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Universal phase diagram of topological superconductors subjected to magnetic flux
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We perform a theoretical study of the orbital effect of a magnetic field on a proximity-coupled islands array
of px + ipy topological superconductors. To describe the system, we generalize the tight-binding model of
the Hofstadter butterfly to include the effect of the superconducting islands. The quantum Hall topological
phases, appearing in the absence of superconductivity, are characterized by integer fermionic Chern numbers
corresponding to the number of occupied bulk Landau levels. As the strength of the superconducting pairing
increases a series of transitions occurs, with one less chiral Majorana edge mode at each consecutive phase,
leading to a reduction of the fermionic Chern number by a half. When the pairing potential exceeds the
tight-binding model bandwidth, Cooper pairs are localized in the islands, the Chern number is zero, and there
are no low-energy edge modes. We identify domains in the model’s parameter space for which the system is
topological and supports an odd number of chiral Majorana edge modes. While the precise shape of the domains
depends on the details of the model, the general structure of the phase diagram is robust, and it is obtained
numerically and in several simplified traceable analytical models. We discuss the relevance of this study to
recent experimental research of two-dimensional superconductor arrays on semiconductor systems.
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I. INTRODUCTION

Low-dimensional topological superconductors (SCs) have
been the subject of vast interest recently [1,2]. That is because
they constitute a novel form of quantum matter, and also
because they may support Majorana zero modes, which are
germane for non-Abelian topological quantum processing [3].

A time-reversal symmetry breaking topological supercon-
ductor is realized when an odd number of energy bands, which
are not spin degenerate, are unstable to the creation of Cooper
pairs, while the other bands are gapped. This may be obtained
by the proper combination of materials that have strong spin-
orbit coupling, are proximity coupled to a superconductor,
and break time-reversal symmetry by internal magnetic phe-
nomena [4,5] or external application of a magnetic field [6,7].
Several realization schemes for topological superconductivity
have been put forward in two spatial dimensions [4,8–12].

Application of an external magnetic field affects electrons
both through the orbital degrees of freedom and through
the Zeeman term coupled to the spin. For systems with a
large g factor the latter is more significant, especially when
the magnetic field is parallel to the wire’s axis in the one-
dimensional (1D) case [13] or to the system’s plane in the two-
dimensional (2D) case. However, when the magnetic field is
applied perpendicular to a two-dimensional system, we expect
an interesting interplay between the (quantum) Hall effect
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[14–16] and the emergence of topological superconductivity,
decorated by vortices induced by the perpendicular field.

To access this interplay, we study a tight-binding model
which gives rise to Hofstadter-butterfly physics [17,18], with
proximity coupling to an array of SC islands (see Fig. 1).
Whereas the parts that are not covered by the SC are expected
to be susceptible to an external gate potential, sites that
are in proximity to the SC islands are less sensitive to the
gate potential but are coupled via a pairing potential. This
setup, inspired by a recent experiment [19], enables proximity
effects together with tunability of the chemical potential.

The phase of the SC order parameter is assumed to be
constant inside each island. This is a good approximation as
long as the flux per plaquette � is much smaller than the flux
quantum �0 = h/e, since in this regime the SC phase does
not wind inside an island. To establish the regime of validity
of this approximation, we note that the flux piercing an island
of size L × L when applying a perpendicular magnetic field
B is �/�0 = B[T](L[nm])22.4 × 10−4. Typically a magnetic
field of the order of 1 T is required to get a substantial Zeeman
splitting and tune into the topological SC phase, so L must be
smaller than ∼ 64 nm. We note that in such small sizes the
Coulomb energy of an isolated island may be large; however,
if the island is thick and the effective coupling between the
islands is strong, this effect may be neglected [20], as is done
throughout this paper.

The system we investigate may be viewed as the super-
conducting generalization of Hofstadter’s model. In addition
to the known commensurability effects which are related to
the magnetic unit cell, here the geometry of the superlattice
plays a role. Namely, in addition to the unit plaquette there is
also a SC unit plaquette (see Fig. 1). The orbital effect of the
magnetic field modifies the state of the SC, and therefore the
ground-state phase configuration of the SC order parameter is
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FIG. 1. Illustration of the islands array. A three-dimensional
(3D) view is shown in the left panel and a top view (of a part of the
system) is depicted in the right panel. Superconductivity exists only
in the red squares. In the right panel blue circles denote lattice sites
of a tight-binding model of the system. Nearest-neighbor hopping is
allowed and uniform throughout the entire lattice. Inside each island,
the phase of the superconducting order parameter is approximately
constant and its direction is illustrated by an arrow. The magnetic flux
per plaquette is �, and the flux per SC plaquette is �SC, as illustrated
by the gray squares. We define the parameters g = �

h/e which is

the flux per unit plaquette and f = �SC
h/2e which is the flux per SC

plaquette. In the geometry depicted here, f = 8g (see Appendix B).

not uniform. We find this phase configuration numerically and
also by drawing an analogy to the simpler, exactly solvable
frustrated XY model [21].

