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Is the Ott-Antonsen manifold attracting?
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The Kuramoto model is a paradigm for studying oscillator networks with the interplay between coupling
tending towards synchronization and heterogeneity in the oscillator population driving away from synchrony. In
continuum versions of this model, an oscillator population is represented by a probability density on the circle.
Ott and Antonsen identified a special class of densities which is invariant under the dynamics and on which the
dynamics are low-dimensional and analytically tractable. The reduction to the OA manifold has been used to
analyze the dynamics of many variants of the Kuramoto model. To address the fundamental question of whether
the OA manifold is attracting, we develop a systematic technique using weighted averages of Poisson measures
for analyzing dynamics off the OA manifold. We show that for models with a finite number of populations, the
OA manifold is not attracting in any sense; moreover, the dynamics off the OA manifold is often more complex
than on the OA manifold, even at the level of macroscopic order parameters. The OA manifold consists of
Poisson densities ρω. A simple extension of the OA manifold consists of averages of pairs of Poisson densities;
then the hyperbolic distance between the centroids of each Poisson pair is a dynamical invariant (for each ω).
These conserved quantities, defined on the double Poisson manifold, are a measure of the distance to the OA
manifold. This invariance implies that chimera states, which have some but not all populations in sync, can never
be stable in the full state space, even if stable in the OA manifold. More broadly, our framework facilitates the
analysis of multipopulation continuum Kuramoto networks beyond the restrictions of the OA manifold and has
the potential to reveal more intricate dynamical behavior than has previously been observed for these networks.
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I. INTRODUCTION

The Kuramoto oscillator model, first proposed by Ku-
ramoto in 1975 [1], is the dynamical system governed by the
equations

θ̇ j = ω j + K

N

N∑
k=1

sin(θk − θ j ), j = 1, . . . , N. (1)

Here, θ j is an angular variable, which we can think of as repre-
senting a point on the unit circle S1, so the state space for this
system is the N-fold torus T N = (S1)N . The so-called natural
frequencies ω j are typically chosen randomly according to
some frequency distribution, but do not vary in any particular
realization of the model. The constant K controls the nature
of the system coupling; roughly speaking when K > 0 the
coupling term in Eq. (1) tends to draw the oscillators closer to
synchrony, whereas variation in the natural frequencies tends
to push the oscillators away from sync. Over the years since
its inception the Kuramoto system has become a standard
paradigm to model oscillator networks with interplay between
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coupling tending towards synchronization and heterogeneity
in the oscillator population driving away from sync.

Note that the coupling in Eq. (1) is all-to-all, and the
coupling term between any two individual oscillators is iden-
tical. One can consider generalizations of (1) for which the
oscillators are attached to the nodes of a graph, and each
oscillator is coupled only to its adjacent oscillators. One can
also introduce variation in the coupling strengths across the
graph edges, so that the coupling coefficients are given by
an N × N matrix. Other variations are possible, including the
introduction of phase lag terms in the couplings, by replacing
sin(θk − θ j ) with sin(θk − θ j − α jk). In this paper, to keep
the exposition as simple as possible, we will stick with the
all-to-all version (1), though our results easily generalize to
the variations we described.

The system (1) is often referred to as the finite-N Kuramoto
model. In the 1990’s researchers began to study continuum
limit analogues of the finite-N Kuramoto model, which in
many ways are easier to analyze than the finite-N model [2–4].
More recently, in their seminal paper [5], Ott and Antonsen
identified a special subspace in these continuum limit systems
which is invariant under the dynamics (detailed definitions
will follow below). The asymptotic dynamics on this OA
manifold can often be fully described. (Reference [6] has a
nice presentation of the OA technique and some of its many
applications.) This of course leads to the important question
that is the title of this paper; is this OA manifold attracting
for the dynamics in the full state space? If this were the case,
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then the long-term dynamics on the full state space would be
identical to that on the OA manifold. To cut to the chase, we
will prove below that the answer to this question is in some
cases “no,” and in some cases, “it depends.” The distinction
between the cases is whether the continuum Kuramoto model
analog under consideration consists of a finite number N of
oscillator populations, each with a given natural frequency
ω j , or a continuous distribution of oscillator populations with
natural frequency ω ∈ R. We will refer to these two versions
as the finite-N and infinite-N continuum systems, respectively.

