG
4′/mm′m). The pyrochlore lattice is projected onto the xy plane, such
that the tetrahedra appear as squares. (c) and (d) depict Fermi sur-
faces with arrows indicating Jx

k and the color scale depicts the y com-
ponent of v̂k × Jx

k (blue/white/red indicates negative/zero/positive
values; the value range is symmetric about zero). (e), (f) As (c) and
(d) but for Jy

k and the x component of v̂k × Jy
k.

specify the directions of the effective SOC. Each of the d̂ i j is
orthogonal to the i- j bond and lies within a face of a cube that
encloses a tetrahedron. d̂ i j = −d̂ ji implies

∑4
j=1 d̂ i j = 0 for

each i = 1, . . . , 4.
Via Hund’s coupling J , the electron spins are connected

with the local magnetic moments m̂i (black arrows in Fig. 3).
The ferromagnetic texture in Fig. 3(a), with m̂i = (0, 0, 1)T,
belongs to the MLG 4/mm′m′, while the antiferromagnetic
texture in Fig. 3(b) belongs to 4′/mm′m (the notation of the
MLGs matches that of the respective magnetic point groups):

m̂1 =
√

2

2

⎛
⎝−1

1
0

⎞
⎠, m̂2 =

√
2

2

⎛
⎝−1

−1
0

⎞
⎠,

m̂3 =
√

2

2

⎛
⎝ 1

−1
0

⎞
⎠, m̂4 =

√
2

2

⎛
⎝1

1
0

⎞
⎠.

(18)

The latter MLG 4′/mm′m is compatible with a magnetic
toroidal quadrupole (W y

x 	= 0), which is evident from the tex-
ture itself: the quadruple of spins labeled 1, 2, 3, 4 in Fig. 3(b)
produces a toroidal dipole moment

T ∝
4∑

i=1

ri × m̂i, (19)

in which coordinates ri are taken with respect to the tetrahe-
dron’s center of mass. We obtain T = (0, 0, Tz )T with Tz < 0,
i.e., the toroidal dipole points into the paper plane. However,
any neighboring tetrahedron features magnetic moments with
an opposite circulation direction, giving rise to the opposite
toroidal dipole moment (Tz > 0). The regular array of alter-
nating up- and down-pointing toroidal dipoles causes a zero
net toroidal dipole (as expected for 4′/mm′m because the
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Jahn symbol aV of T ) but a nonzero net magnetic toroidal
quadrupole [81].

We have diagonalized the Hamiltonian (16) in reciprocal
space. Since the magnetic unit cell contains the same number
of sites as the structural unit cell, there are eigth electronic
bands (not shown). Figures 3(c)–3(f) show representative iso-
energy cuts (Fermi surfaces) with the arrows depicting Jx

k
[in Figs. 3(c) and 3(d); band index suppressed] and Jy

k [in
Figs. 3(e) and 3(f)], respectively. The color scales visualize
particular integrands in Eq. (11): the y component of v̂k × Jx

k
in Figs. 3(c) and 3(d) and the x component of v̂k × Jy

k in
Figs. 3(e) and 3(f). The spin current is defined as usual by
Jγ

k,μ
= 1

2 {sγ , vk,μ} (sγ γ -spin operator).
The spin current circulation about the Fermi surface, that

is the spin current vortex, is clearly identified in Figs. 3(c)
and 3(e). The respective integrals

σ x,(a)
zx ∝

∑
n

∮
εn=εF

v̂nk × Jx
nk

∣∣
y dS (20)

and

σ y,(a)
yz ∝

∑
n

∮
εn=εF

v̂nk × Jy
nk

∣∣
x

dS (21)

are nonzero [either red, Fig. 3(c), or blue color, Fig. 3(e),
dominates]. Due to the symmetry of the value range, one
finds

−σ x,(a)
zx = σ x,(a)

xz = σ y,(a)
yz , (22)

as was confirmed numerically. These findings agree fully
with point (iii) of Sec. III C and with the 4/mm′m′ row of
Table I.

A similar, albeit less striking, observation can be made
for Figs. 3(d) and 3(f). Red dominates slightly over blue in
both cases, visualizing nonzero integrals for σ x

zx and σ
y
yz. In

accordance with point (iv) of Sec. III C and the entry for
4′/mm′m in Table I,

σ x,(a)
zx = −σ x,(a)

xz = σ y,(a)
yz (23)

holds.
For all other components of v̂k × Jγ

k that are not shown in
Fig. 3, the color distribution on the Fermi surface (blue and
red appear equally) indicate magnetic spin Hall conductivities
of zero, in agreement with Table I.