Our model describes a px + ipy SC, with an application
of a nonzero perpendicular magnetic field. Besides being
interesting on its own merit, this model has experimental
relevance as the orbital effects are almost inevitable [22]. The
magnetic field may induce vortices in the SC (or between
the SC islands); since the px + ipy SC can be tuned into a
topologically nontrivial phase (i.e., one that supports chiral
Majorana edge modes), a Majorana bound state is expected to
reside at the core of each vortex. In the effective low-energy
description of the system, the matrix elements between the
Majorana bound states at close vortices are nonzero. The
coupling between them may give rise to a chiral Majorana
mode at the edge of the whole sample.

In this manuscript, we show that Majorana edge modes
indeed appear, and the system can be driven into a global topo-
logical phase, by the application of an external perpendicular
field. This is formally shown in Sec. II by calculating the topo-
logical invariant of symmetry class D in two dimensions—the
Chern number [23–25] N , which is by definition equal to
the number of chiral Majorana edge modes. When this Chern
number is even, two Majorana modes can pair up to form one
fermion edge mode, and the Chern number N /2 is similar
to that of the integer quantum Hall effect. However, when
the Chern number is odd, one unpaired Majorana edge mode
exists, and the system enters the topological superconducting
state.

Our main result is the phase diagram shown in Fig. 2,
where the parameter space includes substantial regions with
odd Chern number. This diagram exhibits a series of quantum
Hall transitions, where the Chern number N jumps in steps of
two, as we sweep the chemical potential keeping the pairing
potential � = 0. At finite � the jumps split to two “Majorana
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FIG. 2. Chern number phase diagram for f = 1
2 flux quantum

per superconducting plaquette, as a function of the chemical potential
μ and the induced SC pairing potential �. The colors indicate the
Chern number: Dark colors represent odd Chern numbers whereas
light colors (with white dots) represent even Chern numbers. At
small � and at large � the system is in a trivial phase (having an
even Chern number), whereas for some regions of intermediate �

the system can be driven into a topological SC phase (having an odd
Chern number) by tuning μ. Finite � splits the normal transitions,
which are twofold jumps of the Chern number, thereby creating
slivers of odd Chern number. Regions of small energy gap (smaller
than the level spacing given by the bandwidth t divided by the total
number of sites) are shaded. (Inset) Focus on one of the transitions,
showing the splitting of the 8 → 6 transition by finite �, such that
all the intermediate Chern numbers between 0 and 8 appear.

transitions” in which the Chern number changes by one. At
large � the system becomes topologically trivial, which we
attribute to the localization of Cooper pairs in islands.

We then turn to examine the universal features of the
phase diagram in Sec. III. We show that even though the
system under study is very rich and complex, and depends
on many parameters, its phase diagram shares many generic
features with the phase diagrams of much simpler models.
The fact that the SC pairing potential is staggered is found in
Sec. III A to be important to yield zero Chern number for large
pairing potential. The universal properties are understood by
considering the symmetries of such models, which depend
(for a fixed external field) on two parameters, e.g., p1 and
p2, the analogs of � and μ. When p1 = 0, a sweep of p2

induces transitions between even Chern numbers in steps of
two. Relieving the constraint on p1 splits the transitions, and
exposes regions with odd Chern numbers. As p1 increases the
Chern number decreases in unit steps until it vanishes for large
p1, making the system topologically trivial. To elucidate these
features, we study a simplified version of the 2D model in
Sec. III B, and a generalization of Kitaev’s chain model [26]
in Sec. III C. These two models yield phase diagrams which
are similar to that of the full 2D model (see Figs. 7 and 8).

We conclude with a discussion of the main results of the
paper. We comment on possible realizations of the effec-
tive p-wave pairing we have assumed here in systems with
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spin-orbit coupling, and ways to detect the topological phase
using heat transport.

Details of the calculations are relegated to the following
Appendixes. In Appendix A we provide additional details on
the numerical approach used to find the ground-state phase
configuration. In Appendix B we elaborate on the geometrical
properties of the superlattice. In Appendix C we review the
method used to calculate the Chern number in real space. In
Appendix D we present several additional numerical results in
the 2D system to support our main results.

II. ANALYSIS OF THE SYSTEM

A. Model

We introduce the following tight-binding Hamiltonian for
single-species fermions on a two-dimensional square lattice,
with superimposed px + ipy SC islands:

H = − μ
∑
m,n

c†m,ncm,n

+
[
−t

∑
m,n

(
c†m,ncm+1,n + e−2π im �

�0 c†m,ncm,n+1
)

+ �
∑

j∈islands

eiθ j
∑

m,n∈ jth island

(cm,ncm+1,n

+icm,ncm,n+1) + H.c.

]
. (1)

Here c†m,n, cm,n are creation and annihilation operators of
fermions in the lattice site labeled by (m, n), whose loca-
tion is a(mx̂ + nŷ) where a is the lattice constant; μ is
the chemical potential; t is the hopping amplitude between
nearest-neighboring sites; � is the flux per unit plaquette,
which enters the Hamiltonian via the Peierls substitution [27]
using the Landau gauge �A = �xŷ/a2; � is the magnitude of
the induced superconducting pairing potential; and θ j is the
phase of the superconducting order parameter in the jth island,
which is approximately constant inside the island.

