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Collective ground states in small lattices of coupled quantum dots
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Motivated by recent developments on the fabrication and control of semiconductor-based quantum dots, we
theoretically study a finite system of tunnel-coupled quantum dots with the electrons interacting through the long-
range Coulomb interaction. When the interelectron separation is large and the quantum dot confinement potential
is weak, the system behaves as an effective Wigner crystal with a period determined by the electron average
density with considerable electron hopping throughout the system. For stronger periodic confinement potentials,
however, the system makes a crossover to a Mott-type ground state where the electrons are completely localized
at the individual dots with little interdot tunneling. In between these two phases, the system is essentially a
strongly correlated electron liquid with intersite electron hopping constrained by strong Coulomb interaction.
We characterize this Wigner-Mott-liquid quantum crossover with detailed numerical finite-size diagonalization
calculations of the coupled interacting quantum dot system, showing that these phases can be smoothly connected
by tuning the system parameters. Experimental feasibility of observing such a hopping-tuned Wigner-Mott-
liquid crossover in currently available semiconductor quantum dots is discussed. In particular, we connect our
theoretical results to recent quantum-dot-based quantum emulation experiments where a collective Coulomb
blockade was demonstrated. We discuss realistic disorder effects on our theoretical findings. One conclusion
of our work is that experiments must explore lower density quantum dot arrays in order to clearly observe the
Wigner phase although the Mott-liquid crossover phenomenon should already manifest itself in the currently
available quantum dot arrays. We also suggest a direct experimental electron density probe, such as atomic force
microscopy or scanning tunneling microscopy, for a clear observation of the effective Wigner crystal phase.
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I. INTRODUCTION

Wigner pointed out in 1934 [1] that free electrons inter-
acting via the long-range Coulomb interaction (and in the
presence of a compensating positive charge background to
keep the system stable) may condense into a quantum crystal
solid phase provided the electron density is low enough so that
the quantum kinetic energy is overwhelmed by the Coulomb
potential energy, leading to a periodic spatial density modula-
tion instead of a uniform density distribution preferred by the
noninteracting or the weakly interacting usual electron liquid
system. The Wigner crystal is simply a crystal of electrons just
as ordinary ions form a crystalline solid driven by their poten-
tial energy at not too high temperatures. The tricky issue for
a quantum Wigner crystal is that the electron effective mass
being very low compared with ionic masses, the quantum
Wigner crystallization necessitates very low carrier densities
(as well as very low temperatures) in order to overcome
quantum fluctuations which prefer the electron liquid (or gas)
phase so as to minimize the kinetic energy. In one-dimensional
(1D) systems where electrons interact via a long-range poten-
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tial, a 1D quantum Wigner crystal manifesting true long-range
order is not allowed but finite systems still have signatures of
short-range order associated with Wigner crystallization [2]
and references therein. Indeed, finite size 1D Wigner crystals
have been measured, most recently in Ref. [3] in a carbon
nanotube. In addition, a classical 2D Wigner crystal has been
observed in low density electrons confined to the surface of
He-4 [4].

Fifteen years after Wigner’s prediction for quantum crys-
tallization tuned by Coulomb interaction, Mott in 1949 con-
jectured a new type of “electron solid,” the Mott insulator,
where band electrons could localize at the lattice sites when
the hopping or intersite-tunneling amplitude is suppressed
strongly by increasing the lattice period [5]. The underlying
mechanism is that for weak enough electron hopping (i.e.,
for large enough lattice period) compared to the interaction
strength, the metallic band electrons would simply find it ener-
getically unfavorable to hop between lattice sites and become
localized at individual sites to minimize their potential energy.
Although both Wigner and Mott solids are driven by electron-
electron interactions with the itinerant metallic electron liquid
phase going over to the localized electron solid phase [6,7],
there are significant conceptual differences between the two
localized phases, and the possible relationships between the
two are virtually unexplored. The existence of the Wigner
crystallization depends crucially on the long-range nature of
Coulomb interaction in a free electron type model, whereas all
modern discussions of the Mott insulator are typically based
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on the Hubbard model, which is a tight-binding description of
a short-range on-site interaction between electrons of opposite
spins. The original 1949 idea of the Mott insulator did, how-
ever, invoke the Coulomb interaction between the electrons as
the driving force for electron localization at the lattice sites.
Wigner crystallization spontaneously breaks the translational
invariance, whereas the Mott metal-insulator transition obeys
the periodic symmetry of the underlying lattice. Another
conceptual difference between the two is that the Wigner solid
can, in principle, conduct since the whole solid can move in
the presence of an external electric field (unless pinned by
impurities or defects), whereas the Mott solid is an insulator
by definition (“Mott insulator”) since the external lattice obvi-
ously pins the system allowing no electric charge conduction.
In real life, Wigner crystals are almost always pinned since
there is always some external pinning potential, thus typical
Wigner crystals are also insulators although conceptually they
do not have to be. In the current work, the electrons are always
subjected to a background potential (albeit very weak in the
Wigner case), and therefore, the Wigner and Mott solids in the
context of our work are both insulators. In fact, even the finite-
size electron liquid state in our work is strictly speaking an
insulator with a very small energy gap because of the physics
of Coulomb blockade associated with Coulomb interaction in
any finite systems.

In the current work we theoretically study the crossover
between Mott and Wigner insulators, specifically in the con-
text of small arrays of coupled quantum dots in semiconductor
structures. Such small analog solid state quantum emulator
systems consisting of a few (2–9) quantum dots have recently
been developed in Delft [8,9] and Princeton [10]. In fact,
recent experiments and theory have emphasized the possi-
bility of studying quantum ferromagnetism using quantum
dot arrays [11–13]. In particular, exquisite quantum control
and precise fabrication enable experimentalists to control
the electrostatic environments of these coupled quantum dot
arrays to such a degree that both the interdot tunneling and
the number of electrons per dot can be tuned at will. We
emphasize that the fabrication and control of these coupled
quantum dot arrays serve as the primary motivation of our
work, and we firmly believe that it should be possible to
eventually observe the evolution from a Wigner solid phase
to a Mott insulator phase by appropriately tuning the elec-
trostatic environment in such quantum dot arrays although it
appears that an observation of the Wigner-like phase would
be a challenge in the currently available quantum dot arrays
where only the Mott and the liquid phase are accessible right
now. Our hope is to motivate such measurements in the future.

It may be useful for us to recapitulate the elements of
Wigner and Mott physics to motivate our work. Conceptually,
it is easier to start by discussing the quantum Wigner solid
although it is much more difficult to achieve the crystal
phase experimentally. We imagine a collection of N electrons
interacting via the Coulomb interaction in a d-dimensional
space of linear size L. There must be some external potential
confining the electrons so that they do not fly apart, and we
assume that such a confining potential is present defining the
total system size L. Now the problem is defined at T = 0
simply by the dimensionless length rs = 1/(naB), where n =
N/Ld is the effective electron density and aB is a unit of

length, conventionally taken to be the effective Bohr radius
of the system. Here rs, sometimes called the Wigner-Seitz
radius, is the average dimensionless separation between two
electrons. Note that we are skipping over factors of various
powers π in defining rs for the sake of simplicity in the discus-
sion. The Coulomb interaction between electrons goes as 1/rs

and the quantum kinetic energy goes as n2 or 1/r2
s based on

the uncertainty principle. This means that for low density or
large rs, the system would crystallize keeping the interelectron
separation maximal so as to minimize the potential energy
cost, whereas for small rs, the system is an electron liquid to
minimize the quantum fluctuations associated with the kinetic
energy. There have been many detailed numerical calculations
evaluating the critical value rc of the rs parameter separating
the Wigner solid phase from the electron liquid phase, and
rc ∼ 30 in d = 2 and rc ∼ 100 in d = 3 [14–16], making
Wigner crystallization an extreme low-density phenomenon
not of any relevance to ordinary metals which have rs ∼ 5.
In addition to having a low critical density, Wigner crystal-
lization also necessitates a very low temperature (�TF where
TF is corresponding Fermi temperature). Note that Wigner
crystallization automatically comes with a length scale of the
Wigner crystal period, which is commensurate with kF since
the crystal must have a period connected to the corresponding
electron density.

