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Spin transport in a one-dimensional quantum wire
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We analyze the spin transport through a finite-size one-dimensional interacting wire connected to nonin-
teracting leads. By combining renormalization-group arguments with other analytic considerations such as the
memory function technique and instanton tunneling, we find the temperature dependence of the spin conductance
in different parameter regimes in terms of interactions and the wire length. The temperature dependence is found
to be nonmonotonic in part of the parameter space. In particular, the system approaches perfect spin conductance
at zero temperature for both attractive and repulsive interactions, in contrast with the static spin conductivity. We
discuss the connection of our results to recent experiments with ultracold atoms and compare the theoretical
prediction to experimental data in the parameter regime where temperature is the largest energy scale.
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I. INTRODUCTION

The transport of spin, instead of electric charge, is the basis
of the field of spintronics [1]. Devices utilizing spin current
can potentially be made more compact and consume less
power than electronics devices. Some such devices are already
in use, including magnetic memories and magnetic field sen-
sors, and various new materials are currently investigated for
spintronics applications [2]. Spin transport has raised interest
also more generally, and has been probed for instance in
experiments with ultracold atoms. Trapping ultracold atomic
gases in optical potentials allows for studying the transport of
spin in highly controllable and tunable environments [3–9].
The internal states of atoms can be used to emulate the spin
degree of freedom.

Spin current is related in linear response to the application
of a magnetic field gradient. In the case of free particles, spin
current is perfectly conducted, with an infinite static conduc-
tivity, whereas interactions between particles in different spin
states lead to spin diffusion and to a finite spin conductivity.
For an infinite system, conductivities can be computed using
the Kubo formula [10]. For a mesoscopic system attached to
reservoirs, on the other hand, formalisms such as Landauer-
Büttiker [11–13] or its generalizations to interacting particles
[14] are usually employed. In this case, the relevant quantity
describing transport through the system is conductance. These
transport quantities are affected by the interactions between
particles. The effect of interactions on conductance has been
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studied in various settings, in particular for an interacting wire
connected to leads. In the case of a one-dimensional wire,
conductance is known to be independent of interactions in the
wire when the interactions are of the Tomonaga-Luttinger liq-
uid type [15–17]. Other similar situations include the charge
and spin transport through backscattering barriers [18,19]
and periodic potentials [20–24], and the case of Coulomb
interactions which lead to the formation of a Wigner crystal
[25–27].

A quantity related to conductance, spin drag, arises when
interactions between particles in different spin states lead
to a friction between the different spin components. Spin
drag is analogous to the Coulomb drag between electrons
[28], demonstrated in experiments with electrons in two two-
dimensional layers separated by a tunnel barrier. Spin drag
was proposed to occur when the layer degree of freedom is
replaced by the spin [29], and was observed experimentally
in a two-dimensional electron gas [30]. Spin drag reduces
the total spin current and is therefore relevant for spintronics
applications. In real materials, spin drag effects are screened
by relaxation mechanisms such as scattering from phonons
or impurities. Such mechanisms are not present in cold-atom
experiments and the damping of spin currents is solely due
to interactions. Spin drag has indeed been probed recently
also in experiments with cold atoms [4,5,31]. In particular,
a setup with a quantum point contact between two atom cloud
reservoirs was used to measure spin and particle conductances
and the spin drag [5].

Motivated by these recent transport experiments with ul-
tracold atoms [5,32], we consider a finite one-dimensional
quantum wire connected to leads. Given the one-dimensional
nature of the problem, spin and charge are decoupled, and
the charge sector is described by a Tomonaga-Luttinger liq-
uid (TLL) [33]. The charge conductance of a TLL wire
of finite length can be calculated exactly [15–17] and was
shown, in the case of noninteracting leads, to be equal to the
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FIG. 1. The one-dimensional wire is coupled to Fermi-liquid
(FL) leads, modeled by noninteracting 1D systems. The interacting
wire is described by the sine-Gordon (s-G) model, as discussed in
Sec. II C. The wire region has a finite length L whereas the leads
are infinite. In the leads, Kσ = 1 and y1⊥ = 0, corresponding to
noninteracting particles, and in the wire interactions lead to Kσ �= 1
and |y1⊥| > 0 (see Sec. II C).

conductance quantum. We consider here the case of spin
transport in such a wire. For the spin sector, the presence of
backscattering between opposite spins directly affects trans-
port even if the wire is perfectly invariant by translation. We
compute the spin conductance and spin drag as a function
of the interactions, the length of the wire, and temperature.
We discuss possible consequences for cold-atom experiments
and, in particular, compare our results to experimental data
which is available in the regime where temperature is the
highest energy scale [5]. We use renormalization group to
analyze the spin Hamiltonian in different parameter regimes,
defined in terms of the wire length, superfluid coherence
length, and thermal length. The temperature dependence of
the spin conductance in these different regimes is found by
perturbative calculations. One of the central results of the
paper, shown in Fig. 3, is a nonmonotonic dependence of the
spin conductance on temperature.

In the following sections, Sec. II introduces the micro-
scopic model and the effective low-energy field-theory de-
scription as well as the quantities used for characterizing spin
transport. Sections III to V discuss the spin conductance at
high, intermediate, and low temperature, respectively, based
on renormalization group analyses and perturbative calcu-
lations. Finally, Sec. VII summarizes the behavior of the
spin conductance in the different parameter regimes discussed
in Secs. III–V. Conclusions are presented in Sec. VIII and
technical details in the appendices.

II. MODEL

A. Interacting particles in a quantum wire

We consider a geometry where an interacting wire of finite
size L is connected to infinite, noninteracting leads on either
side, as shown in Fig. 1. We model Fermi-liquid leads as one-
dimensional noninteracting systems with the corresponding
parameters of the bosonized Hamiltonian (see Sec. II C). In
the related experiments [5,32], the particle reservoirs have
attractive interactions but are at a finite temperature. If the
temperature is above the spin gap, one can expect the effects
of pairing to be negligible, so that noninteracting leads are
a reasonable description. The leads enter the calculation of

the conductance only in the zero-temperature limit of Sec. V,
whereas at high and intermediate temperatures, as defined in
Sec. II D, only the finite length of the wire plays a role and
leads do not need to be considered explicitly.

B. Spin conductance and spin drag

The main quantities of interest in this study are the spin
conductance, spin conductivity, and spin drag. Conductivity
characterizes the linear current response to an external field—
an electric field in the case of charge conductivity and a
magnetic field gradient in the case of spin conductivity. Con-
ductivity, which measures the response in the thermodynamic
limit, is usually related to the conductance G of a wire of finite
length L as G = σ/L. In the case of two spin components,
the linear response relation for conductance can be written in
matrix form as(

I↑
I↓

)
=

(
G↑↑ �

� G↓↓

)(
�μ↑
�μ↓

)
. (1)

The differences in chemical potential across the wire are
denoted by �μ↑,↓ for spin-up and spin-down particles, and
the corresponding currents by I↑,↓. We denote the cross
conductance, or spin drag, by �. Physically, spin drag gives
the proportionality of a spin-down current to a voltage on
particles with spin up, or vice versa, whereas G↑↑(↓↓) gives the
proportionality of a current of one spin species to a voltage on
the same species. In a recent experiment, such spin-dependent
chemical potential differences were realized as different spin
population imbalances in two atom cloud reservoirs on either
side of a quantum point contact [5].

Instead of the transport of spin-up and spin-down particles,
we focus on the transport of the collective degrees of free-
dom, charge and spin, as discussed in the following section.
Conductance can be defined for charge and spin in terms
of the above quantities as Gρ,σ = (I↑ ± I↓)/(�μ↑ ± �μ↓).
Here, the upper sign refers to charge, denoted by ρ, and the
lower one to spin σ . The spin drag is now given by � = (Gρ −
Gσ )/2, and we evaluate the charge and spin conductances
using the bosonization description.