The Hamiltonian can be brought to the Bogoliuobv–de-
Gennes (BdG) form by defining the Nambu spinor,

� = (
c1,1, c1,2, . . . , c2,1, . . . cNx,Ny , c†1,1, . . . , c†Nx,Ny

)T
, (2)

and writing

H = �†HBdG�,

HBdG =
(

H0 H�

H†
� −HT

0

)
, (3)

where H0 corresponds to the normal μ, t terms and H� =
−HT

� corresponds to the SC terms. HBdG has particle-hole
symmetry {HBdG,�} = 0 with � = τxK, where τx is a Pauli
matrix acting in particle-hole space and K is complex conju-
gation. The magnetic field and the chiral p-wave pairing terms
break time-reversal symmetry [HBdG,K] �= 0, placing HBdG

in symmetry class D with a Z topological invariant [23–25].
In the Hamiltonian Eq. (1), the phases {θ j} are treated as

parameters. In reality, due to the interaction between the SC
and the magnetic field, the ground-state configuration of these

phases should be determined in a self-consistent way. This
can be done numerically, as elaborated in Appendix A. Due
to the computational complexity of this method, we employed
a simpler, approximate way to obtain the ground-state phase
configuration. We are drawing an analogy between the current
system and the two-dimensional frustrated XY model [21]—a
classical theory of U (1) spins with a nearest-neighbor ex-
change interaction in the presence of a gauge field. Our model
is composed of an array of Josephson junctions, and therefore,
upon integrating out the fermionic degrees of freedom, the
low-energy effective theory for the bosonic SC phases {θ j}
has the same symmetry properties as the frustrated XY model.
The effective flux per SC plaquette f = �SC

h/2e is related to

the actual flux per plaquette g = �
h/e by geometric factors

(see Appendix B for elaboration); concretely, f = 8g for the
geometry of Fig. 1. We therefore substitute the known ground
state of the frustrated XY model [28] with flux f as the phase
configuration of our system.

B. Chern number

Having established the ground-state configuration, we shall
henceforth treat the phases {θ j} in Eq. (1) as fixed parameters
and study the properties of the resulting Hamiltonian. A direct
way to classify the topological properties of the system is
calculating the Z topological invariant—the Chern number
[23–25]. Upon casting the Hamiltonian in BdG form, the
Chern number N counts the number of chiral Majorana
modes at the edge of the sample; an odd Chern number
therefore corresponds to an unpaired chiral Majorana edge
mode, which constitutes a non-Abelian phase of matter.

The Chern number may be calculated in momentum space
[29] or in real space [30,31]. In this work we used a real-space
calculation, since it is computationally more efficient and
numerically robust (the details of the real-space calculation
are explained in Appendix C). In particular, since the SC
phases vary in space, going to momentum space is not very
beneficial. All numerical calculation schemes are prone to
finite size or resolution effects; we minimized these by using
large enough systems such that in the absence of supercon-
ductivity (i.e., � = 0) we obtained the known Chern numbers
for the original Hofstadter model [32]. We then scanned the
parameter space by varying μ and � (t is held constant, fixing
the energy scale), and calculated the Chern number for each
set of parameters. The resulting phase diagram for f = 1

2 is
shown in Fig. 2.

Several important features appear in the phase diagram
Fig. 2. At � = 0 we recover the original Hofstadter model,
which gives a series of twofold transitions of the Chern
number as a function of μ. Recall that in the BdG form, the
Chern number counts the number of Majorana edge modes,
so a Chern number C in the Hofstadter model becomes a BdG
Chern number N = 2C. The region of interest is intermediate
�, where a topological phase (odd Chern number) is stabilized
in large areas of the parameter space, making it robust to small
fluctuations in the parameters.

At large � the Chern number tends to zero. The reason
for this is the island structure, namely that the SC covering is
partial. For large �, such a structure gives rise to localized
pairs which only realize a topologically trivial phase. This
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argument is further supported in Sec. III A, where we study
the effect of SC staggering analytically.

In order to complement the Chern number phase diagram
we examined the energy gap as a function of μ and � (see
Fig. 10 in Appendix D), and found that near μ = 0 and at
finite � the system becomes gapless. This is because for
μ = 0 and � = 0 the system undergoes a transition of a large
Chern number difference, resulting in a very small gap. Finite
� then mixes the states near μ = 0, resulting in a gapless
state. Notice that the Chern number is ill-defined in such a
gapless state, so the area of the phase diagram close to μ = 0
is unreliable. The method we used to calculate the Chern
number always yields an integer, as the system is finite so
a gap always exists; however, this integer number has no
real physical meaning. Therefore, in Fig. 2 we shade regions
where the energy gap is smaller than the finite-size level
spacing, estimated by the tight-binding bandwidth t divided
by the total number of sites. For completeness we show
the Chern numbers of these regions in the phase diagram,
although the true behavior there is metallic.