B. MSHE in Rashba materials

For the three-dimensional models addressed in the pre-
ceding section, we concentrated on the spin current circu-
lation about the Fermi surface. Similar conclusions can be
drawn from calculated SCVs which one could represent as
“vortex lines” of the field Jγ

k . Since this makes for hardly
interpretable three-dimensional pictures, we focus now on
a two-dimensional model for which the SCV is clearly
identified.

1. Magnetized Rashba model and its band structure

Recent progress on magnetism in two-dimensional elec-
tron gases motivates to demonstrate the existence of SCVs in

FIG. 4. Two-dimensional electron gas with Rashba SOC and
in-plane magnetic field along x [(a) and (b)] or y [(c) and (d)].
εd and εs are the energy of the degeneracy point and of the sad-
dle point. The color scales represent spin current vorticities ωx

k,z

[(a) and (c)] and ω
y
k,z [(b) and (d); blue/white/red color indicates

negative/zero/positive values]. For details, see text.

an in-plane magnetized Rashba model with Hamiltonian

H = h̄2k2

2m
+ αR(kxτ

y − kyτ
x )︸ ︷︷ ︸

HR

+μBB · τ︸ ︷︷ ︸
HZee

(24)

(τ i Pauli matrices, m effective mass, and αR Rashba parame-
ter); hexagonal warping is accounted for later. The continuous
rotational symmetry of HR is broken by an in-plane exchange
field B = (Bx, By, 0)T (μB Bohr’s magneton). The set of
parameters (m = 0.32 me, αR = 2.95 eV Å, with me electron
mass) corresponds to those of the ordered (

√
3 × √

3)R30◦
Bi/Ag(111) surface alloy [83–86]; we set μBB = 0.1 eV.

For B in the x direction, the two bands are degenerate at a
point on the ky axis [Figs. 4(a) and 4(b); at energy εd]; likewise
for B along y, the bands are degenerate at a point on the kx

axis [Figs. 4(c) and 4(d)]. On top of that, the lower band has
a saddle point at energy εs. Overall, the band structure merely
exhibits a kx → −kx [Figs. 4(a) and 4(b)] or a ky → −ky

symmetry [Figs. 4(c) and 4(d)], rendering isoenergy lines
anisotropic.

2. Symmetries, spin current vorticities, and spin conductivity

With B in the x direction (y direction), the model shows
nonzero Ωx (Ωy) and, thus, nonzero σ

y,(a)
xy (σ x,(a)

xy ). Recall that
transport takes place in a plane containing the magnetization
and that the transported spin component is orthogonal to the
magnetization. Since we focus on transport in the xy plane,
we consider neither σ z,(a)

xz nor σ z,(a)
yz although allowed by Ωx

or Ωy.
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FIG. 5. Charge conductivity [(a)] and MSHE [(b)–(d)] in a Rashba system with in-plane magnetic field B and hexagonal warping. Model
parameters as for Fig. 4, except for the warping strength λ = 18 eV Å3. The constant relaxation time is (2Γ )−1 = 26 fs [82]. For λ = 18 eV Å3,
the model is applicable only for ε < 0.2 eV. For comparison, systems without (λ = 0) and with reduced warping (λ = 5 eV Å3) are considered.
Circles (squares) for B ‖ x̂ (B ‖ ŷ); σ γ ,(a) multiplied by 2e

h̄ to better compare with the charge conductivity.

The momentum-resolved SCVs, shown by color in Fig. 4,
exhibit a band antisymmetry ωx

1,k,z = −ωx
2,k,z and ω

y
1,k,z =

−ω
y
2,k,z (1 and 2 band indices). Moreover, the SCVs exhibit

the following reflection (anti)symmetries:

B ‖ x̂ : ωx
n,kx,ky,z = −ωx

n,−kx,ky,z, ω
y
n,kx,ky,z

= ω
y
n,−kx,ky,z

,

(25a)

B ‖ ŷ : ωx
n,kx,ky,z = ωx

n,kx,−ky,z, ω
y
n,kx,ky,z

= −ω
y
n,kx,−ky,z

.

(25b)

Even without explicit calculations one verifies that any Fermi
sea integral over ωx

k,z for B ‖ x̂ [Fig. 4(a)] or ω
y
k,z for B ‖ ŷ

[Fig. 4(d)] equals zero due to these antisymmetries. Equa-
tion (12) gives σ x,(a)

xy = 0 for B ‖ x̂ and σ
y,(a)
xy = 0 for B ‖ ŷ.