C. Bosonization

We consider a one-dimensional quantum wire of fermions
with contact interactions, described by the continuum Hamil-
tonian

H = − h̄2

2m

∑
s=↑,↓

∫
ψ†

s (x)
∂2

∂x2
ψs(x)dx

+ g1⊥
∫

ψ
†
↓ (x)ψ†

↑ (x)ψ↑(x)ψ↓(x)dx. (2)

Here, h̄ is the reduced Planck constant, m the particle mass,
g1⊥ the coupling constant for backscattering, and ψ†

s (ψs ) the
field operator for creating (destroying) a fermion of spin s =
↑,↓. In the following, we set h̄ = 1, as for the Boltzmann
constant kB = 1. For the theoretical analysis, we work with
the low-energy field theory model corresponding to Eq. (2),

H = H0
ρ + Hσ , (3)

where Hσ = H0
σ + H ′

σ . The Hamiltonian operators for the
charge and spin are decoupled. The “unperturbed” Hamilto-
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nian H0
ν , with ν = ρ, σ , has the quadratic form

H0
ν = 1

2π

∫
dx

{
vνKν[∂xθν (x, t )]2 + vν

Kν

[∂xφν (x, t )]2

}
. (4)

This Hamiltonian provides an effective description of the
low-energy properties of a wide class of microscopic models
in one dimension. Equation (4) is quadratic in the bosonic
fields φν and θν and describes a Tomonaga-Luttinger liquid—
a critical system with correlations decaying as power laws.
The exponents of the power laws are functions of the Luttinger
parameters Kρ and Kσ , and the velocities vρ and vσ of charge
and spin excitations are in general different from each other.
When the field-theory Hamiltonian is used as an effective
description of a certain microscopic model, the parameters
Kν and uν are determined by the parameters of the original
model, such as interactions. Here, we consider Kν and uν

more generally without restriction to a specific microscopic
model, but point out the parameter regime relevant for an
experiment with spin-rotation-invariant contact interactions
between fermions [5,32].

We consider a system where the charge degree of freedom
is described by a TLL. In the case of a TLL wire connected
to leads, it was previously shown that the conductance is
given by the conductance quantum e2/h, where e is the
elementary charge and h the Planck constant, multiplied by
the Luttinger parameter K of the leads, G = Ke2/h [15–17].
Here, K denotes the Luttinger parameter of spinless fermions.
The same result was found for a spatially varying K within
the wire [34]. In the case of neutral atoms, as considered here,
the particle conductance does not contain the electric charge
and the conductance quantum is given by 1/h. We consider
noninteracting leads with Kσ = Kρ = 1, in which case the
charge conductance is simply given by the conductance quan-
tum Gρ = 1/h.

Whereas the charge degree of freedom is a TLL, the spin
degree of freedom is described by the sine-Gordon model
[33]. The spin Hamiltonian has the additional cosine term

H ′
σ = 2g1⊥

(2πα)2

∫ L
2

− L
2

dx cos[2
√

2φσ (x, t )], (5)

which arises from the backscattering of fermions with oppo-
site spin within the interacting wire. The coupling g1⊥ denotes
the backscattering amplitude, and the short-distance cutoff α

is chosen as the distance between particles, or inverse density
ρ−1

0 . The leads are described by Eq. (4) with Kσ = 1 and
vσ = vF . For the spin conductance Gσ , no exact solution
is available, and we use approximate analytic expressions
to evaluate it in different parameter regimes. A cosine term
similar to Eq. (5) would also arise in the charge sector in the
presence of an umklapp term generated by a lattice potential at
commensurate filling. Earlier theoretical studies have consid-
ered the effect of umklapp scattering on charge conductance
in such systems [20–24].

While the TLL is gapless, the sine-Gordon model can have
an energy gap for excitations. It is physically intuitive that
spin excitations have a gap when the interactions are attractive
since fermions with opposite spins form pairs. In terms of the
Hamiltonian, a spin gap forms when energy is minimized by
fixing the field φσ to one of the minima of the cosine. The

FIG. 2. The RG flow corresponding to Eqs. (6). On the side of
Kσ > 1, below the separatrix line y1⊥ ≈ 2Kσ − 2, the coupling y1⊥(l )
approaches zero at l → ∞ and the cosine term H ′

σ is irrelevant.
Above the separatrix and for Kσ < 1, y1⊥(l ) → ∞ with increasing
length scale. In this region, H ′

σ is relevant in the renormalization and
there is a nonzero spin gap �σ .

cosine term can then be expanded around the minimum and
approximated by a quadratic mass term. Whether the ground
state of a given microscopic model is gapped or gapless is
revealed by a renormalization group (RG) analysis.

D. Renormalization group: Gapped and gapless regime

For Hamiltonian Hσ , one has the RG equations (see, e.g.,
Ref. [33])

dKσ (l )

dl
= −1

2
y1⊥(l )2Kσ (l )2,

(6)
dy1⊥(l )

dl
= [2 − 2Kσ (l )]y1⊥(l ),

where y1⊥ = g1⊥/(πvσ ). Here, l is the length scale changed
in renormalization. The RG equations show that for an infinite
wire, the sine-Gordon model has a gapped and a gapless
parameter regime as shown by the RG flow in Fig. 2. The
separatrix y1⊥(0) = 2|K2

σ (0) − 1|/|K2
σ (0) + 1| corresponds to

interactions that are spin-rotation invariant (see for example
Eq. (2.105) in Ref. [33]). At Kσ close to 1, one can ap-
proximate y1⊥ ≈ 2Kσ − 2. The contact interactions between
fermions with opposite spin, as realized in the transport ex-
periments of Refs. [5,32,35], would fall on this line. Since the
RG equations are the same for y1⊥ > 0 and y1⊥ < 0, the RG
flow is symmetric with respect to the y1⊥ = 0 axis. We can
therefore consider only the y1⊥ > 0 half plane. The sign of the
interaction is encoded in the value of Kσ : Kσ < 1 corresponds
to attractive and Kσ > 1 to repulsive interactions.

In the following, we use the RG equations to analyze the
spin conductance of a finite-length wire. We consider different
parameter regimes in terms of the wire length L, thermal
length LT = vσ /T , and superfluid coherence length L� =
vσ /�σ . The discussion of the different parameter regimes is
structured into sections for the high (LT � L, L�), interme-
diate (L � LT � L� and L� � LT � L), and low tempera-
ture (L, L� � LT ). In the intermediate- and low-temperature
regions, we additionally make a distinction between L � L�

and L� � L.
The shortest of the lengths L, L�, and LT acts as a limiting

length scale in the renormalization: the parameters y1⊥(l ),
Kσ (l ), and the cutoff α(l ) = α(0)el are renormalized up to
a length scale l∗ at which α(l∗) reaches one of these lengths.
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FIG. 3. A sketch of the spin conductance as a function of tem-
perature for the different orders of energy scales �σ and TL = vσ /L.
Panel (a) corresponds to a weak coupling y1⊥ with �σ � TL (L �
L�) and (b) to strong coupling with TL � �σ (L� � L). In both
cases, the spin conductance reaches the value 1 (the conductance
quantum) at T = 0, whereas at high temperature, Gσ has a correction
proportional to y2

1⊥. In panel (b), y1⊥ is larger and the value of Gσ in
the high-temperature limit is lower. The different methods used for
computing the temperature dependence in the various temperature
regimes are marked with different colors or line styles (see text). The
limits of validity of each method are depicted with shaded lines.

By renormalization, one finds the parameters which describe
the low-energy behavior of the model; after finding these
new parameters, one still usually has to calculate the desired
quantities in the new model by other means. Depending on
the parameter regime, we use perturbation theory, an instanton
approach, or a two- or three-step RG procedure to calcu-
late the spin conductance using the renormalized parameters.
When only repulsive interactions are considered, the cosine
term of Eq. (5) is often left out since it is irrelevant in the
asymptotic limit. Instead, other scattering sources, beyond the
TLL approximation, have been considered for the charge and
spin conductance [25–27]. Here, we focus on spin transport
and take the cosine term into account explicitly. In the attrac-
tive case, it is relevant in renormalization, but it also gives
contributions in the repulsive case due to the finite length of
the wire.

E. Spin conductance in different temperature regimes

The finite-length wire has conducting and insulating phases
depending on the relative magnitudes of the length scales L,
L� = vσ /�σ , and LT = vσ /T . The temperature dependence
and, correspondingly, thermal-length dependence of the spin
conductance is illustrated schematically in Fig. 3. Panel (a)
shows the case of a weak coupling y1⊥ with �σ � TL (L �
L�) and panel (b) corresponds to strong coupling with TL �
�σ (L� � L). Whether the coupling is strong or weak by
this criterion depends both on the interaction and on the wire
length: for a finite length of the wire, the system can be in
the weak-coupling regime both for repulsive and sufficiently
small attractive interactions.