The OA manifold is not attracting in the finite-N contin-
uum system. We will show this by constructing a family of
invariant manifolds generalizing the OA manifold, that can be
arbitrarily close to the OA manifold. We also will construct
a quantity that measures the distance to the OA manifold,
and that is dynamically invariant. This implies that the OA
manifold can be at best neutrally stable for the dynamics in
the full state space. In fact, to drive home this point, we will
show that the stable long-term dynamics off the OA manifold
is usually qualitatively distinct and more complex than that
on the OA manifold. This has important ramifications for
the study of finite population continuum Kuramoto models
and especially the existence and stability of chimera states
[7–11]. Chimeras are fixed states for which some of the
populations are completely synchronized, whereas others are
smoothly distributed in phase. Chimera states exist in systems
with as few as N = 2 populations, and may be stable within
the OA manifold [8]. Our analysis implies that these states
are never stable in the full system state space; moreover,
the dynamics near these states but off the OA manifold are
more complicated: typically the steady state dynamics near
chimera states but off the OA manifold will be stable limit
cycles. Our results for finite population systems also have
consequences for numerical simulations: since chimera states
are only neutrally stable, simulations of chimera states will
typically drift off the OA manifold on which they are located,
unless one explicitly designs the numerical algorithm to force
trajectories to remain in the OA manifold.

We give a similar construction of families of invariant man-
ifolds off the OA manifold in the infinite-N continuum case,
as well as a measure of the distance to the OA manifold. The
dynamics on these families are also given explicitly. However,
in the infinite-N case, we run into subtle issues concerning
the topology of the full state space. There is a natural strong
topology on this state space which is derived from the natural
topology on the space of probability measures on the circle.
Our constructions imply that the OA manifold is not attracting
in this strong topology. Moreover, as in the finite-N case, the
steady-state dynamics of the individual oscillator populations
is typically more complex off the OA manifold. However, in a
sufficiently weak topology the OA manifold can be attracting,
and the dynamics of the macroscopic system order parameter
may not change when we perturb off the OA manifold.
Various versions of this result have been proved by Chiba
[12,13] and by Ott and Antonsen [14]. In our framework
we can see this explicitly; using techniques from hyperbolic
geometry, we prove that the macroscopic order parameter on
our extended OA manifolds must have the same asymptotic
dynamics as on the OA manifold.

II. FINITE-N CONTINUUM SYSTEM

A. System setup

We can construct a continuum version of (1) by replacing
a single oscillator θ j with natural frequency ω j by an infinite
population of oscillators with this frequency. This population
will be represented by a probability measure ρ j on the circle
S1. The space Pr(S1) of Borel probability measures on the
circle has a natural topology, which is metric and compact;
this is the topology induced from the inclusion in the space
C1(S1)∗, the dual of the Banach space C1(S1) of continuously
differentiable functions on S1 (see Ref. [15] for details on this
natural topology). Therefore the state space for the finite-N
continuum system is X = Pr(S1)N .

The finite-N system (1) in complex form with ζ j = eiθ j is

ζ̇ j = iω jζ j + K

2

(
Z − Zζ 2

j

)
, where Z = 1

N

N∑
j=1

ζ j (2)

is the system’s complex order parameter (see Ref. [16] for the
derivation). In the finite-N continuum system, the measures ρ j

evolve according to the continuity equations

ρ̇ j + ∂

∂ζ
(v jρ j ) = 0, with v j (ζ ) = iω jζ + K

2
(Z − Zζ 2),

(3)
j = 1, . . . , N and order parameter

Z = 1

N

N∑
j=1

∫
S1

ζ dρ j (ζ ). (4)

Technically, this means that ρ̇ j is the distribution on S1 defined
by

〈 f , ρ̇ j〉 =
∫

S1
f ′(ζ )v j (ζ ) dρ(ζ ), (5)

for smooth f on S1. We note that if we take each ρ j to be a
unit mass measure (delta function) at some point ζ j ∈ S1, then
the system (3) reduces to (2).

Let G be the 3D Möbius group consisting of the Möbius
transformations which preserve the unit disk �, and therefore
also the boundary circle S1. These transformations have the
form

M(z) = ζ
z − z0

1 − z0z
,

where the parameters satisfy |z0| < 1 and |ζ | = 1. The group
G plays an important role in complex analysis and hyperbolic
geometry: G is the group of orientation-preserving isometries
of the disk with the hyperbolic metric given by

ds = 2|dz|
1 − |z|2 .