While the Wigner physics arises from the competition
between the free electron kinetic energy and the Coulomb
potential energy (in the absence of any background lattice
potential), the Mott insulator arises from the physics of narrow
bands in a background periodic lattice where the quantum ki-
netic energy is typically the intersite electron hopping energy
t . When this hopping energy is much smaller than the typical
Coulomb energy between the electrons on neighboring sites,
the system, according to Mott, will minimize the Coulomb
energy by becoming completely localized on the lattice sites.
So the condition for Mott transition from a band metal to a
Mott insulator on a tight-binding lattice is that t � Ec. Given
that t typically decays exponentially with the lattice spacing a
while Ec ∼ 1/a, dimensional arguments suggest such a Mott
transition at large values of a although such an argument does
not prove that this transition must happen and does not provide
the critical lattice separation defining the Mott transition. We
also note that strictly speaking a 1D system cannot have a
true long-range ordered Wigner crystal although the situation
would resemble a crystal on finite scale [17]. This distinction
would not be important for our work since we manifestly
consider small systems of current experimental interest in the
semiconductor quantum dot qubit community.

Since our motivation is to study coupled quantum dots, we
specifically consider a 1D array of Nd dots, which we model
by a periodic background potential. (Our system thus has two
independent length scales defined by the lattice period and the
average electron density.) The 1D nature of the system is both
a great simplification and a substantial complication. Many
things are known exactly in 1D (unlike in higher dimensions)
about interacting electron systems, both on a tight-binding
lattice and in the continuum (i.e., free electronlike). In partic-
ular, it is known that there is no Wigner crystallization phase
transition in a Coulomb interacting 1D electron system in the
thermodynamic limit (i.e., there is no unique rc for 1D Wigner
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crystallization), but the system develops strong short-range
periodic order at the length scale of average electron sepa-
ration which falls off very slowly (slower than any power law)
[17–19], and as such, it appears to be a crystal on finite length
scale (although there is no long-range order). By contrast, a
1D half-filled periodic system with short-range interactions is
known to be insulating [20], which for our purpose can be
construed to be a Mott insulator. Also, the “metallic” electron
liquid phase is a Luttinger liquid in one dimension in contrast
to a normal Fermi liquid as in higher dimensions although
the Luttinger liquid aspects of the underlying physics do not
enter explicitly into our finite size theory where we use exact
diagonalization to obtain our results.

In our work we vary the strength of the periodic potential in
a 1D array in the presence of Coulomb interaction to smoothly
interpolate between the strong tight-binding limit, where the
periodic potential is very strong, and the free electron limit,
where the periodic potential is vanishingly small. We calculate
the electron density in the collective ground state as a function
of system parameters to discern the Wigner and Mott limit in
order to understand the Mott to Wigner crossover in small 1D
coupled quantum dot arrays. The electron liquid phase (with a
small but finite Coulomb gap) arises as the generic crossover
phase in our results with Wigner and Mott phases showing up
in the limit of very weak and very strong lattice potentials,
respectively.

The rest of the work is organized as follows. In Sec. II
we provide our Hamiltonian, explain the various parameters
controlling the crossover physics, and present our exact diag-
onalization results. In Sec. III we describe the Mott-Wigner-
liquid crossover in the system and provide an effective phase
diagram. We also consider the classical situation briefly in
Sec. III. In Sec. IV we connect our results with a recent
experiment reporting the observation of collective Coulomb
blockade in quantum dot arrays. We conclude in Sec. V
discussing future experimental implications of our results
and summarizing our main findings. We provide additional
detailed results in the Appendix to complement the results in
the main text.

II. GROUND STATE OF A COUPLED
QUANTUM DOT ARRAY

We model the quantum dot array by a 1D cosine potential
whose period is the spacing between neighboring dots. We
emphasize that our notations of insulator (conductor) refer to
the localized (extended) state of the electron spatial density
profile. The Hamiltonian reads

H =
N∑

i=1

−h̄2

2m

∂2

∂xi
2

± V0 cos

(
2πxi

a

)

+ h̄2

maB

∑
i< j

1√
(xi − x j )2 + d2

, (1)

with a and V0 being the period and strength of the back-
ground potential, and we use open boundary conditions at
x = ±Nd a/2 where Nd > N is the number of dots. The plus
(minus) sign is for even (odd) Nd . For GaAs electrons, the
effective electron mass is m ∼ 0.06me and the dielectric con-

stant is ε ∼ 10; making the Bohr radius aB ∼ 10 nm, which is
200 times as large as the vacuum value, and the Ryberg energy
Ry ∼ 5 meV, which is 2000 times less than the hydrogen
atom ionization energy. The cut-off d in the Coulomb term
regulates the short-distance behavior of the interaction poten-
tial (and could represent the lateral confinement size of the
system in the direction transverse to the 1D array). However,
as we are interested in states where the electrons are localized
apart from each other, d is not an important parameter as
long as d � a. Throughout this paper we keep d = 0.05a
only for the sake of numerical computation—varying d does
not change the result as long as d � a. The system is then
controlled by two parameters: the interdot spacing a and the
potential height V0. For convenience, we express a and V0 in
terms of aB and Ry, respectively.

To simulate the quantum ground state for each pair of
(a, V0), we use the configuration interaction method to diag-
onalize the Hamiltonian (1). The algorithm consists of two
steps. First, we solve the noninteracting single-particle Hamil-
tonian [Eq. (1) with N = 1] to find the single-particle wave
functions and the corresponding eigenvalues. This Hamil-
tonian is diagonalized in the basis of sine functions sat-
isfying the open-boundary condition. We keep up to 2000
sine functions in this step, testing and ensuring conver-
gence. In the second step we construct the many-body ba-
sis from Slater determinants of single-particle wave func-
tions obtained in the first step. We use up to 25 single-
particle wave functions and 20 000 Slater determinants to
find the many-body interacting ground state. When the Hamil-
tonian has inversion symmetry (in the absence of disor-
der), the Hamiltonian can be diagonalized in blocks, which
saves significant computational resources. The numerical
work is carried out in a large high performance comput-
ing cluster. Most of the simulations are performed with
spinless electrons (unless explicitly stated otherwise, e.g.,
Sec. IV) as the exchange energy is exponentially small for
highly localized states, and including spin in the calculations
does not change anything except for a corresponding change
in the band filling factor because of the spin degeneracy. We
refer to the minima of our cosine potentials as “quantum dots”
as they define the individual lattice sites in the 1D system.
Thus, our “dots” are essentially lattice sites. Nominally, with-
out any interaction, the system is a band metal when the
lowest band is partially filled (i.e., number of electrons is
less than number of dots or sites), whereas it is an ordinary
band insulator when the number of dots equals the number of
electrons (since we consider spinless electrons).