We employ different methods to compute the temper-
ature dependence of the spin conductance in the differ-
ent temperature regimes, as indicated by the different line
styles and colors in Fig. 3. When temperature is the high-
est energy scale, T  TL,�σ , one can use the memory-
function approach discussed in Sec. III, independent of the
relative values of TL and �σ . The memory-function cal-
culation shows that the spin conductance has the depen-
dence Gσ − 1 ∝ −y2

1⊥(L/α)(T/)4Kσ −3 on temperature and

FIG. 4. A summary of the different parameter regimes. The rele-
vant techniques and temperature dependence of the spin conductance
found in these regimes correspond to the schematic drawing of Fig. 3.
The temperature Tf is related to the three-step renormalization group
procedure detailed in Sec. V B.

coupling. This expression shows that if Kσ > 3/4, there is
a decrease of conductance with temperature in the high-
temperature regime, whereas for Kσ < 3/4, conductance
grows with temperature. Both cases can occur for both weak
and strong coupling, as discussed in Sec. III B, but Kσ >

3/4 is more representative of the weak-coupling regime and
Kσ < 3/4 of the strong-coupling regime in the case of spin-
rotation-invariant interactions. The drawings in Fig. 3 rep-
resent these typical cases. The memory-function expression
is valid up to temperatures on the order of the high-energy
cutoff  = vσ /α, where Gσ reaches the value Gσ = 1 − Cy2

1⊥
with the constant C of order 1. The lower limit of validity
of the memory-function approach is when the thermal length
reaches the smaller of either the wire length or the superfluid
coherence length, below which one can expect a different
behavior.

When T < TL, we use the renormalization-group proce-
dures outlined in Sec. V. In the case of weak coupling and
low temperature L � L�, LT , shown in Fig. 3(a), the problem
reduces to a single interacting point in an otherwise non-
interacting wire. As discussed in Sec. V A, an RG analysis
shows that the zero-dimensional interacting system within a
noninteracting wire is irrelevant, and the wire is perfectly
conducting at the low-energy limit, Gσ (T = 0) = 1.

In the case of strong coupling, there is an intermediate-
temperature regime with an exponential dependence of con-
ductance on temperature when the temperature reduces below
the spin gap, marked with a dashed line. This temperature
regime is discussed in Sec. IV. As detailed in Sec. V B,
for a finite-length wire with a finite energy scale TL, renor-
malization group arguments again show that perfect spin
conductance is recovered in the zero-temperature limit. This
is in contrast with the vanishing spin conductivity in the
gapped phase (see Appendix A). The different line colors for
T < TL indicate a renormalization procedure where either the
coupling y1⊥ (green) or the fugacity f (orange), as defined in
Sec. V B, is used as a perturbative parameter. The different
parameter regimes and the relevant methods and results in
these regimes are summarized in Fig. 4.
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While a nonmonotonic temperature dependence can oc-
cur also for weak coupling, the nonmonotonic behavior is
more distinct for strong coupling, where the spin conductance
reaches a lower (nonzero) minimum at TL. This regime is
therefore more interesting from an experimental point of view.
In Sec. VI, we construct the temperature dependence of Gσ

for experimentally relevant parameters, using the different
methods described in Secs. III–V.

III. SPIN CONDUCTANCE AT HIGH TEMPERATURE
LT � L, L�

When the temperature is larger than all other energy scales,
LT � L, L�, we use the thermal length scale LT = vσ /T as
a limiting criterion in the renormalization: the parameters
are renormalized up to a length scale l∗ for which α(l∗) =
LT . The renormalized parameters are used for calculating
the spin conductance perturbatively by the memory-function
formalism. The approach to calculating the conductance in
the high-temperature regime is the same for weak and strong
coupling (L � L� and L� � L).

A. Renormalization of parameters

When the thermal length is smaller than other length
scales, the wire can be viewed as a series of incoherent blocks
of length LT . Temperature can then be incorporated in the
RG procedure by renormalizing the parameters Kσ and y1⊥
up to the length scale l∗ at which α(l∗) ∼ LT . To illustrate
the evolution of the parameters with increasing length scale,
Fig. 5 shows the renormalized parameters as functions of
Kσ (l = 0) and y1⊥(l = 0) at the original length scale at a fixed
temperature T = 55 nK, corresponding to the experimental
conditions of Ref. [5]. In the figure, we have renormalized
the parameters up to the length scale l∗ at which either (i)
α(l∗) ∼ LT or (ii) y1⊥(l∗) ∼ 1, corresponding to α(l∗) ∼ L�.
The latter condition is due to the fact that the RG equations
are perturbative in y1⊥ and not valid beyond y1⊥(l∗) � 1. The
thermal length is calculated as LT = vσ /T , where the spin ve-
locity remains essentially unchanged in renormalization and
is given by vσ = vF /Kσ (0) for a Galilean-invariant system.

As shown in Fig. 5(d), α(l∗) = LT and y1⊥(l∗) < 1 in the
majority of the diagram whereas in the upper left corner,
α(l∗) < LT and y1⊥(l∗) = 1. The memory-function approach
discussed in the following section is only valid for the region
with y1⊥(l∗) < 1. The white lines show the separatrix

y1⊥(0) = 2

∣∣∣∣K2
σ (0) − 1

K2
σ (0) + 1

∣∣∣∣, (7)

which corresponds to spin-rotation-invariant interactions. The
solid white line separates the regions with a finite spin gap in
the thermodynamic limit �∞

σ > 0, where y1⊥ flows to strong
coupling, and the region that is gapless in the thermodynamic
limit �∞

σ = 0. Due to the finite size of the wire, the region
where y1⊥(l∗) ≈ 1 does not exactly match the one for which
�∞

σ > 0. Along the solid line, the parameters flow toward
the fixed point (Kσ = 1, y1⊥ = 0) and along the dashed line,
toward y1⊥ → ∞.

FIG. 5. The renormalized parameters (a) y1⊥(l∗) and (b) Kσ (l∗),
(c) the cutoff α(l∗) = α0el∗ , and (d) the cutoff subtracted from the
thermal length LT − α(l∗), as functions of Kσ (l = 0) and y1⊥(l =
0). The parameters have been evolved according to Eqs. (6) up
to the length scale l∗ at which either α(l∗) ≈ LT or y1⊥(l∗) ≈ 1.
The white lines show the separatrix which corresponds to spin-
rotation-invariant interactions. Along the solid line, the parameters
flow toward the fixed point (Kσ = 1, y1⊥ = 0) and along the dashed
line, toward y1⊥ → ∞. The region to the left of the solid line has a
finite spin gap in the thermodynamic limit, �∞

σ > 0, and the region to
the right is gapless in the thermodynamic limit, �∞

σ = 0 (see Fig. 2).
We have used here α(l = 0) = ρ−1

0 = 1.25 μm with ρ0 = 0.8/μm.
Since LT < L = 5.5 μm, the wire length does not enter here as a
limiting length in the renormalization.

B. Memory function

To calculate the spin conductance in the high-temperature
case, we couple RG with a memory-function calculation.
When the thermal length is smaller than other length scales,
one can neglect the finite length of the wire and calculate
the spin conductance from the spin conductivity, Gσ = σσ /L.
The spin conductivity has an expression in terms of the
spin current-current correlation, which can be evaluated using
bosonization. When the backscattering term H ′

σ is present,
this correlation function cannot be obtained exactly but one
can calculate it perturbatively when the perturbation expan-
sion in y1⊥ converges. This is the case when y1⊥ flows to
weak coupling in the renormalization, or flows to strong
coupling but the renormalization is stopped at α(l∗) ∼ LT

before y1⊥(l ) ∼ 1. We obtain the conductivity by calculating
the current-current correlation in a second-order perturbation
expansion [36].

The spin conductivity can be written in terms of the mem-
ory function, as shown in Appendix B. One can obtain the
dependence on y1⊥ and T in the form

σσ (T ) ∝ α

y2
1⊥

(
T



)3−4Kσ

,

where  = vσ /α is a high-energy cutoff. The functional form
by itself is however only accurate when Kσ is unchanged in
renormalization. In the situation relevant for the experiment,
Kσ is on the separatrix and is renormalized according to
Eq. (6). Therefore, it is necessary to couple the memory-
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function expression with the renormalization of the parame-
ters. The conductance of the wire can be calculated by adding
in series the resistance of the wire and the contact resistance.
The resistance of the wire is Rwire = ρL and the contacts
have a resistance equal to the inverse-conductance quantum,
Rcontact = 1. The spin conductance can be written as

Gσ = 1

Rwire + Rcontact
= 1

Rwire + 1
≈ 1 − Rwire, (8)

where the approximation is valid when Rwire is small. Using
the expression ρ(T ) ∝ y2

1⊥(T/)4Kσ −3/α for the resistivity
gives the dependence

Gσ (T ) − 1 ∝ −y2
1⊥

L

α

(
T



)4Kσ −3

(9)

on the coupling, temperature, wire length, and cutoff.
As noted above, Eq. (9) involves certain subtleties concern-

ing the renormalization of the parameters y1⊥, Kσ , and α. In a
situation where y1⊥ ≈ 0 and Kσ is away from the separatrix,
one can approximate the RG flow to be vertical: dKσ /dl =
0. In this case, the relation (9) is invariant with changing
length scale and gives the correct temperature dependence
of the spin conductance for both y1⊥(l = 0), α(l = 0) and
y1⊥(l∗), α(l∗) = LT . The exponent shows that the spin con-
ductance has a different behavior depending on whether Kσ <

3/4 or Kσ > 3/4. For Kσ < 3/4, the exponent is negative and
Gσ decreases with decreasing temperature. For Kσ > 3/4 on
the other hand, the exponent is positive and the correction to
Gσ = 1 decreases with temperature, giving therefore an in-
crease of Gσ with lowering temperature. As the renormalized
value of Kσ depends on the interactions, particle density, and
temperature, both cases Kσ < 3/4 and Kσ > 3/4 can occur
for both weak and strong coupling. For spin-rotation-invariant
interactions, the case with Kσ < 3/4 mostly coincides with
the strong-coupling regime.