C. Robustness to flux

We now turn to test the dependence of the above results
on the magnetic flux threaded through the system. Up to this
point the flux was f = 1

2 flux quantum per SC plaquette; we
shall now examine two additional test cases, f = 2

5 and f = 1
3

(corresponding to g = 1
20 and g = 1

24 , respectively), which
give rise to simple enough unit cells that allow numerical
investigations. The Chern number phase diagrams for these
two values of the flux are shown in Fig. 3.

These phase diagrams are similar to the one obtained
for f = 1

2 (see Fig. 2). The effect of small �—splitting of
the twofold transitions—persists. The effect of very large
�—destroying the topological phase—persists as well. The
specifics do depend on the flux; in particular, the number of
different phases at � = 0 varies. Nevertheless, the general
behavior appears to be flux independent.

Remarkably, it seems that regardless of f , substantial areas
of odd Chern number are formed in the parameter space at
intermediate values of �. We have shown this behavior for
three values of f . The generic pattern we observed suggests
that by tuning μ and �, a topological phase can be stabilized
for various values of f .

III. UNIVERSALITY OF THE PHASE DIAGRAM

Having calculated the phase diagrams in the previous
section, we next wish to understand their generic properties.
Some details vary between different values of f , for exam-
ple, the shape of the boundary between different topological
phases, the value of the gaps and the available Chern numbers
of the phase diagram are not identical (see Sec. II and Figs. 2
and 3). However, we find three features appearing in all cases:
(i) For large pairing potential � the system always becomes
trivial. (ii) For � = 0 the Chern numbers are even; as we
change μ, twofold jumps of the Chern number occur at the
transitions between the phases. (iii) As we increase � for fixed
μ, successive transitions occur with mostly a reduction, and
sometimes an increase, of the Chern number by one in each
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FIG. 3. Chern number phase diagrams as a function of the chem-
ical potential μ and the induced SC pairing potential �, for flux per
SC plaquette (a) f = 2

5 and (b) f = 1
3 . Both diagrams share their

generic features with these of Fig. 2 which was obtained for f = 1
2 .

Substantial areas of odd Chern number, indicating a topological
SC phase, can be seen at intermediate values of �. Regions of
small energy gap (smaller than the bandwidth t divided by the total
number of sites) are shaded. For display purposes, we used linear
interpolation between the sampled points.

transition, until we reach the trivial phase with zero Chern
number.

Motivated by these observations, we argue in this section
that these features are universal and are shared also by other
models with staggered �. To demonstrate this, we analyze
simplified models in both one and two dimensions that can
be treated semianalytically.

We first show that when turning off the magnetic flux in
the islands model, the system becomes topologically trivial for
large �. We attribute this feature to localization of the Cooper
pairs in regions with large pairing potential. We show that in a
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simplified model of the 2D system that includes the magnetic
flux, where the SC phase configuration can be approximately
derived, the universal features appear in the phase diagram.

The observation regarding localization of Cooper pairs
applies also in one dimension, as we show analytically. This is
demonstrated by analyzing a generalized one-dimensional Ki-
taev model with staggered pairing potential. To obtain a sys-
tem with large Chern numbers in one dimension, we cascade
several of these staggered Kitaev chains. The resulting system
is still one dimensional, as the number of chains is kept finite.
The system belongs to symmetry class BDI, which means it
possesses a Z topological invariant [23–25,33], just like the
two-dimensional class D system we studied in Sec. II. We use
this analogy to engineer a system with the same pattern of
topological transitions as the full 2D system, by judiciously
controlling the coupling between the Kitaev chains.

A. The effect of staggered SC

We consider a generalization of Kitaev’s chain model [26],
which is described by the Hamiltonian,

HK = − μ

N∑
j=1

c†j c j +
N−1∑
j=1

(−tc†j c j+1 + � jc jc j+1 + H.c.),

(4)

where c†j creates a single-species fermion at the jth site of the
1D lattice, μ is the chemical potential, t is the (real) nearest-
neighbor hopping amplitude, and � j is the SC p-wave pairing
potential between sites j and j + 1. When � j is uniform, i.e.,
� j = � for all j, the model [26] supports a topological phase
with Majorana end modes for |μ| < 2t for any � �= 0.

Consider now a staggered SC version of this model, where
the pairing potential takes the values � j = � for odd j and
� j = 0 for even j, as illustrated in Fig. 4(a). In momentum
space, this modulation corresponds to an enlarged unit cell:

Hst(k) =
(

H (0)
st (k) H (SC)

st (k)

H (SC)†
st (k) −H (0)

st (k)

)
, (5)

with

H (0)
st (k) =

( −μ t (1 + e−ik )
t (1 + eik ) −μ

)
, (6a)

H (SC)
st (k) = 1

2

(
0 �

−� 0

)
(6b)

(we take the lattice constant to be unity). By analyzing the
Pfaffian [26] of the Hamitlonian Hst(k) at k = 0, π we find
that the topological phase appears for μ2 + ( �

2 )
2

< (2t )2;
see the ellipse in Fig. 4(b). This means that SC staggering
limits the range of � values for which the topological phase
survives, reminiscent of the result obtained for the original
2D system. Indeed, this staggered SC configuration can be
thought of as the 1D analog of the SC islands configuration
we studied in the 2D case. The above result is in sharp contrast
with the uniform SC case, where the phase boundaries do not
depend on �, provided it is nonzero.