A. Spatial density profile

There are now three energy scales in the system: the kinetic
energy that goes as 1/a2, the periodic background potential
V0, and the Coulomb potential that goes as 1/a. Our contin-
uum Hamiltonian with periodic trapping potential provides
a minimal model for controlling the interplay among these
three energies, thus inducing electron liquid-Wigner crystal
or electron liquid-Mott insulator crossovers. We consider four
electrons in eight dots in Fig. 1, which is a half-filled system
since each dot can be occupied by one spinless electron.
Such a half-filled system is by definition a metal in the
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FIG. 1. Calculated quantum spatial density profile of four spinless electrons in an eight-dot array at T = 0. The upper row: Fixed a = 2 aB

and increasing background potential (a) V0 = 2 Ry, (b) V0 = 12 Ry, and (c) V0 = 30 Ry. The middle row: Fixed V0 = 20 Ry and increasing
interdot spacing (d) a = 1 aB, (e) a = 2 aB, and (f) a = 3 aB. Both rows equivalently describe the tuning to Mott phase. The lower row: Wigner
crystallization with no background potential V0 = 0 and increasing electron spacing (g) a = 1 aB, (h) a = 40 aB, and (i) a = 80 aB. The spatial
density profile of the Winger crystal (i) is qualitatively similar to the Mott phase of (c) and (f).

noninteracting limit since all eight dots will have equal am-
plitudes for electron occupation if there is no interaction.

In Figs. 1(a)–1(c), with increasing V0, the electrons start
to localize on the dots but are still able to hop between
them, thus leaving an effective nonzero charge on all the dots
for V0 not too large. At higher V0, the hopping strength is
suppressed below the Coulomb repulsion, leading to electrons
localizing on a subset of the dots so that they can stay as
far away from each other as possible for the given filling,
thus minimizing the potential energy. Such a localization is
the effective Mott insulator state in contrast to the electron
liquid (or the metallic) state where the electron hopping is
equally probable on all the dots. Figures 1(d)–1(f) describe
the process of increasing the dot spacing at fixed V0. The
interaction energy decreases as 1/a but the hopping strength
is suppressed exponentially with a; therefore the hopping
among the dots is essentially blocked at sufficiently large a,
leaving only four dots occupied similar to the previous case
of increasing V0. Thus our model can be tuned to an effective
Mott insulator either by increasing the background potential
V0 or by increasing the interdot separation a.

In addition, by tuning to V0 = 0, we can simulate the
Wigner crystal formation (low average density) from an elec-
tron liquid (high average density) in Figs. 1(g)–1(i). The result
of increasing the potential energy (either by increasing a or by
increasing V0) is a qualitatively similar state with four distinct
localized density peaks, representing an insulator. Conven-
tionally, the state corresponding to Figs. 1(c) and 1(f) are
called Mott insulator while the state in Fig. 1(i) is the Wigner
crystal. We note that there is no phase transition between
these two localized phases, only a smooth crossover as a
function of V0. We also emphasize that for the noninteracting
situation, where the Coulomb interaction is weak (or absent),

the system in Fig. 1 is always a half-filled metal with all eight
dots equally likely to be occupied by electrons—the electron
localization on four dots (out of eight in the system) leading to
the insulating phase is a direct result of Coulomb interaction
among the electrons. The metallic liquid state is clearly visible
with all eight dots partially occupied by electrons in Figs. 1(a),
1(d) and 1(g) where interaction effects are weak compared
with the hopping kinetic energy. By contrast, Figs. 1(c), 1(f)
and 1(i) represent strongly interacting insulating states in spite
of the system being half-filled.

B. Mott-Wigner incommensurability

In the previous example of four electrons in an eight-dot
array (Fig. 1), the Mott insulator and Wigner crystal phases
are qualitatively similar with the only difference being that
the Mott state is typically more strongly localized (although
the same would be true to the Wigner phase for very large
dot separations). This is not always the case and there can
in fact be a qualitative difference between these two phases
even within the crossover physics being studied here. For
simplicity, we first study the extreme Mott insulator, i.e.,
the hopping strength t → 0. Then the ground state energy is
mostly the Coulomb potential energy

E =
N−1∑
i=1

N∑
j=i+1

W (xi, x j ), (2)

where W is the interaction potential and {x} ⊂
{a, 2a, . . . , Nd a}. If the lowest E is nondegenerate, i.e.,
there is only one set {x} that gives the minimum energy,
the Mott insulator corresponds to a single occupancy
configuration and the number of density peaks is clearly
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FIG. 2. Ground state spatial density profile of four spinless electrons. The upper row: Mott insulator phase at V0 = 1 Ry, a = 70 aB. The
lower row: Wigner crystal phase at V0 = 0.001 Ry, a = 100 aB. (a) and (d) Nd = 7. (b) and (e) Nd = 6. (c) and (f) Nd = 6 with the potential
on the fourth dot enhanced by 10%.

the number of electrons, similar to a Wigner crystal.
Otherwise, the Mott state is a superposition of multiple
occupancy configurations, resulting in a higher number of
density peaks. We call these cases “incommensurate”—here
the incommensuration is with respect to the ratio of the
number of spatial density peaks in the ground state to the
number of electrons (e.g., four peaks for four electrons as
in Fig. 1 is commensurate). By numerical trials on Eq. (2)
with Coulomb potential W (xi, x j ) ∝ 1/|xi − x j |, we find
that N = 4 is incommensurate with Nd = 3m and N = 3
is incommensurate with Nd = 2m with m an integer. For
larger N , the rule of incommensurability is more complex.
In Figs. 2(a) and 2(b) and Figs. 2(d) and 2(e) we show the
spatial density profiles of four spinless electrons in Nd -dot
arrays in the Mott insulator (high V0) and the Wigner crystal
(low V0) phases by varying Nd (>4, with the number of
electrons fixed at four). While the Wigner crystal phase
always has four density peaks regardless of the number
of dots (corresponding to four electrons in the system—the
Wigner phase must always be commensurate with the electron
number), the Mott phase has four peaks for Nd = 7 and six
peaks for Nd = 6 due to the degeneracy of the Coulomb
potential when Nd is a multiple of 3 (other cases of Nd are
shown in the Appendix). We note that this incommensuration
arising from degeneracy is only possible when all the dots
are identical. As a result, the incommensurate state is fragile
and may not be observed experimentally unless disorder
is minimal in the system. Specifically, in Figs. 2(c) and
2(f) the fourth dot from the left has a 10% enhanced local
trapping potential, thus slightly altering the periodic cosine
potential of the model, leading to the density profile of the
incommensurate Mott phase at Nd = 6 to shift dramatically
from six to four density peaks. Additional results emphasizing
the Mott incommensurability and comparing Mott/Wigner
phases are provided in the Appendix.

Although it seems that a slight disorder can wash out the
Mott incommensurate phase, this phase can be recovered by
averaging density profiles from different randomized disorder
configurations. In Fig. 3 we show the calculated effect on the
Mott phase (a = 3 aB, V0 = 15 Ry) of adding a randomized
disorder potential to the background lattice confining periodic

potential. The background potential in the presence of the
random potential F (x) is

V (x) = V0 cos(2πx/a) + F (x), (3)

where the disorder F (x) is chosen to have a Gaussian random
distribution with zero mean and a variance given by Vrms.
The displayed density profiles are averaged over 100 disorder
configurations. For the given parameters, the typical Coulomb
interaction energy is Ec = e2/a ≈ 0.67 Ry. The quantum dot
array parameters for Fig. 3 (i.e., values of a, V0, etc.) have been
chosen to correspond to a realistic GaAs-based experimental
quantum-dot system being studied at Delft University [21].
When Vrms < Ec [see Figs. 3(a) and 3(b)], the ground state
degeneracy is lifted and the system retreats to one particular
occupancy configuration, thus destroying the incommensurate