The temperature dependence of Eq. (9) applies to temper-
atures between the high-energy cutoff  and the spin gap
�σ , below which the memory-function approach is not valid.
The behavior of the spin conductance at T < �σ is discussed
in Secs. IV and V. When y1⊥ is not so small, or if Kσ is
fixed to the separatrix, so that dKσ /dl �= 0, Eq. (9) is approx-
imate and the accuracy can be improved by renormalizing
the parameters. In this case, the temperature dependence of
the correction to Gσ = 1 is nontrivial and can be obtained
numerically. Section VI shows the spin conductance as a func-
tion of temperature evaluated numerically for experimentally
relevant parameters.

C. Comparison to experimental data

In order to compare the memory-function result to experi-
mental data [5], we evaluate the spin conductance of Eq. (8)
for experimentally relevant parameters. The resistance Rwire =
L/σσ is calculated by using the memory-function expression
(B4) of Appendix B for the spin conductivity σσ . The coupling
y1⊥ is determined by the scattering length a and the particle
density ρ0, as detailed in Appendix C. The experimental pa-
rameters used in this calculation are also listed in Appendix C.
The s-wave scattering between fermions in different spin
states, present in the experiment [5], can be modeled by

FIG. 6. The spin conductance as a function of ρ0 for the same
values of the scattering length as in Fig. 7, calculated using Eqs. (8),
(B3), and (B4) with renormalized parameters. Here, a0 = 5.25 ×
10−11 m is the Bohr radius and the wire length is L = 5.5 μm [5].
The dashed line indicates a region where T < �ex

σ (see text) and the
memory-function expression is not reliable.

contact interactions which are spin-rotation invariant. We
therefore consider RG flow along the separatrix, with Kσ fixed
by y1⊥ as in Eq. (7). Note that the RG procedure and the
temperature dependence of the spin conductivity found here
are valid beyond this specific type of interaction; they are valid
for any interaction which decays as 1/xγ with γ > 1, and may
or may not be spin-rotation invariant [33].

Figure 6 shows the memory-function result, which can be
compared to the experimental data in Fig. 7. The data are part
of the measurements done in Ref. [5], where spin conductance
is measured through a narrow channel between two particle
cloud reservoirs. When only one transversal mode in the
channel is occupied, we can consider it a one-dimensional
system. Due to the inhomogeneous potential profile in the
experiment, there are higher-density regions at the entrance
and exit of the channel. For strong interaction (large negative
scattering length) and large ρ0, these high-density regions
transition from the normal state to superfluid, which leads
to a nonmonotonic dependence of the spin conductance on

FIG. 7. The spin conductance measured as a function of the
particle density in a quantum point contact setup [5], for various
values of the scattering length.
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particle density. The consequences of superfluidity in the leads
on particle and spin conductance were discussed in recent
theoretical work [37,38].

Since our model only describes the regime with leads in
the normal state, we only show data extending up to ρ0 =
1.6/μm, where the normal-to-superfluid transition is esti-
mated to occur for the scattering length a ≈ −3500a0. This
density corresponds to the gate potential Vg ≈ 0.8 μK in Fig. 2
in Ref. [5]. For small particle densities, another constraint
is set by the limits of validity of the field-theory approach.
We use the interparticle separation ρ−1

0 as the short-distance
cutoff α(l = 0), and therefore the comparison is restricted
to particle densities for which the interparticle separation is
smaller than the thermal length LT = vσ /T . For T = 55 nK,
the comparison is limited to ρ0 � 0.6/μm. Additionally, the
memory-function expression is only valid for temperatures
above the spin gap, with a crossover region around T ≈ �σ .
We have used a dashed line for the part where T < �ex

σ

in Fig. 6, indicating that in this region the result may be
unreliable. Here, �ex

σ is the exact expression of the spin gap in
the Gaudin-Yang model [39] (see Sec. VI and Appendix C).

Figures 6 and 7 show that the memory-function calcu-
lation gives the same trend of increasing conductance with
increasing ρ0 as in the experimental data. In both figures,
the spin conductance is lower for larger negative scattering
lengths for which the spin-up and spin-down fermions are
more strongly paired. Since the number of particles should in
general be large for a field-theory description to be applicable,
it is not obvious that it is accurate here. Figure 6 corresponds
to between 3.3 and 8.8 particles within the wire. We how-
ever find a good qualitative agreement between the memory-
function calculation and the experimental data, especially for
the smallest values of |a| and for low densities in the case of
the largest |a|. This is consistent with the fact that we only
consider leads in the normal state.

As mentioned above, we effectively view the wire as a
series of incoherent blocks of length LT . Such a consideration
would be valid for a wire which is coupled to an environ-
ment that destroys phase coherence beyond the length scale
LT � L. One therefore assumes that there are no conservation
laws which would lead to a finite steady-state current. In one
dimension, or in an isolated system, this assumption is not
necessarily valid, for example if the system is integrable. In
the absence of phonons or other dissipative processes, inte-
grable systems can have a current that saturates at a nonzero
value instead of decaying to zero as a function of time.
Therefore, the memory-function solution could be inaccurate
in systems which do not have dissipation mechanisms, such
as cold-atom experiments. Nevertheless, the good qualitative
agreement between the memory-function result and the exper-
imental data seems to validate the hypothesis that coherence is
lost beyond the thermal length LT . It remains to be understood
what the mechanism for loss of coherence is in the cold-atom
experiment.

IV. INTERMEDIATE TEMPERATURE L � LT � L�

AND L� � LT � L

In the case of strong coupling and a temperature below the
spin gap, in the regime where L� � LT � L, one can expect

a very small spin conductance. The conductance has indeed an
exponential dependence on the temperature and the spin gap,
Gσ ∝ e−�σ /T . One can understand this in terms of tunneling
events across the gap called instantons [40,41]. At even lower
temperature, when the thermal length exceeds the wire length,
one can expect yet a different behavior as discussed in Sec. V.
In the case of weak coupling L � L�, the interacting wire
reduces to a backscattering term at x = 0 which is irrelevant
in renormalization. Therefore, the conductance has the same
temperature dependence at L � L� � LT and L � LT �
L�, as indicated by the green line in Fig. 3(a).

V. LOW TEMPERATURE L, L� � LT

When the thermal length is the largest length scale, the
smaller of L and L� enters as the limiting length in the
renormalization procedure. We analyze the spin conductance
at low temperature by renormalizing the parameters up to a
length scale l∗ at which one of two criteria is reached: (i)
either α(l∗) ∼ L or (ii) y1⊥(l∗) ∼ 1. In both cases, we find
the spin conductance by relating the finite-length wire to a
zero-dimensional system with backscattering. One can then
employ RG equations that are different from those of the
original problem. In the case of criterion (i), we use a two-step
RG procedure, meaning two different sets of RG equations
applied consecutively, whereas for criterion (ii), there are
either two or three steps, as detailed in Sec. V B. Appendix D
shows how the renormalized parameters Kσ (l∗) and y1⊥(l∗)
depend on Kσ (l = 0) and y1⊥(l = 0).

A. Weak coupling L � L�(l∗) � LT : Two-step
renormalization group

Weak coupling corresponds to criterion (i) where the cutoff
reaches the length of the wire before the coupling becomes
nonperturbative. This parameter regime therefore includes
both repulsive and weakly attractive interactions for which
y1⊥(l∗) < 1, as shown in Fig. 10. In this case, we identify the
problem of a finite-length wire connected to noninteracting
leads with that of a zero-dimensional system where particles
backscatter, embedded in a noninteracting wire.