In contrast, the integrals over ω
y
k,z for B ‖ x̂ (b) or ωx

k,z for
B ‖ x̂ (c) are nonzero, as becomes especially plausible for
low energies, at which only red [Fig. 4(b)] or blue [Fig. 4(c)]
shows up.

For a quantitative analysis, we address the energy depen-
dence of the magnetic spin Hall conductivity. To calculate the
transport properties, we use the constant relaxation time τ =
26 fs [82], corresponding to a lifetime broadening of h̄Γ =
h̄/(2τ ) ≈ 12.7 meV. For |εF| > 50 meV, one finds that h̄Γ is
approximately one order of magnitude smaller than |ε2 − ε1|,
which renders interband contributions negligible, according
to the discussion in Sec. III A. (For |εF| < 50 meV and, in
particular, in the immediate energetic vicinity to the band
degeneracy at εd, a renormalization of the results obtained
within spin current vorticity approximation is expected on the
contrary.)

First, we recall the energy dependence of the charge con-
ductivity σxx, as shown in Fig. 5(a). For low Fermi energies
εF, the direction of the magnetic field strongly affects the
shape of the isoenergy lines, leading to different σxx for B ‖ x̂
and B ‖ ŷ, respectively [compare blue and black symbols in
Fig. 5(a)]. At higher energies SOC dominates over exchange
and, thus, the shape of the isoenergy lines depends marginally

on the direction of B: there is barely a difference in σxx for
B ‖ x̂ and B ‖ ŷ.

For understanding better the energy dependence of the
MSHE depicted in Figs. 5(b)–5(d), we inspect the SCVs ωx

k,z,
ω

y
k,z, and ωz

k,z for B ‖ x̂ and B ‖ ŷ, respectively (Figs. 6 and 7).

As expected, σ x,(a)
xy (σ y,(a)

xy ) vanishes for By = 0 (Bx = 0),
which is illustrated in Fig. 6(a) [Fig. 7(b)]: the contributions
from Fermi sea regions with positive and negative SCV can-
cel. In contrast, a finite conductivity σ

y,(a)
xy (σ x,(a)

xy ) occurs due
to incomplete cancellation [Figs. 6(b) and 7(a)].

As sketched in Fig. 4, the bands are degenerate at εd ≈
8 meV. For Fermi levels below the degeneracy, only the
lower band is occupied. Increasing the Fermi level from the
band edge, the absolute value of σ

y,(a)
xy (σ x,(a)

xy ) increases [cf.

FIG. 6. Spin current vorticity (red/blue color scale) and isoen-
ergy lines (colored lines) of the lower band of Rashba systems
with and without hexagonal warping in the presence of an in-plane
magnetic field B ‖ x̂. Model parameters as in Fig. 5.
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FIG. 7. As Fig. 6 but for B ‖ ŷ.

Figs. 5(c) and 5(b)] due to the growing number of states
contributing to the MSHE (cf. black, blue, and green Fermi
lines in Figs. 6 or 7).

Around the saddle point at εs ≈ −83 meV the SCV
changes sign and the states contribute oppositely to the mag-
netic spin Hall conductivity, leading to an extremum of σ

y,(a)
xy

(σ x,(a)
xy ) close to εs.
Above εd, both bands are occupied (in Figs. 6 and 7, the

inner isoenergy line corresponds to the upper band, the outer
to the lower band). Only the SCV of the lower band is shown,
but the upper band’s SCV differs from that of the lower band
only by sign. Thus, regions in k space in which both bands
are occupied do not contribute to σ

γ ,(a)
xy . With increasing εF

the additional contribution of the lower band’s states to the
MSHE is compensated by the states in the upper band, thus,
σ

y,(a)
xy and σ x,(a)

xy are almost independent of εF.
The magnetic spin Hall angle, defined as α

γ

SH = 2e
h̄ ×

2σ
γ ,(a)
xy /(σxx + σyy), is sizable (up to 70%) near the band edge

and decreases for larger εF. Above εd, it is in the order of 10%,
which may be considered substantial. Its energy dependence
is dominated by the almost linear energy dependence of the
charge conductivity.