The hyperbolic metric is calculated as follows [17]: for any
z,w ∈ �, define

λ(z,w) = z − w

1 − zw
∈ � and δ(z,w) = |λ(z,w)|. (6)
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Then δ(z,w) is invariant under G, and the hyperbolic distance
is given by

dhyp(z,w) = log
1 + δ

1 − δ
= 2

(
δ + δ3

3
+ δ5

5
+ · · ·

)
. (7)

Notice that for z,w ≈ 0 this gives dhyp(z,w) ≈ 2|z − w| as
expected, since the hyperbolic metric ds ≈ 2|dz| near 0.

The action M∗ρ of an element M ∈ G on a measure ρ ∈
Pr(S1) is determined by the adjunction formula∫

S1
f (ζ ) d (M∗ρ)(ζ ) =

∫
S1

f (M(ζ )) dρ(ζ ), (8)

where f is any continuous function on S1. There is a natural
action of the group GN on the state space X : the action of an
element (M1, . . . , MN ) ∈ GN on a state (ρ1, . . . , ρN ) ∈ X is
just given coordinate-by-coordinate using the G-action above.

The infinitesimal generators for the action of G on the
circle are the vector fields of the form

v(ζ ) = iωζ + Z − Zζ 2,

with ω ∈ R and Z ∈ C constants (this is derived in Ref. [18]).
Since the function v j (ζ ) in Eq. (3) has this form, the dy-
namical trajectory of a density ρ j under (3) must remain
in its group orbit Gρ j , and so the dynamical trajectories of
(3) are constrained to lie on GN group orbits. This implies
that the infinite-dimensional system (3) can be reduced to a
finite-dimensional system with dimension at most 3N . The
group orbits are typically 3D, except in an important special
case: the orbit of the uniform density m consists of the 2D
space of Poisson measures.

B. Poisson manifold XP

Poisson measures arise naturally in complex analysis in
the solution to the Dirichlet problem on the unit disk. If
u(ζ ) is continuous on the unit circle S1, then u has a unique
continuous extension to a harmonic function ũ on the disk,
which can be expressed as follows. For any z ∈ �,

ũ(z) =
∫

S1
u(ζ ) dρ(ζ ),

where ρ is the Poisson measure on S1 given by

dρ(ζ ) = 1

2π i

(
1 +

∞∑
n=1

(zζ )n +
∞∑

n=1

(zζ )n

)
dζ

ζ

= 1

2π i

(
1

ζ − z
+ z

1 − zζ

)
dζ

= 1

2π i

1 − |z|2
|ζ − z|2

dζ

ζ
.

The measure ρ has centroid∫
S1

ζ dρ(ζ ) = z;

more generally, the Cauchy integral formula shows that the
moments of ρ are∫

S1
ζ n dρ(ζ ) = zn, n � 0. (9)

Poisson measures are invariant under the group G; in fact, the
Poisson measures are precisely the group orbit of the uniform
measure (which is the Poisson measure with centroid z = 0).
To see this, we express the uniform measure m on S1 in the
form

dm(ζ ) = 1

2π i

dζ

ζ

and let M ∈ G be any Möbius map fixing �. Then for all
continuous f on S1,∫

S1
f (ζ )d (M∗m)(ζ ) = 1

2π i

∫
S1

f (M(ζ ))
dζ

ζ

= 1

2π i

∫
S1

f (ζ )
dM−1(ζ )

M−1(ζ )
.

Suppose M(0) = z; then M−1(z) = 0, and we can express
M−1 in the form

M−1(ζ ) = α
ζ − z

1 − zζ

with |α| = 1. Therefore

d (M∗m)(ζ ) = 1

2π i

dM−1(ζ )

M−1(ζ )
= 1

2π i

(
1

ζ − z
+ z

1 − zζ

)
dζ ,

so M∗m is the Poisson measure with centroid z = M(0). We
also include delta functions among the Poisson measures,
since they arise as limits of smooth Poisson measures, so
the complete space of Poisson measures is equivalent to the
closed unit disk �, parametrized by the centroid z ∈ �. For
the finite-N continuum system, the OA manifold is the Poisson
manifold XP consisting of N-tuples of Poisson measures.

Topologically, XP is �
N

, a 2N-dimensional compact manifold
with boundary.

The dynamics on the Poisson manifold in terms of the
centroids z j of the Poisson measures ρ j can be derived as
follows: let f (ζ ) = ζ and use (5) and (9):

ż j = 〈 f , ρ̇ j〉 =
∫

S1
1

(
iω jζ + K

2
(Z − Zζ 2)

)
dρ j (ζ )

= iω jz j + K

2

(
Z − Zz2

j

)
.