The cutoff α, which here is fixed as the interparticle sepa-
ration, can be thought of as the shortest length scale at which
φσ varies. As α reaches L in renormalization, the integral in
Eq. (5) is taken over an interval of length α within which
φσ (x) is constant. We can therefore replace cos[2

√
2φσ (x, t )]

by cos[2
√

2φσ (x = 0, t )], which leads to the term

H ′
σ = 2g1⊥

4π2L
cos[2

√
2φσ (x = 0, t )]. (10)

Here, α2 in the denominator has been replaced with L2 and
a factor of L in the numerator is given by the integration in
Eq. (5). In this case, one has a different set of RG equations,

dKσ (l )

dl
= 0,

dy1⊥(l )

dl
= [1 − 2Kσ (l )]y1⊥(l ) = −y1⊥(l ). (11)

The second equation gives the expression

y1⊥ = y1⊥(0)e(1−2Kσ )l
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FIG. 8. The RG flow of y1⊥ and Kσ corresponding to Eqs. (11)
together with the flow of the fugacity f defined in Sec. V B. As Kσ

does not change in renormalization, the flow is vertical. For Kσ >

1/2, the coupling y1⊥(l ) approaches zero at l → ∞, whereas for
Kσ < 1/2, the coupling approaches infinity. The flow is the opposite
for f , as seen from Eq. (13). Note that the critical value Kσ = 1/2
is different than in the case of an impurity in a TLL [42,43]. Here,
Kσ = 1 in the leads means that f grows in renormalization while y1⊥
flows to zero.

for the coupling. The RG flow corresponding to Eqs. (11)
is illustrated in Fig. 8, where one can see that y1⊥ flows
to infinity whenever Kσ < 1/2 and to zero when Kσ > 1/2.
There is a fixed line at Kσ = 1/2 where y1⊥ does not change
in renormalization. As Kσ now refers to the value in the leads,
Kσ = 1, the coupling y1⊥(l ) = y1⊥(0)e−l approaches zero at
increasing length scale. Backscattering at x = 0 is therefore
irrelevant at low energies and one obtains a model of free
fermions with Gσ = 1 at T = 0. One can find the temperature-
dependent correction to the zero-temperature value of the spin
conductance perturbatively. Similarly to the weak-coupling
solution in Ref. [42], we obtain the scaling

Gσ − 1 ∝ −y2
1⊥

(
T



)4Kσ −2

= −y2
1⊥

(
T



)2

(12)

when Kσ = 1 in the leads.
A similar problem of a pointlike impurity potential in a

Luttinger liquid was considered earlier by Kane and Fisher
[42,43]. The earlier study considered spinless fermions, for
which the backscattering from an impurity potential is de-
scribed by the term ψ

†
RψL + H.c., where R denotes right-

and L left-moving fermions, resulting in a cos (2φ) term
in bosonized form. On the other hand, backscattering of
fermions with opposite spin is described by the four-fermion
operator

ψ
†
L↑ψR↑ψ

†
R↓ψL↓ + H.c.,

which gives the cos(2
√

2φσ ) term considered here. This co-
sine term has a different scaling dimension than cos(2φ),
resulting in a different RG equation for the coupling y1⊥
and therefore a different critical Kσ for the transition from
relevant to irrelevant backscattering. Namely, in the case of
spinless fermions, the critical value is K = 1, meaning that
for noninteracting leads the impurity potential is marginal in
renormalization and does not change with increasing length
scale. For a nonzero potential strength, one would therefore
not arrive at perfect conductance at T = 0.

B. Strong coupling L�(l∗) � L � LT : Three-step
renormalization group

If criterion (ii) of Sec. III A is reached, there is a finite spin
gap while the wire length is finite. Since the RG equations
are not valid beyond y1⊥(l∗) ∼ 1, the renormalization cannot
be continued up to a length scale where the cutoff would
reach the wire length. One can however assume that also
in this situation the behavior of the finite-length wire is the
same as that of a local backscattering in a noninteracting
wire. In this case, a spin current

√
2/π∂tφσ (t ) is generated

by the tunneling of instantons: the field φσ (t ) is fixed to a
minimum of cos[2

√
2φσ (t )] most of the time, but can tunnel

from one minimum to the next and create a small but finite
current. In such a tunneling event, the argument of the cosine
in Eq. (10) changes by 2π . Instead of y1⊥, one can find
a renormalization equation for a parameter which describes
the probability of tunneling; when y1⊥ > 1, the fugacity f =
e−Sinst can be used as a perturbative parameter. Here, Sinst is the
action of instantons (see Appendix E) and has the dependence
Sinst ∝ √

y1⊥ [33]. The RG equation for f is obtained as

df (l )

dl
=

(
1 − 1

2Kσ

)
f (l ) = 1

2
f (l ), (13)

while Kσ in the leads is unchanged in renormalization and has
the value Kσ = 1. The RG flow corresponding to Eq. (13) is
the opposite of y1⊥, as shown in Fig. 8: For Kσ < 1/2, f flows
to zero and for Kσ > 1/2, to 1.

The value of f at scale l = 0 can in principle be found
by matching the value of conductance at T = TL to the value
∼e−L/L� expected for TL < T < �, as discussed in Sec. IV.
We illustrate this procedure numerically in Sec. VI. According
to Eq. (13), f (l ) will then grow with increasing length scale.
Here, one should note that l in the RG equations is a length
scale in both space and imaginary time, (x, vσ τ ), and in the
renormalization of f (l ), the initial cutoff on vσ τ is α(l =
0) = L. Similarly to Sec. III A, one iterates Eq. (13) up to the
length scale at which either (i) α(l∗) ∼ LT or (ii) f (l∗) ∼ 1. If
criterion (i) is reached while f (l∗) < 1, one can calculate the
conductance perturbatively in f . A second-order perturbation
expansion gives the dependence

Gσ (T ) ∝ f 2(l∗)

(
T



)4Kσ −2

= f 2(l∗)

(
T



)2

. (14)

The lower the temperature is, the larger is LT and the
further f and α are renormalized. At very low temperature,
therefore, f (l ) will reach the value 1 before α(l ) ∼ LT , at
which point Eq. (13) is not valid anymore. The coupling
y1⊥(l ) on the other hand has been renormalized to y1⊥ < 1 and
can again be used as a perturbative parameter. One therefore
switches from Eq. (13) to Eq. (11) and continues the renor-
malization of α up to LT . When y1⊥ is perturbative, we have
again the result Gσ − 1 ∝ −y2

1⊥(l∗)(T/)2 as in Sec. V A.
One sees now that at T → 0, the spin conductance approaches
1. The nonmonotonic dependence of Gσ on temperature is
illustrated in Fig. 3. A similar behavior was predicted for
charge conductance in the case of umklapp scattering [21].
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FIG. 9. The spin conductance as a function of temperature as
determined by the various methods described in Secs. III–V. The
different methods are denoted by different line styles: the solid lines
correspond to the memory-function calculation, the dashed lines to
the exponential dependence in the intermediate-temperature regime,
and the dotted lines to the 2- or 3-step RG results. The colors
correspond to the same values of the scattering length a as in Figs. 6
and 7. The particle density and is fixed to ρ0 = 0.8/μm. The other
parameters are given in Appendix C. The spin gap given by Eq. (8)
in Ref. [39] is marked with triangles and denoted by �ex

σ , which is
indicated for the largest negative scattering length. The temperature
TL is marked with diamonds. The temperature at which the fugacity
f becomes nonperturbative (see text) is marked with squares and
indicated by Tf for the largest negative scattering length. We connect
the different expressions for Gσ (T ) in each region by matching the
value of the spin conductance at the transition temperatures �ex

σ , TL ,
and Tf , even though at these values the methods are not strictly valid.

VI. TEMPERATURE DEPENDENCE OF THE SPIN
CONDUCTANCE FOR EXPERIMENTAL PARAMETERS

The analyses of the previous sections can be used to
construct the temperature dependence of the spin conductance
for experimentally relevant parameters. We use here the same
parameters as in Figs. 6 and 7 and Appendix C, apart from
the varying temperature. The particle density ρ0 = 0.8/μm
is fixed to a value which corresponds to the strong-coupling
regime L� < L for all scattering lengths used here. Figure 9
shows the temperature dependence of Gσ for these param-
eters, and can be compared to the schematic drawing of
Fig. 3(b).