FIG. 3. Average density profiles [blue (dark) lines] and the cor-
responding standard deviations [green (gray) dashed lines] of incom-
mensurate Mott phases having a = 3 aB (Ec ≈ 0.67 Ry) and V0 = 15
Ry. (a) and (c) N = 3 and Nd = 6. (b) and (d) N = 4 and Nd = 9.
With Vrms = 0.01V for (a) and (b), the incommensurate Mott phase is
recovered as Vrms < Ec. With Vrms = 0.1V0 for (c) and (d), the number
of peaks equals the number of dots due to the disorder-induced
localization as Vrms > Ec.
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FIG. 4. Similar to Fig. 3 but for Wigner phases having a =
100 aB and V0 = 10−3 Ry. (a) N = 3, Nd = 6, and Vrms = 0.01V0.
(b) N = 4, Nd = 9, and Vrms = 0.1V0. The number of peaks always
equals the number of electrons and the density standard deviation
is much smaller than the average value, showing that disorder, in
general, has little influence on the Wigner phase.

state. However, by averaging over different disorder configu-
rations, this state can be observed. On the other hand, when
Vrms > Ec [see Figs. 3(c) and 3(d)], the localization is driven
by the disorder instead of the interaction. The result is the
averaged density profile with all the dots occupied. Moreover,
the density standard deviation in each dot is almost identical,
as opposed to the disordered Mott phase. This should be
construed more as the Anderson-Mott localized phase in the
presence of both disorder and interaction rather than the Mott-
Hubbard localized phase driven solely by interaction.

Proceeding similarly for the Wigner phase, we show in
Fig. 4 that disorder hardly affects the Wigner density profile
through the fact that the standard deviation is much smaller
than the average density, allowing a clear identification of the
density peaks associated with the effective Wigner crystal. In
conclusion, the possibility of a qualitative distinction between
the Mott phase and the Wigner phase in a slightly disordered
background potential based on commensurability is one im-
portant new finding of our work. We do believe that the in-
commensuration physics shown in Fig. 2 is the most decisive
way to distinguish between the Mott and the Wigner phase.
As emphasized above, the incommensuration Mott physics
would manifest itself directly in clean samples with very little
disorder or in disordered samples through averaging, whereas
the Wigner phase remains relatively immune to disorder and
incommensuration.

C. Charge gap

In addition to the nature of the spatial density profiles
(localized or extended) discussed above (Figs. 1 and 2), insu-
lators can also be differentiated from metals by the existence
of a nonzero charge gap—the energy needed to add a single
electron to the system, analogous to the Coulomb blockade
effect [8,22]. The charge gap of a system that already has N
electrons with the (N + 1)th electron added is defined as

�E (N ) = E (N + 1) + E (N − 1) − 2E (N ), (4)

where E (N ) is the ground state energy of the N-electron array.
In the inset of Fig. 5 we show the charge gap of an eight-dot
array with four electrons at fixed V0 = 2 Ry as a function of
the average density n = 2/a. At low average density, the gap
grows linearly with n up to some value nc; then the slope in-

FIG. 5. The effective exponent of the charge gap �E of a four-
electron eight-dot array with respect to the average density n = 2/a.
This exponent approaches 1 at low density and 2 at high density. The
inset shows the charge gap with varying average density n at fixed
V0 = 2 Ry in logarithmic scales.

creases signaling a change in the exponent of n, corresponding
to a switch in the dominant energy scale. In the main Fig. 5 we
compute the effective exponent d ln(�E )/d ln(n) for different
V0. There is a universal behavior: at low n (i.e., large a), the ex-
ponent approaches 1 reflecting the dominance of the Coulomb
interaction in the strongly localized insulating regime; at high
n (i.e., small a), the exponent approaches 2 as the kinetic
energy takes over the system in the strong metallic extended
regime. However, the crossover density nc increases with V0.
This is because V0 helps effective localization compared with
the free electron situation by constraining the kinetic energy
of electron motion.

The charge gap increases with the density and grows
linearly at low average density. Then it can be inferred that the
charge gap is always nonzero for any pairs of (a,V0) defining
our model. This is the direct result of the long-range nature
of the interaction. To show the relevance of the interaction
range in this context, we repeat the calculation for a model
short-range interaction with a range rm such that W (x1, x2) ∝
1/

√
(x1 − x2)2 + d2 for |x1 − x2| � rm and W = 0

otherwise, focusing on the low-n regime where the charge
gap is mostly due to the interaction. In Fig. 6, contrary to the
ever increasing charge gap in the long-range case, short-range
interacting systems have a finite region of zero charge
gap. Specifically, the charge gap first peaks at n = 1/rm,
corresponding to one electron per interaction range. Other
peaks occur at higher electron fillings over the interaction
range, i.e., at the average densities of 2/rm and 3/rm. This
result is qualitatively consistent with exact results for the
short-range 1D Hubbard model. In the limit V0 → ∞ and
rm → 0, i.e., the zero-range spinful interacting Hubbard
model, the exact solution [20] shows that the charge gap starts
to appear when every site is occupied (half-filling) so that the
added electron must occupy a filled site and interact with the
electron already located there. For the finite-range spinless
model used for our results in Fig. 6, we may therefore expect
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FIG. 6. Charge gap of four electrons in an eight-dot array with
long-range and modified short-range interactions (with a range rm)
at V0 = 5 Ry. The gaps of short-range cases first peak at n ≈ 0.025,
0.04, and 0.1 a−1

B for rm = 40, 25, and 10 aB, respectively.

that the charge gap should emerge when each interaction
range rm is filled by more than one electron. As a result, in a
system interacting via the infinite-range Coulomb potential,
the charge gap is always nonzero. In the thermodynamic
limit, i.e., N, Nd → ∞ but N/Nd and the hopping strength
t staying finite, within the long-range Hubbard model, the
insulator-metal crossover has been hypothesized to happen
when the interaction range increases which is consistent with
our finding for the model with rm [23,24].

We mention that our finding of a small charge gap in the
liquid phase and a large charge gap in the Mott phase is
analogous to what was termed “collective Coulomb blockade”
and “Mott gap” (or just ordinary Coulomb blockade) in the
context of Hubbard model-based studies of coupled quantum
dots [8,22]. In particular, strong interdot tunneling in the
liquid phase leads to the delocalized behavior that all the
dots are undergoing Coulomb blockade together, whereas in
the strongly localized Mott phase, each electron is strictly
localized in individual dots leading to a large charge gap
associated with Coulomb blockade in a single small dot. Thus,
Mott to liquid crossover is also a crossover between individual
Coulomb blockade to collective Coulomb blockade. Interest-
ingly, the Wigner phase also manifests the collective Coulomb
blockade.

III. MOTT-WIGNER-LIQUID CROSSOVER

A. Localized phase

We now discuss the crossover between the Mott phase,
with a strong lattice potential, and the Wigner phase, where
the lattice potential is absent (or very weak). We emphasize
that there is no quantum phase transition here, and the dif-
ference between the two phases is purely qualitative with
the Mott phase being commensurate (incommensurate) with
the lattice (electron density) and the Wigner phase being the
opposite in the thermodynamic limit. In fact, even the electron
liquid to the Mott (or Wigner) phase in our finite 1D system

is a crossover as a function of the lattice potential (and/or
the interparticle separation) with no true phase transition
although qualitatively the spatial electron density is localized
(extended) in the Mott/Wigner (liquid) phase as shown in
Figs. 1 and 2.