In order to further establish the effect of a staggered SC,
we also studied a simple 2D model where a similar phe-
nomenon occurs. Consider the px + ipy model on a square
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FIG. 4. The effect of SC staggering on the topological phase
diagram of the 1D Kitaev chain model. (a) Illustration of the model.
Hopping exists between all nearest neighbors, and pairing only exists
in every second bond. (b) The phase diagram shows the sign of
the Pfaffian (which equals +1 for the trivial phase and −1 for a
topological phase, with a Chern number +1 or −1) multiplied by
the energy gap as a function of the chemical potential μ and the SC
pairing potential �. The phase boundary is marked in a black dashed
line for clarity, and we set a cutoff scale for the energy gap so the
important details are clear. The staggering of the SC limits the range
of � in which the system is in the topological phase.

lattice where the SC only exists in islands as illustrated in
Fig. 5(a). This is a simplification of the model we started
with to the case of zero magnetic flux. For simplicity we
choose each island to contain four sites (two along the x
direction and two along the y direction). The topological
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FIG. 5. The effect of SC staggering on the topological phase
diagrams of the 2D px + ipy SC. (a) Illustration of the model.
Hopping exists between all nearest neighbors, and pairing only exists
in islands. (b) The phase diagram shows the sign of the Pfaffian
(which equals +1 for the trivial phase and −1 for the topological
phase) multiplied by the energy gap, as a function of the chemical
potential μ and the SC pairing potential �. As in the 1D case (see
Fig. 4), the staggering of the SC limits the range of � in which the
system is in the topological phase.
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x

y

B

FIG. 6. Illustration of the stripes system (top view) described in
Eq. (7). Blue circles denote lattice sites in the tight-binding model,
and p-wave superconductivity is introduced only on the red areas.
A magnetic field B is applied perpendicular to the system’s plane.
The ground-state phase configuration of the SC in this model may be
analytically approximated [see Eqs. (9a) and (9b)].

properties of the system may then be analyzed by the Pfaffian
of the Hamiltonian at the time-reversal invariant momenta
(kx, ky) = (0, 0), (0, π ), (π, 0), (π, π ). The phase diagram
for this model is shown in Fig. 5(b), and it exhibits similar
features to those of the 1D model. In particular, the range of �

supporting the topological phase is limited, unlike the uniform
px + ipy case. We have further verified that in order to get this
effect, it is enough for � to be staggered in any way—islands,
stripes, or any other staggered patterns.

B. Semianalytical 2D model

Having established the importance of a staggered �, we
now introduce a 2D model with magnetic flux which can be
understood almost entirely from analytical considerations. We
consider a system of coupled SC stripes, with a constant per-
pendicular magnetic field (see Fig. 6). The virtue of this model
is that in the strongly anisotropic limit, where the stripes can
be treated independently, we can analytically determine the
ground-state SC phases.

The Hamiltonian takes the form,

H = − μ
∑
m,n

c†m,ncm,n

+
∑
m,n

[
txc†m,ncm+1,n + tyeiθP(m,n)c†m,ncm,n+1

+ �eiθ x
SC(m,n)cm,ncm+1,n(m mod 2)

+ i�eiθ y
SC(m,n)cm,ncm,n+1 + H.c.

]
. (7)

The jth stripe lies at m = 2 j − 1, 2 j. The Peierls phase in the
Landau gauge is θP(m, n) = −2π �

�0
m. In the ground state, the

gauge-invariant phase difference between every two SC bonds
is zero [34], yielding

θSC(�rb) − θSC(�ra) = 4π

�0

∫ �rb

�ra

�A · d�r. (8)

The θ x
SC phases reside at half-integer x and integer y (they

connect two adjacent sites along x), and vice versa for θ
y
SC.
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FIG. 7. Topological phase diagram for stripes model Eq. (7), as
a function of the chemical potential μ and the pairing potential �.
The parameters used are tx = ty = t = 1 and the flux is �/�0 = 1/6.
This phase diagram exhibits universal features (cf. Figs. 2 and 3
of the full numerical model): At � = 0 there are only even Chern
numbers which gradually decrease as μ is swept; at large � the
system becomes topologically trivial; intermediate � gives rise to
topological phases with odd Chern numbers. Regions of small energy
gap (smaller than the bandwidth t divided by the total number of
sites) are shaded.