At T > �σ , the spin conductance is calculated by using
the memory-function expression for spin conductivity as in
Sec. III C. The solid lines on the right side of Fig. 9 show
the result of the memory-function calculation for parameters
which are renormalized up to α(l∗) = LT . The solid lines
extend down to the temperature corresponding to the exact
value of the spin gap. The spin gap has an exact expression
for the Gaudin-Yang model, given by Eq. (8) in Ref. [39].
This model describes the experiment of Ref. [5] in the case of
low particle densities where the spin resistance is dominated
by the wire and superfluidity in the leads is not a significant
factor. The spin gap given by Eq. (8) in Ref. [39] is denoted
by �ex

σ and marked with triangles in Fig. 9. As discussed in
Sec. III B, the memory-function calculation gives the depen-
dence Gσ (T ) − 1 ∝ −y2

1⊥(L/α)(T/)4Kσ −3. Note that while
the schematic diagram of Fig. 3(b) shows the case Kσ <

TABLE I. Parameters y1⊥(l = 0) and Kσ (l = 0) corresponding
to the scattering lengths a and particle density ρ0 = 0.8/μm used in
Fig. 9, calculated from Eqs. (C1)–(C4). The renormalized parameters
y1⊥(l∗) and Kσ (l∗), obtained as explained in Sec. III A, are also
shown for temperature T = 65 nK.

a/a0 y1⊥(l = 0) y1⊥(l∗) Kσ (l = 0) Kσ (l∗)

−2623 0.35 0.41 0.84 0.82
−2844 0.37 0.43 0.83 0.81
−3104 0.39 0.46 0.82 0.80
−3413 0.41 0.49 0.81 0.78
−3789 0.43 0.52 0.80 0.77

3/4 where Gσ decreases with decreasing temperature, the
parameters and the temperature range shown here correspond
to Kσ (l = 0), Kσ (l∗) > 3/4, which leads to an initial increase
of Gσ for decreasing temperature. Continuing the lines down
to sufficiently low temperatures would lead to Kσ (l∗) < 3/4
and a downturn of the conductance curve. The initial (l = 0)
and renormalized (l = l∗) parameters y1⊥ and Kσ are shown in
Table I for the particle density ρ0 = 0.8/μm and temperature
T = 65 nK, which is the highest temperature included in
Fig. 9. The parameter values at l = 0 are obtained from the
experimental parameters as explained in Appendix C, and
renormalized according to Eq. (6) as discussed in Sec. III.
Here, the thermal length LT is the limiting length in the
renormalization.

For TL < T < �σ , the spin conductance has an expo-
nential form. We use the exact value of the spin gap
Ce−�ex

σ /T where the constant C is fixed by Gσ (T = �ex
σ )

given by the memory-function expression, so that Gσ (T ) =
Gσ (�ex

σ )e1−�ex
σ /T . For T < TL, there is again a different be-

havior of the spin conductance when the thermal length ex-
ceeds the length of the wire, and we use Eqs. (14) and (12)
to calculate the conductance, as explained in Sec. V B. At
T = TL, the system can be thought of as zero dimensional
with α(l = 0) = L, so that  = vσ /L. We renormalize the
fugacity according to Eq. (13), with the value f (l = 0) fixed
by f (l = 0) = √

Gσ (TL ). For temperatures at which the cutoff
reaches the thermal length α(l∗) = LT before f (l ) = 1, we
compute the conductance by Eq. (14). For sufficiently large
LT , f (l∗) = 1 is reached first. In this case, we switch to the
RG equation (11) for y1⊥ and calculate the conductance from
Eq. (12) using y1⊥(l = 0) = (/T )

√
1 − Gσ (Tf ), where Tf

denotes the temperature at which f (l∗) becomes nonperturba-
tive and  = vσ /α(l∗) is the value at the corresponding length
scale. Note that while we have connected the perturbative and
exponential expressions for Gσ (T ) to make it a continuous
function of temperature, these results are not strictly valid at
T = �σ , TL, or Tf .

VII. DISCUSSION

The RG arguments together with perturbative and nonper-
turbative calculations show that a finite-length wire connected
to noninteracting leads has conducting and insulating phases
depending on the relative magnitudes of the length scales
L, L�, and LT , or conversely energy scales TL, �σ , and T .
At high temperature T  TL,�σ , the spin conductance has
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the correction Gσ − 1 ∝ −y2
1⊥(L/α)(T/)4Kσ −3 given by the

memory-function calculation (see Appendix B). We find that
the memory-function result agrees well with experimental
data in the region where it is expected to be valid.

In the case of weak coupling, �σ < TL, we find the depen-
dence Gσ − 1 ∝ −y2

1⊥(T/)2 in the low-temperature regime
where T < TL. In the case of strong coupling TL < �σ , the
spin conductance behaves as e−�σ /T when temperature falls
below the spin gap. A renormalization-group analysis shows
that the conductance starts to grow again for T < TL and
the system approaches perfect conductance at T → 0. A
similar temperature dependence was predicted for the charge
conductance in the case of umklapp scattering in a Mott-
Hubbard insulator [20,21]. It is interesting to note that the
result differs from the pointlike barrier considered by Kane
and Fisher [42,43]: the backscattering of spinless fermions
from an impurity potential is described by a two-fermion
operator whereas the backscattering of fermions with opposite
spins considered here is described by a four-fermion operator.
This leads to a different set of RG equations and a vanishing
coupling for the backscattering of fermions with opposite spin
at T = 0. In the case of spinless fermions, in contrast, the
system does not reach perfect conductance at T = 0 since the
impurity potential is marginal in renormalization and does not
vanish.

Unlike the static spin conductivity which is zero in the
gapped phase, the spin conductance of a finite-length wire is
perfect at T = 0 for either repulsive or attractive interactions.
This reflects the fundamental difference of these quantities.
The static conductivity, or Drude weight, can be measured
from the persistent current on a ring threaded by a flux,
whereas conductance measures the current response of a lin-
ear system attached to reservoirs. We consider a system with
spin-charge separation, where the charge degree of freedom is
described by a quadratic model and has a conductance equal
to the conductance quantum. The spin drag in this case is � =
(1 − Gσ )/2. We therefore find that at zero temperature, there
is no spin drag for either attractive or repulsive interactions.
However, a considerable spin drag exists in the intermediate-
temperature regime.

The nonmonotonic temperature dependence of spin con-
ductance, or conversely spin drag, could be measured in a
setup similar to Refs. [5,32,35], and we have illustrated the
behavior of the conductance for parameters similar to those
in Ref. [5]. The temperature in the experiment of Ref. [5] is
determined to be 55 nK, whereas the increase of spin conduc-
tance at low temperature occurs only below TL ≈ 22 nK for
the parameters used in Fig. 9. As the temperature TL = vσ /L
increases with decreasing wire length, a shorter wire could
allow for observing the upturn of the conductance at T < TL.
For a very short system and a low particle density, however,
a field-theory description may not be accurate. Lower temper-
atures in the experiment could therefore help to observe the
nonmonotonic temperature dependence unambiguously.

VIII. CONCLUSIONS

In summary, we have investigated theoretically the spin
conductance in an interacting one-dimensional wire con-
nected to noninteracting leads. We use the sine-Gordon model

as a low-energy field-theory description of the spin degree
of freedom in the wire. Spin transport is an excellent way
to study the sine-Gordon model since a cosine term arises
naturally from the backscattering of fermions with opposite
spin. Therefore, there is no need to introduce an external
periodic potential [32]. The temperature dependence of the
spin conductance is found in different parameter regimes by
combining renormalization-group arguments with perturba-
tive results and instanton calculations. The spin conductance
is found to have a nonmonotonic dependence on temperature
in a region of parameters which mostly coincides with the
strong-coupling regime, as sketched in Fig. 3(b). We provide
an estimate for the temperature range where the nonmono-
tonic dependence could be observed experimentally. We com-
pare our theoretical results to experimental data from mea-
surements with cold atoms in a wire connected to reservoirs
[5], and find a good qualitative agreement.

The present analysis suggests several developments. On the
experimental front, as discussed in the previous section, ob-
servations are at the moment limited to spin-rotation-invariant
interactions and the high-temperature regime where the ther-
mal length is the shortest length scale. It would be interesting
to access also other regimes. For the spin transport, this could
be achieved by spin-dependent interactions. Alternatively, one
could study charge transport in a lattice potential at half filling,
which would allow one to tune independently the parameters
corresponding to Fig. 2. Such systems are however more
sensitive to the inhomogeneity created by the confining poten-
tial. Spin transport with spin-dependent interactions therefore
seems like a promising route.