In the limit of strong lattice trapping potential, we expect
the crossover to depend strongly on V0. In this regime, the
system can be mapped into a tight-binding model [23–25].
We note that this approximation already excludes the Wigner
crystal phase, which exists only for very low V0 where the sys-
tem is essentially free electronlike. Within the tight-binding
model, by definition, there can be no Wigner crystal phase,
only Mott and liquid phases. We first discuss the crossover
between the liquid and the Mott phase [e.g., Figs. 1(a) to
1(c) or Figs. 1(d) to 1(f)]—here the interacting electron liquid
is a Luttinger liquid because the system is one dimensional,
and therefore, the crossover we are discussing is a Luttinger-
Mott crossover (although this is entirely academic and of no
particular significance to our consideration). Within the on-
site interacting Hubbard model and the thermodynamic limit
N, Nd → ∞, the conditions for a Luttinger-Mott crossover are
as follows: (i) the number of particles commensurate with
lattice sites n̄ = Nd/N is an integer, and (ii) the Luttinger
interaction constant is K < 1/n̄2 [26,27]. We have already
shown that the commensurability for finite sizes and long-
range interaction is defined by more complex conditions, and
therefore we expect the finite-size Luttinger-Mott criteria to
be modified from these infinite system conditions.

The tight-binding model uses site indices i = 1, . . . , Nd

instead of the continuum position variable, hence we first need
to rescale our Hamiltonian (1) with respect to the interdot
spacing in order to obtain the tight-binding limit

H = h̄2

ma2

[
N∑

i=1

∂2

2∂Xi
2 ± V cos(2πXi )

+
∑
i< j

rs√
(Xi − Xj )2 + η2

⎤
⎦, (5)

where X = x/a and the two controlling dimensionless param-
eters are

V = ma2V0/h̄2, rs = a/aB. (6)

If V0 is in Ryberg energy and a is in Bohr radius, the relation
reduces to V = V0a2/2 and rs = a. The soft Coulomb constant
η = d/a is chosen to be 0.05 as in the previous section.
The corresponding spinless single-band tight-binding model
is then

Htb =
(∑

i

tc†i ci+1 + H.c.

)
+

∑
i< j

rs

|i − j|nin j . (7)

As the number of electrons chosen is less than the number
of dots and electrons repel each other, double occupancy is
unlikely (we can always impose it as a constraint). Therefore,
we ignore both the spin degree and the on-site interaction,
thus considerably simplifying the problem. However, elec-
trons at different sites can interact through the long-range
Coulomb interaction described by the second term in Eq. (7).
As we already point out in Sec. II C, this term qualitatively
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FIG. 7. Occupancy of a spinless single-band tight-binding model
with four electrons in eight sites interacting through Coulomb force.

resembles the on-site interaction strength U in the Hubbard
model. The hopping strength t can be estimated by the WKB
approximation. For large V , the kinetic energy of the particle
inside the dot is k2 ∼ √

V � V , so we can estimate k2 ≈ 0
and classical turning points as X1 ≈ −0.5 and X2 ≈ 0.5. The
tunneling amplitude is approximately

t ∝ exp

[∫ X2

X1

−
√

2[V (X ) − k2]dX

]

≈ exp[−1.27
√

V ]. (8)

To validate Eq. (8), we consider a translationally in-
variant single-particle 1D Hamiltonian with a cosine poten-
tial H = −∂2

X /2 + V cos(2πX ). This Hamiltonian has exact
solutions—the Mathieu function, allowing us to calculate the
bandwidth δ = E (k = π ) − E (k = 0). We obtain the deriva-
tives of d ln δ/d

√
V at V = 25, 100, 400, and 600 as 0.92,

1.12, 1.20, and 1.22, respectively. Therefore, even though
the correct asymptote is t ∝ e−1.27

√
V , for the range V <

100 used in our simulation, it is reasonable to approximate
t ∝ e−1.0

√
V . Then, by fitting the ground state energy of the

eight dots–four electrons continuum model given in Eq. (5)
to the corresponding tight-binding model for rs = 0, we have
the approximate relation t = 24 exp(−1.0

√
V ) connecting the

continuum and the tight-binding model in the large V limit of
interest. Note that the approximate nature of this free electron
to tight-binding mapping is not of much significance since
our interest is a general understanding of the Mott-liquid
crossover.

In Fig. 7 we present the simulation results for the tight-
binding model of four electrons in eight sites with different
values of the ratio rs/t (recall that rs = a/aB). For a low
value of rs/t , all the sites are almost equally occupied, and
the system is an effectively “metallic” electron liquid. As
rs/t increases, the occupancies on sites 1-3-6-8 are enhanced
while other sites are less likely to have electrons due to the
suppressed hopping. Beyond a certain large critical value of
rs/t , we achieve complete localization, i.e., four sites with
occupancy close to unity (>0.99) and the rest are empty (with

FIG. 8. Critical rs and V at which the strong localization starts
to happen. The dashed lines are fitted against the numerical data for
V > 25. The solid lines for V < 25 are to aid the vision. The strong
localization regime is divided into two parts: Mott insulator for
V > 25 and Wigner crystal for V < 25.

occupancy <0.01). As a result, we have the following empir-
ical rule for the conductor-insulator or liquid-Mott transition:

t

rs
= const = 24e−C ⇒ ln(rs) = C − 1.0

√
V . (9)

By numerically searching for the lowest rs/t where any
occupied site (or the multiple sites in the incommensurate
cases) has occupancy >0.99, we obtain the constant C of
Eq. (9) as C = 8.5, 7.5, and 6.7 for different configurations:
4e/8 dots, 3e/8 dots, and 3e/6 dots, respectively. To test
this finding, we carry out a simulation for V ranging from
0 to 100 in the continuum model described by Eq. (5). At
each value of V we obtain the minimum rs such that the
density profile shows four distinct peaks with occupancy
larger than 0.99 each for the four-electrons case; for the
three-electrons cases, the middle peak is allowed to split into
two subpeaks because of the incommensurability. The results
are shown in Fig. 8. For V > 25, all the boundaries show
similar linear relation between ln(rs) and

√
V and the fitted

coefficients are consistent quantitatively with the prediction
from the tight-binding model. For V < 25, the localization is
weakly dependent on V , which suggests that the process is
driven mostly by the interaction rather than the underlying
lattice potential. We emphasize that this interaction-driven
“localization-delocalization” transition is the crux of Mott
physics, which should be observable in all arrays of coupled
quantum dots according to our simulations.

We conclude that for low V (V < 25), the delocalized-to-
localized crossover is more related to the Wigner crystalliza-
tion at V = 0. For high V (V > 25), the crossover is more
like Mott transition (which only needs short-range interaction)
and the long-range nature of the interaction is less important
since the required value of rs decays exponentially with

√
V .

Based on these purely qualitative arguments, we divide the lo-
calization regime into (somewhat arbitrarily) two parts: Mott
insulator for V > 25 where the lattice plays a dominant role
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FIG. 9. Average density correlation compared to the average
density (1/a) with respect to distance �x at points along the
conductor-insulator phase boundary in Fig. 8 for the four-electron
eight-dot array. The correlation essentially vanishes for V > 25
justifying being the effective Mott-Wigner boundary.

and Wigner crystal for V < 25 where the lattice does not play
a dominant role. Phenomenologically, both Wigner crystal
and Mott insulator look similar with sharply distinguishable
spatial density peaks, and we could very easily define all
nonzero V insulating situations as the Mott phase calling only
the V = 0 localized phase insulator the Wigner phase. How-
ever, as we will show in the next subsection, there are some
key differences between Mott and Wigner phases in terms
of density correlations. We emphasize that a smooth Mott-
Wigner crossover can be caused by continuously varying the
coupling strength rs relative to V with the large V (rs) phase
being comparatively more Mott (Wigner)-like. The specific
“critical” parameter separating these phases is arbitrary and
ill-defined since the phenomenon is purely crossover physics.