Therefore, in our gauge choice, a reasonable configuration is
given by

θ x
SC(m, n) = −4π

�

�0
mn, (9a)

θ
y
SC(m, n) = −2π

�

�0
mn. (9b)

Unlike the more sophisticated model studied in Sec. II,
here the SC phase configuration is known. It is indeed an
approximation—each stripe is treated independently of the
others—but at least in the limit ty � tx it is sensible. Deter-
mining the phase configuration correctly is of paramount im-
portance: The phase diagram, and in particular the topological
regions, are extremely sensitive to the SC phases (this is also
demonstrated in Appendix D for the full model).

Armed with the phase configuration, we are in a position
to analyze the Chern number, just as was done in Sec. II.
The topological phase diagram for this model, as a function
of the chemical potential μ and the pairing potential �, is
shown in Fig. 7. The phase diagram shares the important
features mentioned in Sec. II B with the phase diagrams of
the full model (see Figs. 2 and 3). In particular, it displays
the crossover from the Hofstadter transitions at � = 0 to the
localized superconducting state at large �, passing through a
series of topological phases at intermediate �.

The stripes structure, chosen here for its simplicity, is not
special. We tested two additional variants of this semian-
alytical 2D model: one where the SC stripes are replaced
by SC islands, and one where the flux is only threaded in
the normal regions between the SC stripes. We have also
corroborated the results by applying different magnetic fluxes.
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FIG. 8. Topological phase diagram for the coupled staggered
Kitaev chains, as a function of the chemical potential μ and the cou-
pling strength w0. This specific system is composed of six coupled
chains, with hopping parameters �t = {1, 1, 2, 2, 3, 3} and μ0 = 0.01.
When the chains are decoupled, i.e., w0 = 0, the Chern number is
even, since the hopping parameters were chosen to be pairwise equal.
Finite w0 splits these transitions, much like � does in the full 2D case
(cf. Figs. 2, 3, and 7). Regions of small energy gap are shaded.

The phase diagrams in all of these variants are similar, and
most importantly they all share the features we refer to as
universal.

C. Stacking several staggered Kitaev chains

Let us now turn our attention to one dimension. Using
the staggered Kitaev chain Eq. (5) with � = μ as a build-
ing block, we present a way to construct a phase diagram
similar to the ones of the full 2D model shown in Sec. II.
This is achieved by stacking M staggered Kitaev chains,
each having a different hopping parameter t . In the absence
of coupling between the chains, we get independent Chern
number transitions at the μ values appropriate for each t j

( j = 1, . . . , M) and �. Since we want to mimic the behavior
of the full 2D system, we take an even number of chains and
choose their hopping parameters to be pairwise equal, i.e.,
{t1, t1, t2, t2, . . . , tM/2, tM/2}. This choice guarantees that in the
absence of interchain coupling, the Chern number may only
change by an even number at each transition.

Next, we introduce normal (non-SC) coupling of strength
w between neighboring chains. The role of this coupling is
similar to that of � in the 2D case: When turned on, it splits
the twofold Chern number transitions into single transitions,
where the Chern number changes by ±1. At large μ or large
w, the Chern number vanishes due to the SC staggering.
Qualitatively, we infer that this construction reproduces the
universal features we mentioned before.

In order to make the phase diagram of this model even
more similar to that of the original 2D system, we perform a
slight modification to w. A single staggered chain with μ = �

undergoes a transition of the Chern number from −1 to 1 at
μ = 0. Thus, our coupled system undergoes a transition from

−2M to 2M at μ = 0 without passing at zero Chern number.
Let us then choose w = w0/

√
μ + μ0, where w0 is the bare

coupling strength and μ0 is a small constant. This way, at
μ → 0 the actual coupling w becomes strong, thus driving the
Chern number to zero. This transformation, which can be seen
as a redefinition of the axes, gives rise to the phase diagram
shown in Fig. 8. The resulting phase diagram is similar to
the 2D phase diagrams shown in Figs. 2, 3, and 7. We
therefore conclude that this simple 1D model captures most
of the generic features of the complicated 2D models. This
observation supports the notion of universality in the phase
diagrams, which applies to systems related by dimensionality
and symmetry properties: class D in two dimensions and class
BDI in one dimension.

IV. DISCUSSION

In this paper, we studied the orbital effects of a magnetic
field on the topological properties of the px + ipy SC. Mo-
tivated by relevant experiments, we focused on a model of
SC islands arranged in a square lattice. After determining
the ground-state configuration of the SC, we derived the
topological phase diagram for different values of the magnetic
flux (see Figs. 2 and 3).

The tunable parameters in our model are the magnetic flux
�, the chemical potential μ, and the strength of the induced
SC pairing potential �. Our results suggest that for general
values of the flux, it is possible to tune into a topological phase
supporting Majorana edge modes by varying μ and �. The
regions in μ,� space supporting the topological phase are
substantial, so the parameters do not have to be extremely fine-
tuned.

Experimental detection of the Majorana edge modes can
be done by interference [35–37]. In addition, these Majorana
modes can be detected by measuring the heat conductivity,
which is expected to be a half-integer multiple of π2k2

BT/3h
in the presence of a chiral Majorana edge mode [38]. We also
note that in the model we analyzed, the islands are connected
by few sites, without any normal regions between them. The
universality of the phase diagram we found suggests that the
inclusion of normal regions between the islands, which exist
in several experimental realizations, may not alter the main
features of the phase diagram.