On the theory side, it would be interesting to study the
present problem by microscopic methods, for example a nu-
merical analysis by methods such as DMRG or other tensor-
network algorithms [44]. This could help in obtaining more
quantitative predictions. An important theoretical question
is the precise effect of temperature. In particular, we have
considered temperature as a cutoff, and it is not clear what
happens to spin transport if this assumption is not valid.
Numerical analyses or studies based on exactly solvable
models [45] would be useful in answering this question.
Last but not least, we consider here the spin conductance
in the linear-response regime. It is well known that for sys-
tems such as an impurity in a Tomonaga-Luttinger liquid,
the nonlinear-response regime is nontrivial and reflects the
power-law correlations in the TLL. An interesting prospect
is therefore to study the consequences of the various energy
scales considered here on the nonlinear response.
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APPENDIX A: CROSS CONDUCTIVITY

The linear response relation defining the conductivity can
be written as I = σE , where I denotes current, σ conductivity,
and E the field. In the case of a spin-dependent field, the
response is given by the conductivity matrix(

I↑
I↓

)
=

(
σ↑↑ σ↑↓
σ↓↑ σ↓↓

)(
E↑
E↓

)
. (A1)

The cross conductivity σ↑↓ = σ↓↑ gives the response of spin-
up current to a field that is applied on spin-down particles.
This corresponds to spin drag in the L → ∞ limit. It can be
written as the current-current correlation

σ↑↓(k, ω) = − i

ω
〈 j∗↑(k, ω) j↓(k, ω)〉,

which can be evaluated in terms of correlations of bosonic
fields.

Current is related to the bosonic fields as

j↑,↓(x, t ) = 1

π
∂tφ↑,↓(x, t ),

which in terms of the spin and charge fields can be written as

j↑(x, t ) = 1

2
[ jρ (x, t ) + jσ (x, t )]

= 1√
2π

[∂tφρ (x, t ) + ∂tφσ (x, t )],

j↓(x, t ) = 1√
2π

[∂tφρ (x, t ) − ∂tφσ (x, t )].

The cross conductivity is given by the Kubo formula [10]

σ↑↓(x, t ) = 1

i(ω + iδ)

1

2π2

×
∫ L/2

L/2
dx′dt ′[〈∂tφρ (x, t ); ∂t ′φρ (x′, t ′)〉

− 〈∂tφσ (x, t ); ∂t ′φσ (x′, t ′)〉]
= σρ (x, t ) − σσ (x, t ), (A2)

where

〈A(x, t ); B(x′, t )〉 = −i�(t − t ′) 〈{A(x, t ), B(x′, t ′)}〉
denotes the retarded correlation function and �(t ) the step
function. In the case of free particles, the two terms in
Eq. (A2) cancel and there is no spin drag, whereas for inter-
acting particles, the terms do not necessarily cancel.

1. Attractive interactions

For attractive interactions, the cosine term of Eq. (5) is rel-
evant. One can approximate the cosine by a Taylor expansion
close to the minimum, which for g1 < 0 is at φσ = 0. Up to

the first two terms,

cos(
√

8φσ ) ≈ 1 − 1

2
(
√

8φσ )2 = 1 − 4φ2
σ .

Leaving out the constant term, the spin Hamiltonian becomes

Hσ = 1

2π

[
vσ Kσ (∂xθσ )2 + vσ

Kσ

(∂xφσ )2

]
− 2g1

(πα)2
φ2

σ .

The expectation values in Eq. (A2) can be evaluated as func-
tional integrals. For the charge conductivity, one obtains

σρ (ω)

= − i

2π2
(ω + iδ) 〈φ∗

ρ (k = 0, ωn)φρ (k = 0, ωn)〉
iωn→ω+iδ

= i

2π

vρKρ

ω + iδ

= 1

2
vρKρδ(ω) + i

2π
vρKρP

(
1

ω

)
,

where P denotes the principal value. At ω = 0, the charge
conductivity is therefore infinite. For the spin conductivity,

σσ (ω) = i

2π

ωvσ Kσ

ω2 − 4g1⊥vσ Kσ

πα2 + iδ
, (A3)

so that σσ (ω = 0) = 0. The cross conductivity σ↑↓(ω) is
therefore given by only the charge conductivity at ω → 0
(static electric field), and is nonzero. Physically, a nonzero
spin drag for attractive interactions is caused by the spin-up
and spin-down particles forming pairs.

2. Repulsive interactions

For Kσ > 1, below the separatrix in Fig. 2, the coupling
y1⊥ renormalizes to zero and the cosine term of Eq. (5) is
irrelevant. The Luttinger parameter Kσ renormalizes to a value
K∗

σ on the y1⊥ = 0 axis. For repulsive spin-rotation-invariant
interactions on the separatrix, K∗

σ = 1. The charge conductiv-
ity is the same as in the case of attractive interactions, and the
spin conductivity for the renormalized quadratic model has
the same form as the charge conductivity. We therefore have

σ↑↓(ω) = i

2π

(
vρKρ

ω + iδ
− vσ K∗

σ

ω + iδ

)

= 1

2

(
vρKρ − vσ K∗

σ

)
[δ(ω) + i

π
P

(
1

ω

)
].

For a Galilean-invariant system, vρKρ = vF . On the separa-
trix, one has the renormalized value K∗

σ = 1, and the expres-
sion simplifies to

σ↑↓(ω) = 1

2
(vF − vσ )

[
δ(ω) + i

π
P

(
1

ω

)]
.

At ω = 0, the cross conductivity is given by the delta-function
term. If vF �= vσ , this expression is nonzero, giving a finite
spin drag.

APPENDIX B: CONDUCTIVITY AT HIGH TEMPERATURE

Conductivity at high temperature with respect to the gap
can be calculated by writing the conductivity in terms of
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the memory function M(ω, T ) [36]. This function contains
the spin current-current correlation, which can be calculated
perturbatively. For fermions with spin, the Kubo formula for
conductivity can be written in the form

σσ (ω) = i

ω

[
2vσ Kσ

π
+ χ (ω)

]
,

which gives the spin conductivity in terms of the retarded
spin current–current correlation χ (ω). At ω = 0, one obtains
χ (0) = −2vσ Kσ /π , so that the spin conductivity can be writ-
ten as

σσ (ω) = i2vσ Kσ

πω

[
1 − χ (ω)

χ (0)

]
.

In terms of the memory function M(ω, T ),

σσ (ω, T ) = i2vσ Kσ

π

1

ω + M(ω, T )
, (B1)

where

M(ω) = ωχ (ω)

χ (0) − χ (ω)
.

When y1⊥ is small, χ (ω �= 0) is small and one can approxi-
mate the denominator as χ (0) − χ (ω) ≈ χ (0). The numera-
tor can be expressed as [36]

ωχ (ω) = − 1

ω
[〈F ; F 〉ω − 〈F ; F 〉ω=0],

where F is the commutator F = [H, j(t )] and

〈F ; F 〉ω = −i
∫ ∞

0
dteiωt 〈[F (t ), F (0)]〉. (B2)

For ω = 0, one has 〈F ; F 〉ω=0 = −i
∫ ∞

0 dt 〈[F (t ), F (0)]〉.
The expectation value cannot be evaluated for the full

Hamiltonian with the backscattering term, but for small y1⊥
we can approximate it by using the quadratic Hamiltonian H0

σ .
The memory function is thus approximated as

M(ω) ≈ −〈F ; F 〉0
ω − 〈F ; F 〉0

ω=0

ωχ (0)
.

At T  �σ and ω � T , one obtains the expression [36]

M(ω = 0, T ) ≈ i
g2

1⊥Kσ

π3α2
B2(Kσ , 1 − 2Kσ ) cos2(πKσ )

× 1

T

(
2παT

vσ

)4Kσ −2

, (B3)

where B denotes the beta function. At ω = 0, Eq. (B1) gives
the expression

σσ (0) = i2vσ Kσ

πM(0)
(B4)

for the spin conductivity. Substituting the expression (B3)
shows that the temperature dependence has the form

σσ (0) ∝ 1

g2
1⊥

T 3−4Kσ . (B5)

If Kσ does not change in renormalization, one obtains the
same temperature dependence of the spin conductivity with

the renormalized coupling

g1⊥(l∗) = g1⊥(0)e(2−2Kσ )l∗ ,

where the length scale l∗ is given by α(l∗) = α(0)el∗ = vσ /T .
If Kσ is not scale invariant, one obtains a modified exponent
in Eq. (B5). The expression for the memory function is
valid when the cosine term is irrelevant and a perturbation
expansion in y1⊥ converges. One can however use the memory
function approach also in the regime where the cosine term is
relevant when α(l ) reaches LT before y1⊥(l ) ∼ 1. This will
only occur at energy scales (temperature or frequency) larger
than the spin gap.