So the dynamics on the Poisson manifold are given by the
system

ż j = iω j z j + K

2

(
Z − Zz2

j

)
with Z = 1

N

N∑
j=1

z j . (10)

Not coincidentally, this extends the equations for the finite-
N system (2). So we can think of the system on the Poisson
manifold XP as an extension of (2), where now the variables
z j are no longer constrained to lie on the circle, and instead
can also lie in the unit disk �.

The system (10) has a fixed point with all z j = 0, which
corresponds to the “incoherent state” with all N oscillator pop-
ulations uniformly distributed on the circle. The linearization
of (10) at this state is the system

ż j = iω j z j + K

2
Z, j = 1, . . . , N.
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An eigenvalue λ for this system corresponds to a nontrivial
solution to the linear system

(λ − iω j )z j = K

2
Z, j = 1, . . . , N.

Let us assume for simplicity that the ω j are distinct, and K 	=
0. Then it is easy to see that any nontrivial solution must have
Z 	= 0; otherwise, exactly one z j 	= 0, but this implies Z 	= 0.
Hence we can assume WLOG that Z = 1, and therefore

z j = K

2
(λ − iω j )

−1,

so the eigenvalues λ must satisfy the self-consistency equation

1

N

N∑
j=1

(λ − iω j )
−1 = 2

K
.

Observe that Re λ � 0 ⇒ Re(λ − iω j )−1 � 0; hence when
K < 0, all the eigenvalues satisfy Re λ < 0 and so the inco-
herent state is attracting in the Poisson manifold.

C. Multi-Poisson manifolds: dynamics of XP

We can embed the Poisson manifold in a larger invariant
manifold by considering probability measures ρ j which are
averages of two Poisson measures with possibly distinct cen-
troids:

ρ j = 1
2

(
ρ

(1)
j + ρ

(2)
j

)
,

which is uniquely determined by a pair of centroids (z(1)
j , z(2)

j ).
The dynamical evolution of any “double Poisson” measure
ρ j is given by M∗ for some M ∈ G, and we see from (8)
that M∗ acts linearly on measures on S1. Therefore the mani-
fold XDP consisting of double Poisson measures is invariant
under the dynamics, and contains the Poisson manifold as
the submanifold given by z(1)

j = z(2)
j . Topologically, XDP is

�
2N

, a 4N-dimensional compact manifold with boundary. The
dynamics on the double Poisson manifold are given by the
equations

ż(α)
j = iω jz

(α)
j + K

2

(
Z − Z

(
z(α)

j

)2)
,

Z = 1

2N

N∑
j=1

(
z(1)

j + z(2)
j

)
(11)

with j = 1, . . . , N, α = 1, 2. Note that the system (11) is
equivalent to the system (10) with 2N populations and the
natural frequencies occurring in pairs.

Take any point in the interior of XDP, so all |z(α)
j | < 1 (i.e.,

no δ function components). The evolution equation in Eq. (11)
for each pair (z(1)

j , z(2)
j ) is an infinitesimal generator for the

Möbius group action on the unit disk �, and therefore is an
infinitesimal isometry for the hyperbolic metric on �. This
means that the hyperbolic distances

� j = dhyp
(
z(1)

j , z(2)
j

)
are invariant under the dynamics given by (11). The vector

�� = (�1, . . . , �N )

FIG. 1. (Left) 1D flow on C0 toward fixed point. (Right) 2D flow
on Cr toward limit cycle.

effectively measures the distance of a point (ρ1, . . . , ρN ) in
XDP to the Poisson manifold XP, and �� is invariant under the
dynamics. We could also define a scalar invariant � � 0 by
taking the norm of �� or the average of the � j . This invariant ��
is defined on the interior of XDP but undefined on the boundary
of XDP since the hyperbolic distance between two distinct
points on the circle is infinite.

The invariance of �� implies that the Poisson manifold is
not attracting: the trajectory of any initial condition in the
interior of XDP with at least one � j > 0 cannot converge to
an interior point in XP. In particular, the incoherent state
with all z j = 0, which is attracting in XP for K < 0, is not
attracting in the larger manifold XDP. Note that a trajectory
starting in XDP − XP can converge to point on the boundary
of XP. For example, if K > 0 and all ω j are equal, then the
1D synchronous manifold, which has all z(α)

j ∈ S1 and all z(α)
j

equal, is attracting in XDP [19].
More generally, we can construct invariant manifolds

consisting of finite weighted averages of Poisson measures,
with any finite set of weights wα > 0 summing to 1; these
generalized Poisson manifolds are parametrized by centroids
z(α)

j . As in the double Poisson case, the hyperbolic distances

dhyp(z(α)
j , z(β )

j ) are invariant under (3). For the dynamical

invariant ��, we can let � j = max dhyp(z(α)
j , z(β )

j ). At the end
of this section, we prove that these generalized Poisson mani-
folds are in fact dense in the full state space X .