Our model should be understood as an effective descrip-
tion of a more complicated physical system. We assumed
the existence of an induced p-wave pairing potential and
single-species fermions. One can take a more microscopic
approach and study spinful electrons with spin-orbit coupling,
proximity coupled to an s-wave SC with an applied Zeeman
field, which can give rise to induced p-wave pairing. It is
also possible (at least numerically) to account for disorder,
which is not expected to have a drastic effect on the results
provided it is smaller than the energy gap. Likewise, our zero-
temperature study may be generalized to finite temperatures,
but as long as the SC gap is larger than the temperature, our
results are expected to hold qualitatively.

We also studied simplified, analytically solvable models
in one dimension and two dimensions which share common
features with the original 2D model. We found that the islands
structure (and more generally the staggering of the SC pairing
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potential) has a profound implication on the topological phase
diagram: Pair localization at large � drives the system away
from the topological phase. We showed that a model con-
sisting of coupled staggered 1D Kitaev-like chains exhibits
a topological phase diagram which greatly resembles those
of the original 2D model (see Fig. 8). These findings suggest
that several features of the phase diagram are shared by many
models. The results shed light on those obtained for the
original model, which relied mainly on numerics.

This notion of universality may also be viewed from a
general mathematical perspective. Consider a model with two
tunable parameters p1 and p2, such that at p1 = 0 the Chern
number has to be even. Assume further that at large |p1| and
|p2| the Chern number has to vanish, and that at p1 �= 0 the
generic behavior is onefold Chern number transitions. Under
such settings, it is almost impossible to construct a phase
diagram which is topologically distinct from those shown in
Figs. 2, 3, 7, and 8. We conclude that the phase diagrams
we found have universal features and may appear under very
general settings.
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APPENDIX A: DETERMINING THE GROUND STATE

The Hamiltonian Eq. (1) depends on all the islands’ phases
{θ j}. Here we describe a direct numerical method of finding
the ground-state configuration of {θ j}.

The system possesses a global U (1) symmetry, i.e., the
transformation θ j 	−→ θ j + γ for all j leaves the energy in-
variant for constant γ . Therefore, without loss of generality
we set one of the phases, say θ1, to zero. The Hamiltonian
thus depends on Nislands − 1 phases.

When writing the Hamiltonian in BdG form as in Eq. (3),
the many-body ground-state energy is given by the sum of all
negative eigenvalues of H , i.e.,

EMB =
2NxNy∑
n=1

En
(−En), (A1)

where 
(x) is the step function and En are the eigenvalues
of H . EMB is a function of {θ j}, and our goal is to find the
configuration of {θ j} that minimizes it.

We carried out the optimization in real space, using a
finite system with periodic boundary conditions. We used the
optimization algorithm “interior point” [39,40]. In order to in-
crease the probability of finding the global minimum point, we
used many random initial conditions for {θ j}. We compared
this numerical method and the known frustrated XY ground
states for several fluxes, and found that the configurations are
qualitatively similar. We note that the optimization is sensitive

Sx = 2

Sy = 3

Vy = 1

Vx = 3

FIG. 9. Geometrical meaning of the Si,Vi parameters. In this
example there are four islands, each containing Sx = 2 lattice sites
along the x direction and Sy = 3 sites along the y direction. The
different islands are separated by Vx = 3 normal plaquettes along the
x direction and Vy = 1 normal plaquettes along the y direction.

to the initial conditions, and many local minima exist, so
multiple runs are necessary in order to get a good agreement
with the results of the frustrated XY model. The numerical
optimization shows that the ground-state configurations of
the frustrated XY model are at least local minima of our
model.

APPENDIX B: GEOMETRIC RELATION
BETWEEN f AND g

Let us denote the number of lattice sites per dimension
per island by Si where i = x, y is the spatial dimension,
and the number of plaquettes separating adjacent islands per
dimension by Vi (see Fig. 9). Then, the area of a superlattice
unit cell is ASL = (Sx + Vx − 1)(Sy + Vy − 1), and the area of
a magnetic unit cell is AM = (Sx − 1)(Sy − 1). The flux per
magnetic plaquette is g = �

h/e and the flux per superlattice unit

cell is f = �SC
h/2e (see Fig. 1). The factor of 2e comes from the

fact that the relevant flux quantum for the superconductor is
that of Cooper pairs. The relation between f and g is thus

f = 2g
ASL

AM
= 2g

(Sx + Vx − 1)(Sy + Vy − 1)

(Sx − 1)(Sy − 1)
. (B1)

In the current study we used Sx = Sy = 2 and Vx = Vy =
1, yielding the relation f = 8g. The largest value of f we
investigated is 1

2 and therefore the largest value of g is 1
16 ,

so the approximation of a constant phase inside each island is
reasonable.