3. Effect of hexagonal warping

To come closer to realistic materials, a hexagonal warping
term

Hw = iλ

2
(k3

+ − k3
−)τ z, k± = kx ± iky, (26)

is added to the Hamiltonian (24). For (
√

3 × √
3)R30◦

Bi/Ag(111), the strength of the warping is λ = 18 eV Å3 [86].
Similar to the exchange field, Hw breaks the continuous
rotation symmetry of HR, leaving the xz plane as a mirror
plane.

For B ‖ ŷ this mirror plane is retained (MLG 2/m;
Table I). Since Hw introduces a spin-z component [notice
τ z in Eq. (26)], we expect nonzero σ z,(a)

xy [associated with
W z

z , as explained in (ii); cf. Figs. 5(b) and 5(d)]. For weak

warping (λ = 5 eV Å3), the band structure as well as the SCV
ωx

k,z appear mildly affected by the additional SOC [Fig. 7(d)].
Thus, σ x,(a)

xy is weakly influenced by warping. However, a
finite spin current vorticity ωz

k,z gives rise to a nonzero σ z,(a)
xy .

The sign changes of σ z,(a)
xy for εF < εs are due the anisotropy

of the Fermi lines and the alternating sign of ωz
k,z in reciprocal

space [Figs. 7(f) and 7(i)].
For stronger warping (λ = 18 eV Å3), the energy disper-

sion and ωx
k,z are remarkably modified, which leads to a

slightly enhanced MSH conductivity σ x,(a)
xy at any εF. Further-

more, the absolute value of σ z,(a)
xy is increased.

B ‖ x̂ renders the xz plane a time-reversal mirror plane
(MLG 2′/m′; Table I). Instead of σ x,(a)

xy and σ z,(a)
xy , only σ

y,(a)
xy

is now nonzero [Fig. 5(b)], and its energy dependence is
equivalent to that of σ x,(a)

xy for B ‖ ŷ. Note in particular that
Figs. 6(f) and 6(i) demonstrate that the Fermi sea integral over
ωz

k,z vanishes for symmetry reasons.

4. Concluding remarks and applicability to real materials

To conclude, in-plane magnetized Rashba 2DEGs exhibit a
MSHE with in-plane polarized spin current (σ x,(a)

xy and σ
y,(a)
xy )

if warping is negligibly small. By rotating the in-plane B field,
the transported spin components can be manipulated. On top
of that, the interplay of warping and the direction of B allows
for nonzero σ z,(a)

xy , thereby causing out-of-plane polarized
spin accumulations at the edges of the sample (similar to
the conventional SHE). Upon continuous rotation of B, the
magnetic spin Hall conductivity σ z,(a)

xy alternates from positive
(B ‖ ŷ) via zero (B ‖ ±x̂) to negative (B ‖ −ŷ) values.

A similar effect is expected for the warped topological
Dirac surface states in Sn-doped Bi2Te3 [64]; the exchange
field could be induced by proximity to a ferromagnetic in-
sulator [65], a strategy giving rise to an AHE [87]. Another
example is the noncollinear antiferromagnet Mn3Sn with spin
textures as shown in Figs. 8(a) and 8(d). While the manipula-
tion of in-plane polarized MSHE spin currents by an in-plane
field has been successfully demonstrated in Ref. [48], the
manipulation of the out-of-plane polarized MSHE awaits its
experimental confirmation.

The Rashba model for a 2DEG is easily extended to three
dimensions, in order to cover multiferroic Rashba semicon-
ductors with bulk Rashba SOC, an example being the ma-
terial (GeMn)Te [88–90]. In equilibrium, the magnetization
of (GeMn)Te is parallel to the direction of the ferroelectric
polarization [88]; it is conceivable that an in-plane field causes
considerable in-plane canting and a MSHE.

C. Magnetic spin Nernst effect

The symmetry considerations of Sec. III C apply also to the
magnetic spin Nernst effect (MSNE) 〈 jγ 〉 = αγ (−∇T ) (∇T
temperature gradient) which is determined by the antisym-
metric part of the magnetothermal conductivity αγ . Within
linear-response theory

αγ
μν (� ) = 1

TV

∫ ∞

0
dt ei� t

∫ β

0
dκ

〈
QνJγ

μ (t + ih̄κ )
〉

+ α̃γ
μν (� ) (27)
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FIG. 8. Magnon SCVs for two antiferromagnetic textures on the
kagome lattice. Top row: MLG 2′/m′. (a) Colored arrows at the
vertices and black arrows at the bond centers indicate the spin texture
and the DMI vectors for counterclockwise circulation, respectively.
(b), (c) Dispersion relation of the lowest band in the vicinity of the
Brillouin zone center. Color scales indicate the value of the SCVs (b)
ωx

k,z and (c) ω
y
k,z (red/white/blue stands for positive/zero/negative

SCV). Bottom row: as top row but for the MLG 2/m. (e), (f) Depict
ωx

k,z and ω
y
k,z, respectively.