APPENDIX C: EXPERIMENTAL PARAMETERS

Experimental parameters such as optical trapping frequen-
cies and the scattering length can be related to the effective
parameters Kσ and y1⊥ of Eq. (3) via the Gaudin-Yang model
of Eq. (2). In the Gaudin-Yang model, interactions are de-
scribed by an effective delta-function potential with strength
g1⊥. For fermions confined in a quasi-1D geometry, g1⊥ can
be calculated as [39]

g1⊥ = 2h̄ω⊥a

1 − A a
a⊥

, (C1)

where h̄ = h/(2π ) is the reduced Planck constant, ω⊥ the
transversal confinement frequency, a the s-wave scattering
length in three dimensions, a⊥ the oscillator length, m the
mass of the atoms, and A a constant coming from a wave-
function expansion in the derivation of the effective 1D inter-
action potential [46]. The transversal confinement frequency
is given by ω⊥ = √

ωxωz and the oscillator length by a⊥ =√
h̄/(mω⊥). The parameters corresponding to Fig. 7 are the

same as those of Ref. [5] and are listed in Table II.
The dimensionless coupling y1⊥ is given by

y1⊥ = |g1⊥|
πvσ

, (C2)

where we take the absolute value of g1⊥ to limit the analysis to
y1⊥ > 0 as discussed in Sec. II D. For the Gaudin-Yang model,

TABLE II. Experimental parameters used in Figs. 6, 7, and 9.

Parameter Symbol Value

Reduced Planck constant h̄ 1.054 × 10−34 J s
Boltzmann constant kB 1.38 × 10−23 J/K
Bohr radius a0 5.25 × 10−11 m
Confinement frequency in x direction ωx/(2π ) 23.2 kHz
Confinement frequency in z direction ωz/(2π ) 9.2 kHz
Transversal confinement frequency ωT /(2π ) 14.4 kHz
6Li mass m 6 amu
Atomic mass unit amu 1.66 × 10−27 kg
Constant A 1.0326
Oscillator length a⊥ 1.1 × 10−5 m
Wire length L 5.5 × 10−6 m
Temperature T 5.5 × 10−8 K
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FIG. 10. The renormalized parameters y1⊥(l∗) and Kσ (l∗) as
functions of Kσ (l = 0) and y1⊥(l = 0). The parameters have been
evolved according to Eqs. (6) up to the length scale l∗ at which
either α(l∗) ≈ L or y1⊥(l∗) ≈ 1. The white lines show the separa-
trix y1⊥(0) = 2|K2

σ (0) − 1|/|K2
σ (0) + 1| which corresponds to spin-

rotation-invariant interactions. The solid white line separates the re-
gions corresponding to a gapped �σ > 0 and gapless �σ = 0 system
in the limit L → ∞ as in Fig. 5. We have used here L = 5.5 μm,
α(l = 0) = ρ−1

0 = 1.25 μm, and the discretization δl = 0.1 μm in
Eq. (6). The same values are used in Fig. 5.

the spin velocity vσ has the analytic expressions

vσ

vF
�

{
1 − γ

π2 + · · · , 1
γ

→ −∞,

− γ

π
√

2

(
1 − 2

γ
+ · · · ), 1

γ
→ 0−,

(C3)

in the limits of strong and weak attractive interactions [39].
Here, γ is the dimensionless parameter γ = mg1⊥/(h̄2ρ0).
In practice, we interpolate between the weak- and strong-
interaction expressions to compute both the spin velocity of
Eq. (C3) and the exact spin gap by Eq. (8) in Ref. [39]. At
K = 1, the spin velocity is equal to the Fermi velocity vF =
h̄ρ0π/(2m), where ρ0 is the particle density. The Luttinger
parameter Kσ is fixed by y1⊥ on the separatrix:

Kσ =
√

1 − y1⊥
2

1 + y1⊥
2

. (C4)

We choose the short-distance cutoff to be equal to the inverse
density α = ρ−1

0 . The parameters y1⊥(l = 0) and Kσ (l = 0)
calculated from Eqs. (C1)–(C4) for the scattering lengths
shown in Figs. 6, 7, and 9 are given in Table I of the main
text. We use these parameter values as the initial values at
l = 0 and renormalize them according to Eq. (6) as discussed
in Sec. III. Figures 5 and 10 show the renormalized values
y1⊥(l∗) and Kσ (l∗) as functions of the initial ones.

APPENDIX D: RENORMALIZATION OF y1⊥ AND Kσ

AT LOW TEMPERATURE L, L� � LT

We analyze the spin conductance at low temperature by
renormalizing the parameters up to a length scale l∗ at which
one of two criteria is reached: (i) either α(l∗) ∼ L, at which
point the system can be thought of as zero-dimensional and
has different RG equations, or (ii) y(l∗) ∼ 1. Figure 10 shows
how the renormalized parameters Kσ (l∗) and y1⊥(l∗) depend
on Kσ (l = 0) and y1⊥(l = 0), similarly to Fig. 5. Note that
the diagram for the RG flow in Fig. 2 corresponds to the
thermodynamic limit, whereas the finite length of the wire in
Fig. 10 leads to a region with y1⊥(l∗) < 1 above the separatrix.

APPENDIX E: RENORMALIZATION EQUATION FOR
THE STRONG LOCAL BACKSCATTERING

When T < TL < �σ , renormalization of the parameters
leads to y1⊥(l∗) ∼ 1 while α(l∗) < L. One cannot use RG
equations which are perturbative in y1⊥ to renormalize the
parameters further. In this situation, even though α(l∗) < L,
we can expect the conductance of the finite-length wire to
be sufficiently well described by a local backscattering term
at x = 0 with y1⊥ � 1. This local term in the Hamiltonian is
given by Eq. (10). Instead of y1⊥, one can now use a different
parameter related to local backscattering to formulate pertur-
bative RG equations.

To find the renormalization equation in the case of a strong
local backscattering term, we consider the partition function

Z =
∫

Dφσ (τ )e−S.

The action S = S0 + S′
0 + Sg contains the quadratic part S0, a

term S′
0 coming from the regularization of S0 at short times,

and the backscattering at x = 0:

Sg = y1⊥πvσ

2π2L

∫
dτ cos[2

√
2φσ (x = 0, t )].

When the coefficient of this term is large, one can evaluate
the partition function by a saddle-point approximation of the
action. The trajectories φσ (τ ) which minimize the action cor-
respond to instanton solutions of the Euler-Lagrange equation.
One can think of the instantons as tunneling events where the
field φσ shifts from one minimum of the cosine to the next.
The minima are separated by 2π , so that φσ changes by π/

√
2

in a tunneling event. The instanton-type solutions therefore
have the shape of a step or kink in time where φσ (τ ) changes
by π/

√
2.

When there are multiple such steps at times τi, the solution
can be written as the sum of functions φ̃σ (τ − τi ) with one
step,

φσ (τ ) =
∑

i

εiφ̃σ (τ − τi ),

where εi = ±1 for steps in the positive or negative direction.
Similarly to the spinless case in Refs. [33,47], we obtain the
partition function for the spin sector as

Z =
∞∑

p=0

f 2p
∫ β

0

dτ2p

δ

∫ τ2p−δ

0

dτ2p−1

δ
· · ·

∫ τ2−δ

0

dτ1

δ

×
∑

ε1,...ε2p=±
e

1
Kσ

∑
i> j εiε j ln(

τi−τ j
δ

).

Here, the first sum accounts for trajectories with different
numbers of instantons p. In order to allow only trajectories
which are periodic in imaginary time, φσ (β ) = φσ (0), there
can only be an even number of instantons on a given trajectory.
For the same reason, one has the condition

∑
i εi = 0. The

parameter f is the fugacity of an instanton,

f = e−Sinst ,

containing the instanton action 2pSinst = S′
0 + Sg. The in-

stanton action can be obtained as a constant Sinst ∝ √
y1⊥.
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When y1⊥ > 1, f = e−Sinst � 1, and we can approximate the partition function by the first two terms,

Z = 1 + f 2
∫ β

0

dτ2

δ

∫ τ2−δ

0

dτ1

δ

∑
ε1,ε2=±

e
1

Kσ
ε1ε2 ln( τ2−τ1

δ
) = 1 + 2 f 2

∫ β

0

dτ2

δ

∫ τ2−δ

0

dτ1

δ

(
δ

τ2 − τ1

) 1
Kσ

.

The integral has the scaling dimension L2− 1
Kσ , which gives the RG equation

df (l )

dl
=

(
1 − 1

2Kσ

)
f (l ).
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