B. Correlated phase

As mentioned above, Wigner crystals and Mott insulators
are similar in terms of their density profiles, both manifesting
strongly localized density peaks. However, Mott insulators
only need weak interaction when V is sufficiently large (as can
be seen in the exponentially decaying rs) while Wigner crystal
formation requires large rs long-range interaction. Therefore,
the density correlation function can provide a signature to dis-
tinguish the Wigner phase [28–30]. The correlation function
is defined as

R(�x) =
∫

dx 〈ρ(x)ρ(x + �x)〉 − 〈ρ(x)〉 〈ρ(x + �x)〉.
(10)

In Fig. 9 we show the calculated density correlation scaled
to average density (∼1/a) for various (V, rs) values along
the localization phase boundary shown in Fig. 8 for the four
electrons/eight dots case. For V > 25 where the localization
is mostly aided by the interactions in the presence of the
periodic potential, the correlation is significantly suppressed,
while for V < 25, the Wigner crystal region, the density
correlation is noticeable. In the Mott insulator phase, the
electrons can be considered as individual oscillators trapped

FIG. 10. Phase diagram of four electrons in an eight-dot array
showing the correlated Wigner crystal (WC) phase, uncorrelated
Mott insulator (MI), correlated Mott insulator (MI+C), and Luttinger
liquid (LL) phases.

at the sites; whereas in the Wigner crystal phase the excita-
tion is always collective. This also reinforces the collective
(individual) Coulomb blockade property of the Wigner (Mott)
phase. An equivalent qualitative description is that the Wigner
crystal phase is essentially the “correlated” Mott phase where
lowering the lattice potential and decreasing electron density
enhances the density correlations, inducing a crossover in
the system from individually site-localized Mott phase to a
correlated Mott phase, and eventually, to the Wigner crystal
phase with the correlations being maximum in the crystalline
phase. This individual/collective behavior can be estimated
using a classical model of a system of coupled oscillators [28].
The potential energy (including the periodic background and
the Coulomb potential) tensor is given by expanding around
the equilibrium position Xi = n + 1/2 with n being an integer

Ai,i = ∂2

∂X 2
i

⎛
⎝−V cos(2πXi ) +

∑
j =i

rs

|Xi − Xj |

⎞
⎠

= 4π2V + 2rs

∑
j =i

1

|Xi − Xj |3 ,

Ai, j = ∂2

∂Xi∂Xj

rs

|Xi − Xj | = −2rs

|Xi − Xj |3 . (11)

The maximum correlation is obtained when the off-diagonal
elements are much larger than the diagonal ones. As a result,
the correlation properties of the system should depend on the
ratio rs/V . Hence we are able to tune the system from uncor-
related to correlated Mott insulator phase by increasing rs at a
fixed V or equivalently decreasing V at fixed rs. To study the
crossover to the correlated Mott phase, we increase rs at each
value of V > 25 until the maximum of the correlation function
is 0.015/a—the maximum value of the correlation function at
V = 25. The boundary of the completely correlated Wigner
crystal (WC), uncorrelated Mott insulator (MI), and correlated
Mott insulator (MI + C) as well as the extended metallic
Luttinger liquid (LL) phase are shown together in Fig. 10.
From the numerical simulation on the continuum model with
tunable V and rs, the correlation boundary is best described
by rs ∝ V 0.85 which is close to the crude estimation using
coupled oscillators model.

023060-9



DINHDUY VU AND S. DAS SARMA PHYSICAL REVIEW RESEARCH 2, 023060 (2020)

FIG. 11. Phase diagram same as Fig. 10 but in physical pa-
rameters: The interdot spacing a and the potential barrier height
V0. The black dots represent states in Fig. 1. The value V0 = 0 in
Figs. 1(g)–1(i) is approximated as 10−4 to display on the logarithmic
scale.

We note that our qualitative phase diagram depicted in
Figs. 10 and 11 (to be described and discussed below) is
qualitative since all the phases here are simply crossover
phenomena. In a finite system, we do not expect strict quan-
tum phases, nevertheless we believe that these three phases
(Wigner, Luttinger, Mott) are meaningful to explore experi-
mentally. After all it is well-known that 1D Coulomb systems
do not have any long-range crystalline order [17], but the
recent experimental observation of the effective 1D Wigner
crystal in a finite 1D system is still a useful advance [3].

C. Correlation physics in the tight-binding model

To derive the condition for the delocalized/localized
crossover, we make the connection between the physical
system and the tight-binding model, implying the possibility
of studying the effect in a semiconductor quantum emulator
in the laboratory [8]. The same question arises with the
correlation property: whether it can be studied by a quantum
emulator. Our first task is to understand how the continuum
model in MI+C phase is mapped into the tight-binding model.
The fitted equation of the correlated phase boundary suggests
that the interaction strength rs is comparable to the band gap
(controlled by V ). Thus, one has to consider multiple bands
in the tight-binding model. In that case, each dot possesses
not only charge but also dipole and multipoles. As we are
interested only in the region of strong localization, the wave
function overlap between different dots is negligible and the
Hamiltonian up to second order contains only the following
interactions: charge-charge, charge-dipole, dipole-dipole, and
charge-quadrupole. Moreover, in the large V regime, we can
approximate the electrons as oscillating inside a harmonic
potential with frequency ω ∝ V 1/2. As a result, the band gap,
dipole and quadrupole pole go as �E ∝ V 1/2, 〈x〉 ∝ V −1/4,

and 〈x2〉 ∝ V −1/2. The detailed interactions are

charge-charge: V0(i − j) = rsnin j/|i − j|,

charge-dipole: V1(i − j) = rsγα,β

nic
+
j,βc j,αsgn(i − j)

V 1/4|i − j|2 .

dipole-dipole: V2(i − j) = rsγα,βγδ,σ

c+
j,δc j,σ c+

j,βc j,α

V 1/2|i − j|3 ,

charge-quadrupole pole: V ′
2 (i − j) = rsγ

′
α,β

nic
+
j,βc j,α

V 1/2|i − j|3 ,

where the Greek indices indicate dot energy levels and coef-
ficients γ , γ ′ depend only on the level indices. We emphasize
that all the terms in the Hamiltonian commute with the dot oc-
cupancy operator ni = ∑

α c†i,αci,α . Therefore, individual dot
occupancies are good quantum numbers and will not exhibit
the correlation. On the other hand, the Hamiltonian does not
commute with level occupancy operators. Thus, if one can re-
solve the occupancy of each dot excitation level (e.g., measure
the dot dipole), the correlation physics can be directly seen in
a quantum dot emulator. The ability of inducing interdot cor-
relation depends on the ratio of noncommuting interactions to
the band gap, i.e., V1/�E ∝ rs/V 3/4 and V2,V ′

2/�E ∝ rs/V .
It should be noted that in a symmetric system, charge-dipole
interactions between dots cancel each other (in fact, in our
approximation using coupled oscillators, we assume that the
equilibrium positions of the Coulomb and trapping potentials
coincide, which is a consequence of symmetry and therefore
the total charge-dipole interaction disappears automatically).
For a system with only a few dots and electrons, the symmetry
is broken and charge-dipole interaction might be nonzero.
This may explain why the extracted numerical exponent in
Fig. 10 is between 3/4 and 1.

To give more insight into reproducing different collective
ground states in a quantum dot emulator, we convert the phase
diagram expressed (Fig. 10) in dimensionless parameters rs

and V back to the physical parameters a and V0 (we remind
that V depends on both a and V0) in Fig. 11. Figure 11 using
experimental parameters (average interelectron distance and
the effective lattice potential) shows that the most accessible
phases in the coupled dot system are Mott insulator and
Luttinger liquid. The Wigner crystal phase requires very large
a (low average density) and very small V0, while the correlated
Mott insulator exists at low V0 and even larger a.