(Qν total heat current) [91]. α̃
γ
μν (� ) accounts for circu-

lating equilibrium currents that do not contribute to trans-
port [92]. As far as the intraband contribution is concerned, we
write

α
γ ,odd
μν,intra = 1

Γ TV

∑
n,k

Jγ

nk,μ
Qnk,ν

(
−∂ fnk

∂ε

)
(28)

and derive the MSNE vector

α
γ

MSNE ≡ 1

2Γ TV

∑
n,k

Jγ

nk × Qnk

(
−∂ fnk

∂ε

)

= − 1

2h̄Γ T (2π )3

∑
n

∫ ∞

−∞
dε(ε − μ)ωγ (ε)

(
−∂ fnk

∂ε

)

(29)

using Qnk = (εnk − μ) vnk, with chemical potential μ. The
SCV ωγ (ε) at energy ε is obtained from Eq. (13) by replacing
εF by ε. Overall, α

γ

MSNE and σ
γ

MSHE obey the Mott relation

α
γ

MSNE = − 1

T

∫ ∞

−∞
dε

(
−∂ fnk

∂ε

)
ε − μ

e
σ

γ

MSHE(T = 0, ε).

(30)

Thus, the symmetry restrictions on σ
γ

MSHE also apply to α
γ

MSNE
and, in particular, the MSNE is also related to the SCV.
Consequently, a nonzero MSHE implies a nonzero MSNE.

We now demonstrate the MSNE in magnetic insulators
in which ∇νT causes magnonic spin currents. Although the
Fermi-Dirac distribution fnk in Eq. (30) has to be replaced by
the Bose-Einstein distribution ρnk = (eβεnk − 1)−1, the chem-
ical potential has to be set to zero, and the charge current in

the definition of σ
γ

MSHE needs to be replaced by a particle
current to obtain correct units, the connection to the SCV
remains. Thus, our aim is to show explicitly the existence of a
magnonic SCV.

Inspired by the antiferromagnetic magnetic texture of the
kagome-lattice compound Mn3Sn, for which a MSHE was
demonstrated in Ref. [48], we consider the spin-wave exci-
tations of this texture. Assuming that the kagome plane is
not a mirror plane of a surrounding crystal, a minimal spin
Hamiltonian reads as [93]

H = 1

2h̄2

∑
〈i, j〉

(JSi · S j + D‖d̂ i j · Si × S j + Dz ẑi j · Si × S j ).

(31)

J > 0 and D‖ parametrize the antiferromagnetic exchange and
the in-plane Dzyaloshinskii-Moriya interaction [DMI; the unit
vectors d̂ i j are depicted in Fig. 8(a)], respectively. Dz > 0 is
the strength of out-of-plane DMI, with ẑi j = ±ẑ; the upper
(lower) sign is for (anti)cyclic indices i j.

The out-of-plane DMI Dz > 0 prefers the coplanar mag-
netic texture of Fig. 8(a) as the classical ground state over
the coplanar all-in–all-out configuration (our sign convention
is opposite to that in Ref. [93]). The corresponding classical
ground-state energy is independent of D‖ as long as |D‖/Dz|
is smaller than a critical value (otherwise a canted all-in–
all-out texture becomes the energetic minimum [93]). The
irrelevance of D‖ as far as the classical energy is concerned
imposes an accidental rotational degeneracy: the spins can be
rotated about the z axis without a classical energy penalty,
in particular by π/2 [Fig. 8(d)]. Since the two textures
belong to different magnetic point groups, Fig. 8(a) 2′/m′
and Fig. 8(d) 2/m, there seems to be a “classical” ambigu-
ity concerning spin transport. This ambiguity is lifted upon
performing linear spin-wave theory about the two classical
magnetic ground states. Following Ref. [94], we find that the
order-by-quantum-disorder mechanism (harmonic zero-point
fluctuations contribute to the ground-state energy) prefers
texture Fig. 8(a) over Fig. 8(d). Nonetheless, it is instructive
to study the SCV for both textures to appreciate the effect of
magnetic point-group symmetries (details of the linear spin
wave theory calculation are given in the Appendix).