APPENDIX C: REAL SPACE CALCULATION
OF THE CHERN NUMBER

Here we review the method devised in Refs. [30,31] of cal-
culating the Chern number from the real space Hamiltonian.
Consider a 2D lattice with N = LxLy unit cells, and denote
their positions by �r = (x, y) where x, y are integers. Let us
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FIG. 10. Energy gap map (in units of the hopping amplitude t)
for f = 1

2 , as a function of the chemical potential μ and the SC
pairing potential �. To enable clear distinction between small values,
we set a cutoff scale at 0.07t . The “domes,” which are observed in
the phase diagram Fig. 2 as well, are gapped whereas the phases near
μ = 0 are gapless (or possess a small energy gap).

define twisted periodic boundary conditions by

ϕθ (x + Lx, y) = eiθx ϕθ (x, y),

ϕθ (x, y + Ly) = eiθyϕθ (x, y), (C1)

θ = (θx, θy),

where ϕm
θ (x, y) are the single-particle wave functions (m =

0, . . . , M − 1 where M is the number of electrons), which
are vectors in the space of inner degrees of freedom. The
many-body ground-state wave function �θ ({�ri}) is the Slater
determinant of the single-particle wave functions of the occu-
pied states, and the Chern number is given by

C = 1

2π i

∫
Tθ

dθ〈∇θ�θ | × |∇θ�θ 〉, (C2)

where Tθ is the torus 0 � θx, θy � 2π .
Going to momentum space, we denote by F m

θ (�k) the
Fourier components of ϕm

θ (x, y). The twisted boundary con-
ditions dictate the allowed momenta,

�k = �k(0) + �q,

�k(0) =
(

2πn

Lx
,

2πm

Ly

)
, where n, m ∈ Z, (C3)

�q =
(

θx

Lx
,

θy

Ly

)
.

Denoting F m
q (�k(0) ) ≡ F m

θ (�k), we note that the many-body

wave function in momentum space �q({�k(0)
i }) is just the

Slater determinant of F m
q (�k(0) ). Thus, upon substituting ∂θμ

=
L−1

μ ∂qμ
(here μ = x, y) we obtain an equation for the Chern

number:

C = 1

2π i

∫
Rq

dq〈∇q�q| × |∇q�q〉, (C4)

FIG. 11. Topological phase diagram for f = 1
2 flux quantum per

superconducting plaquette, as a function of the chemical potential
μ and the induced SC pairing potential �, for the case where the
SC phases are uniform. The phase diagram has the same “domes”
structure of the ground-state phase diagram (see Fig. 2), but it almost
does not support odd Chern number phases.

where Rq is the rectangle [0, 2π
Lx

] × [0, 2π
Ly

]. Using Stokes’
theorem, the above expression can be written as a winding
number along the boundary ∂Rq ,

C = 1

2π i

∮
∂Rq

d �q · 〈�q|∇q�q〉. (C5)

Next, we divide ∂Rq into Nq small line segments and replace
the derivatives and integral by their discrete counterparts to
obtain

C = 1

2π

Nq∑
α=0

arg[det(Cα,α+1)], (C6)

where Cm,n
α,α+1 = 〈F m

qα
|F n

qα+1
〉 are the coupling matrices and qα

are the endpoints of the small line segments.
If Lx, Ly � 1, i.e., we consider a sufficiently large system,

it is enough to take Nq = 4, corresponding to θ = 0 (i.e., just
the four corners of ∂Rq ). In this case we only need to deal
with quantities calculated for periodic boundary conditions.
Transforming the coupling matrices back to real space for
θ = 0 we obtain

Cm,n
α,α+1 = 〈

ϕm
θ=0

∣∣ei(�qα−�qα+1 )·�r∣∣ϕn
θ=0

〉
. (C7)

We may thus define the matrix C̃ = C0,1C1,2C2,3C3,0, diag-
onalize it to obtain the eigenvalues {λm}, and calculate the
Chern number:

C = 1

2π

M−1∑
m=0

arg λm. (C8)

If the Hamiltonian is written in the BdG form, this method
yields the BdG Chern number N .
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APPENDIX D: ADDITIONAL NUMERICAL
RESULTS IN THE 2D SYSTEM

We now present several additional results in the full 2D
system, described by the Hamiltonian Eq. (3). These results
were obtained numerically, and they support the arguments
given in Sec. II of the main text: the vanishing of the energy
gap near μ = 0 and the strong dependence of the topological
phase diagram on the SC phases.

Figure 10 shows the energy gap as a function of the model’s
parameters for f = 1

2 . Compared with the phase diagram
Fig. 2, it is evident that the topological phases are gapped. In

addition, this map makes the transitions of the Chern number
transparent—they are accompanied by a closing of the energy
gap.

Figure 11 shows the Chern number phase diagram for f =
1
2 , in the case where the SC phases are uniform, i.e., θ j = 0
for all j. This phase configuration is not the ground state due
to the presence of the magnetic field. Though it resembles
the true phase diagram Fig. 2 in its general shape, this phase
diagram does not support odd Chern number phases. This
observation emphasizes the role of the SC phases and the
vortices induced by the magnetic field.
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