The currently available quantum dot arrays are incapable
of manifesting the Wigner phase as shown in our Fig. 11,
but improvement in fabrication and control may led to the
observation of the Wigner phase in quantum dot arrays.

D. Crossover to classical phases

Strictly speaking, our previous results on the collective
quantum ground states are only valid at zero temperature.
However, these results are still applicable when the tem-
perature is much less than the effective Fermi temperature
TF ∼ 1/a2. For example, with an eight-dot array, the ex-
pression of the hopping strength t = 24e−1.0

√
V h̄2/(ma2) con-

tinues down to V = ma2V0/h̄2 = 25, thus we estimate the
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FIG. 12. The classical limit of the spatial density profile of four electrons in an eight-dot array. The upper row: kBT = 0.2 Ry, kBTF = 0.08
Ry, a = 2 aB and (a) V0 = 2 Ry, (b) V0 = 12 Ry, and (c) V0 = 30 Ry. The occupancy pattern stays unchanged despite the increasing V0 at fixed
a. The lower row: kBT = 1.2 × 10−3 Ry, V0 = 0.5 Ry and (d) kBTF = 8.0 × 10−6 Ry, a = 200 aB, (e) kBTF = 8.9 × 10−5 Ry, a = 60 aB, and
(f) kBTF = 8.0 × 10−4 Ry, a = 20 aB. The occupancy pattern shifts from eight peaks to four peaks when decreasing a at fixed V0 but not when
increasing V0 at fixed a.

quantum-classical crossover temperature as

kBTF = 0.32

a2
, (12)

with a expressed in Bohr radius and kBTF in Rydberg. When
T � TF , the system is simply described by the classical
Boltzmann distribution. The spatial density profile in this
thermodynamic limit is obtained by

ρ(y) ∝
∫

dxNδ(x1 − y) exp

(
−U ({xi})

kBT

)
, (13)

where U is the sum of the background potential and the
interaction energy. For high T , the system is a classical liquid
with uniform spatial density distribution. The spatial density
profile in the classical regime for different sets of a and V0 are
shown in Fig. 12.

In the classical limit, the hopping strength as a function of
a and V0 or the noninteracting kinetic energy as a function
of a is replaced by the thermal energy which only depends
on the temperature. As a result, changing V0 has no effect
on the charge distribution. On the other hand, decreasing a
increases the interaction energy Ec ∼ 1/a while the thermal
energy is unchanged, thus effectively inducing a liquid-to-
solid crossover. In the limit of very low a only one configu-
ration with the lowest interaction energy (for four electrons
in an eight-dot array, the occupied 1-3-6-8 sites) survives.
We emphasize that in the quantum system, such crossover
happens for increasing V0 at fixed a, or increasing a at fixed V0.
Therefore, in experiments when the temperature is higher than
TF , the observed classical thermal states can have completely
different behavior from the true quantum ground states. Thus,
studying temperature dependence could also offer insight into
the nature of collective quantum ground states of coupled
quantum dot arrays.

IV. CONNECTION TO THE DELF EXPERIMENT

In Ref. [8], the Delft group experimentally studied three
gate-defined quantum dots to observe the interdot-tunneling-
induced “transition” from the individual Coulomb blockade

(CB) behavior to the collective Coulomb blockade (CCB)
behavior. In the current section we consider spinful electrons
in three coupled quantum dots in order to make connection
between our work and this Delft experiment, which was
interpreted as the solid state quantum simulation of the Fermi-
Hubbard model. We use the full continuum Coulomb model
[our Eq. (1)] in contrast to the original predictions [22,31] and
of CCB (and the numerics in the Delft experiment) where the
tight-binding Hubbard model was used to predict the CB to
CCB crossover with increasing electron hopping.

In our work, the CB state is the Mott phase at very
weak tunneling and the CCB state is the strong tunneling
induced liquid phase. In Fig. 13 we show our three-dot exact
diagonalization results for spinful electrons based on Eq. (1).
For completeness, we show in Fig. 13 our exact three-dot
results for N = 2, 3, 4 spinful electrons as a function of
increasing tunneling, choosing parameters which correspond
approximately to the Delft experiment. Our Fig. 13 clearly
shows the smooth crossover nature of the hopping-induced
transition from the CB (weak hopping) Mott phase to the CCB
(strong hopping) liquid phase. The individual electrons are
strongly localized in the Mott phase leading to individual CB,
whereas the electrons are extended throughout all three dots in
the CCB liquid phase. It is instructive that the Mott CB to the
liquid CCB phase crossover as a function of tunneling shows
up for N = 2, 3, 4 electrons in the same qualitative manner.

In Fig. 14 we focus on the half-filled three-dot and three-
spinful electron system, showing results for a fixed V0 (corre-
sponding approximately to the Delft experiment), varying the
interdot separation a, from very small a corresponding to a
weakly interacting system to a very large a corresponding to
a strongly interacting system. The system crosses over from a
CCB liquid state for strong tunneling (i.e., small a) to the CB
Mott for larger a. According to our phase diagram, the Mott
CB to the liquid CCB crossover takes place for a ∼ 1 aB in
the Delft experiment where V0 = 10. This is consistent with
the results shown in Fig. 14. Also according to our calculated
phase diagram, only Mott CB and liquid CCB phases are
accessible for V0 = 10 Ry, no matter how large a is. Thus in
the Delft experiment and indeed in all experimental systems
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FIG. 13. Simulated spinful systems with N = 2 (upper row), 3 (middle row), and 4 (lower row). We fix the Coulomb cutoff at d = 0.05a
in all simulations and provide the ratio t/U ≈ 8 exp(−√

V )/(rsV 1/4), where t is the hopping strength and U is the on-site interaction energy
(rs and V are explained in the main text). (a)–(c) V0 = 10 Ry, a = 1.5 aB, and t/U ≈ 0.1, the system is a liquid, corresponding to the collective
Coulomb blockade phase. (d)–(f) V0 = 10 Ry, a = 3 aB, and t/U ≈ 0.001. (g)–(i) V0 = 35 Ry, a = 1.5 aB, and t/U ≈ 0.004. At near zero
t/U , the system is a Mott insulator, corresponding to the individual Coulomb blockade phase.

fabricated so far, the correlated Mott phase and the Wigner
phase remain inaccessible. To observe the correlated Mott or
the Wigner phase the strength of V0 must be two or more
orders of magnitude smaller than in the Delft sample.