We concentrate on low energies because these are most rel-
evant when accounting for thermal occupation (Bose-Einstein
distribution). The SCVs ωx

k,z and ω
y
k,z of the lowest magnon

band in the vicinity of the Brillouin zone center are given for
the MLG 2′/m′ in Figs. 8(b) and 8(e) as well as for the MLG
2/m in Figs. 8(c) and 8(f).

Inspection of Figs. 8(b) and 8(f) tells that for each state
k there is a state k′ with the same energy but with opposite
SCV (ε1,k = ε1,k′ , ω

γ

1,k,z = −ω
γ

1,k′,z), a symmetry also found
in the Rashba model (Sec. IV B). Irrespective of the dis-
tribution function, the local contributions to the integrated
ω

γ
z (ε) [Eq. (29)] cancel out: αx,(a)

xy = 0 for the 2′/m′ texture

and α
y,(a)
xy = 0 for the 2/m texture. In contrast, the SCVs in

Figs. 8(c) and 8(e) do not exhibit such an antisymmetry and
thus have nonzero integral: α

y,(a)
xy 	= 0 for the 2′/m′ texture

and αx,(a)
xy 	= 0 for the 2/m texture. These findings agree with
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the 2 × 2 xy subtensors of σ x,(a) and σ y,(a) for both MLGs
(Table I):

α
x,(a)
2′/m′ =

(
0 0
0 0

)
and α

y,(a)
2′/m′ =

(
0 α

y
xy

−α
y
xy 0

)
, (32a)

α
x,(a)
2/m =

(
0 αx

xy
−αx

xy 0

)
and α

y,(a)
2/m =

(
0 0
0 0

)
. (32b)

One could expect a finite αz
xy for 2/m, as is the case for the

electronic Rashba model studied in Sec. IV B. For the texture
has no out-of-plane component and the magnon spin is defined
with respect to the spin directions offered by the ground-state
texture (Ref. [95] and Appendix), this component cannot be
captured within the present framework. One may regard this
a shortcoming of the definition of magnon spin that has to be
treated in the future.

V. DISCUSSION

As known from the Barnett effect [96], a rotating magnetic
object is magnetized due to the coupling of angular velocity
and spin. Similarly, the vorticity of a fluid couples to spin.
Such effects are studied, for example, in nuclear physics [97]
or in the context of spin hydrodynamic generation [98–101].
Concerning the latter, spin currents brought about by the
vorticity of a confined fluid generate nonequilibrium spin
voltages. These examples have in common that a vorticity
of a fluid in real space is involved. In contrast, the SCV
studied here “lives” in momentum space. To put the SCV into
a wider context, we show that the concept of vorticity is tightly
connected to extrinsic contributions to Hall effects.

Within semiclassical Boltzmann transport theory (e.g.,
Ref. [102]) the extrinsic skew scattering contribution to the
AHE is given by

σskew
AHE = 1

2V

∑
nk

Jnk × Λnk

(
−∂ fnk

∂ε

)
, (33)

for which an AHE vector is constructed similar to the MSHE
vector in Eq. (10). For a small electric field and a linearized
Boltzmann equation, the vectorial mean-free path Λnk is ob-
tained from [102]

Λnk = 1

Γnk

⎛
⎝vnk +

∑
n′,k′

Pn←n′
k←k′ Λn′k′

⎞
⎠. (34)

Γnk = ∑
k′ Pn′←n

k′←k is the relaxation rate and Pn←n′
k←k′ is the scat-

tering rate from a state (n′, k′) into a state (n, k). The same
steps that lead to the SCV yield

σskew
AHE = −e

2h̄(2π )3

∑
n

∮
εn=εF

v̂nk × Λnk dS (35a)

= −e

2h̄(2π )3

∑
n

∫∫∫
εn�εF

∇k × Λnk d3k (35b)

for zero temperature and Jnk = −evnk. ∇k × Λnk is the vortic-
ity of the mean-free path. This means that a scattering process
contributes to the AHE if it causes a vorticity in the mean-free
path; the latter is brought about by the scattering-in terms
[sum in Eq. (34)]. To capture the skew scattering contributions

to the AHE, the scattering-in terms have to be taken into
account since one finds σskew

AHE = 0 if these terms are neglected
(e.g., in relaxation time approximation Λnk = vnk/Γnk). This
reasoning complies with established results for the AHE [22].

A skewness of the scattering is not necessary for a nonzero
SCV, for the latter may be nonzero even in case of a constant
relaxation rate Γnk = Γ (this is the case considered so far). If
the relaxation rate depends on momentum, one can still write
the MSH conductivity in the form of Eqs. (12) and (13) but
with a renormalized SCV

ω
γ

nk

Γ
→ ω̃

γ

nk = 1

Γnk
ω

γ

nk − Jγ

nk × ∇k
1

Γnk
. (36)

The original SCV ω
γ

nk can hence be considered the backbone
of the MSHE, on top of which come corrections from a
momentum-dependent relaxation time, skew scattering, and
side jump. Future theoretical work may address the MSHE
within a quantum kinetic approach for spin- 1

2 particles, taking
into account spin-dependent scattering to quantitatively deter-
mine which contributions dominate in actual compounds like
Mn3Sn [48].

In order to avoid the ill definition of spin current, the
authors of Ref. [48] considered the MSHE in terms of spin
accumulation rather than of spin current responses. Such a
reasoning fits to present experiments in which spin accumu-
lations rather than spin currents are measured. Nonetheless,
the observed spin accumulations may arise from two contribu-
tions: a local production (as for the Edelstein effect [103,104])
and a transport of spins from the bulk toward the edges of the
sample.

Compared to the spin current operator Jγ , the velocity
does not appear in the time-reversal odd spin operator sγ .
Replacing Jγ by sγ in the Kubo formula implies then that the
time-reversal odd and even parts change roles; consequently,
spin accumulations brought about by the MSHE appear in the
intrinsic part [48] and stay finite for Γ → 0. The latter finding
is to be contrasted with the present theory which predicts a
divergence of the bulk spin current in this limit [Eq. (8)].
This variance in one and the same limit suggests that the
two underlying mechanisms are fundamentally distinct. To
disentangle their relative contribution, we propose that future
experiments may clarify the role of relaxation processes when
taking the clean limit.

VI. CONCLUDING REMARKS

Invoking the constant relaxation time approximation, we
identified spin current vortices in the Fermi sea as origin of
the MSHE. Spin current whirls in reciprocal space provide not
only a vivid interpretation of the MSHE, but also corroborate
that the MSHE has a bulk contribution. Future investiga-
tions in which the importance of the bulk and the interfacial
contributions is considered could tell how to maximize the
MSHE signal. It goes without saying that, due to Onsager’s
reciprocity relation [105], the SCV also covers an inverse
MSHE, that is a transverse charge current caused by a spin
bias.

Having identified all magnetic Laue groups that allow for
spin current vortices, we demonstrated that any ferromagnet
potentially features an MSHE; furthermore, antiferromagnets
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whose MLG permits a magnetic toroidal quadrupole exhibit
an MSHE as well. Two pyrochlore models served as examples
(Sec. IV A) with magnetic textures exhibiting the multipole
associated with the MSH conductivities. To issue a caveat,
we note that compatibility with a magnetic multipole does
not necessitate the presence of the multipole. For example, a
completely compensated antiferromagnetic texture may still
exhibit symmetries that permit a magnetization, an obser-
vation that was appreciated in the context of the AHE for
both collinear [106] as well as noncollinear antiferromag-
nets [107–109]. To name two examples, the kagome magnet
discussed in Sec. IV C admits of a magnetization without
exhibiting a net moment, and the magnetic warped Rashba
model in Sec. IV B admits of magnetic toroidal quadrupoles
although the magnetic texture is collinear.

Aside from three-dimensional materials, in-plane magne-
tized Rashba 2DEGs with warping provide a playground for
investigating a MSHE. A feature they have in common with
Mn3Sn is the option to manipulate out-of-plane polarized spin
currents by rotation of the in-plane magnetic texture. The
magnetization provides thus an external means to engineer
spin accumulations.

Turning to magnons and replacing the electric field by a
temperature gradient, our approach supports that a MSNE is
expected but awaits experimental detection. The magnonic
MSNE extends the family of magnonic pendants of electronic
transport phenomena [110], and its potential for energy
harvesting and nonelectronic spin transport remains to be in-
vestigated. A candidate material for a proof of principle is the
ferromagnetic pyrochlore Lu2V2O7. It realizes the
magnonic version of the ferromagnetic pyrochlore model
of Sec. IV A [111] and is known for a thermal Hall
effect [112,113] and for Weyl magnons [114]. For a
magnetization and temperature gradient along the [001]
direction, we expect magnon-mediated accumulations of
magnetic moments, in analogy to the spin accumulations
shown in Fig. 1.
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APPENDIX: LINEAR SPIN WAVE THEORY