The clear observation of the Wigner phase in quantum
dot arrays would thus necessitate developing quantum dot
arrays with lower effective electron density, which should
certainly be possible in the future. Since the Wigner phase is
relatively immune to disorder, the lower-density quantum dot

arrays should manifest the density-modulated commensurate
Wigner phase rather directly in the experiment. We believe
that such an observation will be easier if the electron density
profile itself can be directly measured experimentally using
well-known microscopic methods such as scanning tunneling
microscope (STM) and/or atomic force microscope (AFM).
We do emphasize, however, that the Wigner and Mott phases
are not separated by any phase transition—it is simply a
smooth crossover as the background periodic potential is

FIG. 14. Simulated spatial density profile of three spinful electrons at fixed V0 = 10 Ry, d = 0.05a, and varying interdot spacing
(a) a = 0.5 aB, (b) a = 1 aB, (c) a = 2 aB, (d) a = 4 aB, (e) a = 8 aB, (f) a = 16 aB, (g) a = 32 aB, (h) a = 64 aB, and (i) a = 132 aB.
The system crossovers from the weakly interacting regime (CCB) at small a to strongly interacting regime (CB) at large a. Given V0 = 10 Ry,
despite the strong localization at large a, the system is still an uncorrelated Mott insulator.
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FIG. 15. Mott phases of four electrons at V0 = 1 Ry and a = 70 aB for various number of dots (a) Nd = 5, (b) Nd = 8, (c) Nd = 9,
(d) Nd = 11, (e) Nd = 12, and (f) Nd = 13. The blue (dark) solid lines are the density profiles of Coulomb interacting systems, while the red
(gray) dashed lines represent the corresponding noninteracting systems. The number of peaks is larger than the number of electrons when Nd

is a multiple of 3 such as Nd = 9 and 12. This is the Mott incommensurability discussed in the text.

decreased—the low-density periodic electron crystal in the
absence of any background periodic potential is the Wigner
phase, whereas the corresponding sharply localized (at lattice
sites) insulating electron phase in the presence of the lattice
potential is the Mott phase.

V. CONCLUSION

In this work we consider a minimal continuum model of a
finite coupled linear quantum dot array with a few interacting
electrons to ascertain the suitability of such a semiconductor
quantum dot system being used as a quantum emulator to
study collective quantum ground states of systems interacting
via the Coulomb interaction. The model has just two param-
eters, V0 defining the effective background lattice or trapping
confinement potential creating the dots which sets the scale
for the kinetic energy through interdot electron hopping and
the interelectron separation a defined by the electron number
which sets the scale for Coulomb interaction. We find that
by varying V0 and a, it is indeed possible to tune the system
through three effective phases: an electron liquid phase where
the occupancy of all dots in the system are approximately
equal indicating an extended effective metallic phase with a

small charge gap and two insulating effective solid phases
where the electrons are preferentially sharply localized at
some of the dots leaving the other dots unoccupied. The
two solid phases, Mott and Wigner, occur at large V0 and
small V0, respectively, provided that the Coulomb interaction
is strong. The solid phases are strongly insulating with large
charge gaps since electron hopping through the finite lattice is
strongly inhibited by virtue of certain dots being permanently
unoccupied in order to minimize the Coulomb energy. The
main difference between Wigner and Mott phases, other than
one (Mott) being in the strong lattice potential regime and the
other (Wigner) being in the weak lattice potential regime, is
that the Mott phase can in principle be incommensurate with
the electron number with the number of sharp density peaks
being different from the number of electrons, whereas the
Wigner phase is always commensurate with electron density
with the number of density peaks being exactly equal to
the number of electrons. We find this interesting incommen-
suration to be rather fragile against background disorder.
However, by averaging over many disorder configurations
provided that the disorder strength is smaller than the typical
Coulomb interaction energy, the incommensuration can be
recovered, thus qualitatively distinguishing the Mott phase

FIG. 16. Similar to Fig. 15 but for the Wigner phases of four electrons at V0 = 0.001 Ry and a = 100 aB. The number of peaks always
equals the number of electrons since the Wigner phase is determined entirely by the electron density.
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FIG. 17. Ground state spatial density profile of three spinless electrons in Nd -dot arrays. The blue (dark) solid and red (gray) dashed lines
represent interacting and noninteracting system’s density profiles. Upper row: Mott insulator phase at V0 = 70 Ry and a = 1 aB. Lower row:
Wigner crystal phase at V0 = 0.01 Ry and a = 100 aB. (a) and (d) Nd = 5, (b) and (e) Nd = 6, (d) and (f) Nd = 6 and the potential on the
fourth dot enhanced by 10% representing disorder effect.

from the Wigner phase. Alternatively, of course, the experi-
mentalists could focus on systems with little disorder, which
are increasingly becoming available in semiconductor systems
because of rapid advances in growth, lithography, and control
techniques.

The Mott (liquid) phase corresponds to the Coulomb
blockade (collective Coulomb blockade) states with a large
(small) charge gap in the finite array. The crossover between
these effective phases can be controlled by tuning the effective
electron hopping. Our work shows that small 1D arrays of
coupled quantum dots can indeed be used as good solid state
quantum emulators provided excellent electrostatic control is
attained.

We also construct an effective quantum phase diagram for
the system in the V0 − a space, emphasizing, however, that
the physics here is purely crossover physics with no true
phase transitions. The Mott phase for large V0 and a goes
over smoothly to the Wigner phase for vanishing V0. We show
that density correlations can be used to distinguish between
the Mott and Wigner phases, but this distinction is more
a quantitative distinction rather than a qualitative difference
since there is no phase transition separating the two phases—
the Mott phase in the presence of the background lattice
potential smoothly crosses over to the Wigner phase in the
absence of the lattice potential. We also calculate the charge
gap in the system, commenting on its different behavior
in the kinetic energy versus the potential energy dominated
regimes.

Since the model parameters used for our simulations
loosely correspond to Si and GaAs based quantum dot sys-
tems, we believe that some of our predictions can be exper-
imentally verified in currently existing quantum dot arrays
where the electrostatic control has now reached a very impres-
sive level, allowing the degree of control necessary to observe
the delicate interaction physics predicted in our work.
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APPENDIX: ADDITIONAL SIMULATION DATA

In this Appendix we provide results for additional simu-
lations of the quantum dot arrays to complement the results
shown in the main text.

In particular, Fig. 15 presents results for four spinless
electrons in an array of Nd dots, staying in the effective Mott
phase (V0 = 1 Ry and a = 70 aB) where Nd varies from 5
to 13—note that Nd = 4 is the band insulator limit for four
spinless electrons. In each case we compare the results with
and without Coulomb interactions to show the clear effect
of electron-electron interaction in producing the collective
Mott-like ground state. The incommensuration physics of the
Mott phase can be seen in Figs. 15(c) and 15(e) where the
number of localized density peaks is more than the number of

FIG. 18. Charge gap of an eight-dot array at fixed V0 = 5 Ry
with N = 3, 4, and 5 electrons. The dashed line at the bottom
shows that charge gap of the noninteracting counterpart having three
electrons. For Coulomb interacting systems, the charge gap is always
nonzero for any fillings and finite densities and much larger than the
noninteracting one.
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electrons (as it would be for the Wigner solid) and less than
Nd (as it is for the noninteracting case or the electron liquid
phase).

In Fig. 16 we show details in the Wigner phase, to be com-
pared with Fig. 15 in the Mott phase, choosing a small V0 =
0.001 Ry and a large a = 100 aB, and comparing interacting
and noninteracting situations. The interacting system in this
effective Wigner limit always has four peaks as determined
by the electron number independent of Nd in contrast to
the Mott phase in Fig. 15. Thus, the number of peaks in
the interacting system is capable of clearly distinguishing
between Mott an Wigner phases although the sharply site-
localized density profiles in these two phases are qualitatively
similar.

To further emphasize the incommensuration physics in the
Mott phase, we show results for three electrons in Nd = 5
and 6 sites in Fig. 17 and comparing Wigner (small V0) and
Mott (large V0) phases—the number of localized density peaks
in the Mott phase for Nd = 6 is 4 (and not 3), indicating
incommensuration with electron number. In this figure we
also show in Figs. 17(c) and 17(f) the effect of a weak disorder
in the background potential by enhancing the potential depth
on the fourth site by 10%. The incommensuration in the Mott
phase is suppressed by disorder in Fig. 17(c) with only three
peaks appearing here, but the Wigner result in Fig. 17(f) is
hardly affected by disorder.

In Fig. 18 we provide some additional results for the
calculated charge gap.
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