We provide some background information on the results
presented in Sec. IV C. The directions ẑi of the spins in
the classical ground state define a local coordinate system
{x̂i, ŷi, ẑi}. After a (truncated) Holstein-Primakoff transforma-
tion [115]

Si

h̄
≈

√
S

2
[(ψi + ψ

†
i )x̂i − i(ψi − ψ

†
i )ŷi] + (S − ψ

†
i ψi )ẑi,

(A1)

from spin operators to bosonic creation and annihilation oper-
ators (ψ†i and ψi), the bilinear Hamiltonian reads as

H2 = 1

2

∑
k

Ψ †kHkΨ k (A2)

after a Fourier transformation. The vector

Ψ †k = (ψ†1,k, ψ
†
2,k, ψ

†
3,k, ψ1,−k, ψ2,−k, ψ3,−k ) (A3)

comprises the Fourier-transformed bosonic operators ψ
(†)
n,k

(n = 1, 2, 3 labels the basis atoms). The linear spin wave
kernel

Hk = S

2

(
Ak Bk

B†k A∗
k

)
(A4)

is built from the submatrices

Ak =
⎛
⎝4(

√
3Dz + J ) q1c1 q2c2

q∗
1c1 4(

√
3Dz + J ) q3c3

q∗
2c2 q∗

3c3 4(
√

3Dz + J )

⎞
⎠
(A5)

and

Bk =
⎛
⎝ 0 q4c1 q5c2

q4c1 0 q6c3

q5c2 q6c3 0

⎞
⎠, (A6)

with the k-dependent cosines

c1 = cos(aky), (A7a)

c2 = cos

(
a(

√
3kx − ky)

2

)
, (A7b)

c3 = cos

(
a(

√
3kx + ky)

2

)
. (A7c)

Since the classical ground state is (accidentally) degenerate
(the spins can be rigidly rotated within the xy plane without
energy cost), the qi (i = 1, . . . , 6) depend on the chosen
ground state.

Here, we consider two textures. The first texture, shown in
Fig. 8(a), is a representative of the MLG 2′/m′; its qi read as

q1 = −
√

3Dz + 2iD‖ + J, (A8a)

q2 = −
√

3Dz + iD‖ + J, (A8b)

q3 = −
√

3Dz − iD‖ + J, (A8c)

q4 = −(
√

3Dz + 3J ), (A8d)

q5 = −(
√

3Dz + 3iD‖ + 3J ), (A8e)

q6 = −
√

3Dz + 3iD‖ − 3J. (A8f)

The second, rotated texture, shown in Fig. 8(d), belongs to the
MLG 2/m,

q1 = −
√

3Dz + J, (A9a)

q2 = −
√

3Dz −
√

3iD‖ + J, (A9b)

q3 = −
√

3Dz −
√

3iD‖ + J, (A9c)

q4 = −
√

3Dz + 2
√

3iD‖ − 3J, (A9d)

q5 = −(
√

3Dz +
√

3iD‖ + 3J ), (A9e)

q6 = q5. (A9f)
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Next, we diagonalize the bilinear Hamiltonian

H2 = 1

2

∑
k

Φ†kEkΦk. (A10)

Ek = diag(ε1,k, ε2,k, ε3,k, ε1,−k, ε2,−k, ε3,−k ) contains
the eigenvalues, and Φk = (Φ1,k, Φ2,k, Φ3,k, Φ

†
1,−k,

Φ
†
2,−k, Φ

†
3,−k ) is a linear combination of the old bosonic

operators

Φ†k = Ψ †kT †k. (A11)

T k diagonalizes Hk and retains the bosonic commutation rules

T †k Σ T k = Σ, Σ = diag(1, 1, 1,−1,−1,−1). (A12)

This procedure follows Ref. [116].
The expectation value of the magnonic spin current of the

nth band is defined as [117]

Jγ

nk,μ
= 1

2
T †k

(
vk,μ Σ sγ + sγ Σ vk,μ

)
T k|n,n, (A13)

in which vk,μ = h̄−1∂Hk/∂kμ is the velocity operator and
sγ = diag(ẑγ

1 , ẑγ

2 , ẑγ

3 , ẑγ

1 , ẑγ

2 , ẑγ

3 ) contains the γ = x, y, z co-
ordinate of the local spin directions for the ground state.
The magnonic SCV ∇k × Jγ

nk is computed numerically;
cf. Fig. 8.
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