So we see that the dynamics on the Poisson manifold XP

are not in general attracting; they are also deceptively simple
compared to the dynamics off XP. This is because XP has
dimension 2N , whereas a typical Möbius group orbit off XP

will have dimension 3N . We can construct a simple model in
R3 that illustrates this phenomenon (see Fig. 1). Consider the
linear system

ẋ = −y,

ẏ = x,

ż = −z.

The group G = S1 × R, consisting of rotations around the z
axis together with translations z → z + c, acts on R3, and
the group orbits are the cylinders Cr of radius r � 0 centered
around the z axis; C0 is the z axis itself. Clearly, the trajectories
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FIG. 2. In the dynamics of a marked Poisson density (z, ζ ), the
phase difference between the mark and the density peak typically
vary in time, effectively adding an additional dimension to the
dynamics.

of the linear system above are constrained to stay in the
group orbits. The special orbit C0 is analogous to the Poisson
manifold; within this 1D group orbit, the origin is an attracting
fixed point. If we move to a nearby group orbit Cr with
r > 0, then all trajectories on Cr converge to the periodic
orbit consisting of the circle with z = 0 in Cr which is a limit
cycle for the dynamics restricted to Cr . Due to the collapse
of one dimension at the special group orbit C0, the dynamics
on C0 do not capture the more complicated stable steady-state
dynamics on Cr for r > 0.

Something similar happens with the loss of dimensions at
the Poisson manifold, but we can get around this problem
with the following trick. Consider the augmented finite-N
continuum system on the state space X̃ consisting of N-tuples
of “marked” densities ρ̃ j = (ρ j, ζ j ); each density now has a
single distinguished point or marking (see Fig. 2). We can
think of a marking as a distinguished representative oscil-
lator among the continuum of oscillators in the population
described by the density, which we track as the density evolves
(somewhat like watching the motion of a particle suspended in
a fluid). The densities ρ j evolve according to the same equa-
tions as in Eq. (3), and the points ζ j follow the dynamics given
by the original system, with order parameter Z determined by
the ρ j :

ζ̇ = iω jζ j + K

2

(
Z − Zζ 2

j

)
, j = 1, . . . , N.

The points ζ j do not contribute to the order parameter Z; they
just “go along for the ride” as the densities ρ j evolve. The
N-fold Möbius group GN acts on X̃ as before, and dynamical
trajectories are constrained to lie inside the group orbits. In
this augmented system, the Poisson manifold X̃P consisting of
N-tuples of marked Poisson densities has dimension 3N , since
for each Poisson density we can choose the marking to be any
point on the circle. Given any ζ , ζ ′ ∈ S1 and z, z′ ∈ �, there
exists a Möbius transformation M ∈ G such that Mζ = ζ ′ and
Mz = z′; hence the augmented Poisson manifold X̃P is a group
orbit for GN . And in the augmented system X̃P has the same
dimension 3N as nearby group orbits, so the dynamics on
these nearby group orbits must be a continuous deformation
of the dynamics on the augmented Poisson manifold.

FIG. 3. Trajectories of an antipodal pair (z(1)
j (t ), z(2)

j (t )) on X̃DP

for the incoherent state Z = 0 on left; plotted relative to phase of
z(1)

k on right. The ratio ω j/ωk is rational for top right (periodic) and
irrational for bottom right (quasiperiodic).

In the augmented system, incoherent states (with all z j =
0) are invariant, and the markings evolve according to the
simple equations ζ̇ j = iω jζ j . So the attracting steady state
dynamics on the augmented Poisson manifold X̃P consist of
periodic or quasi-periodic dynamics on the N-fold torus with
coordinates ζ j , depending on whether the ω j are rationally
independent. This dynamic behavior is more complicated
than an attracting fixed point. If we move to nearby group
orbits in the augmented double Poisson manifold X̃DP, we
now can expect similar stable steady-state dynamics: periodic
or quasi-periodic dynamics on an attracting N-dimensional
torus. We can in fact identify these attracting tori explicitly:
given any point in X̃DP, we can find a point in its group
orbit which has z(1)

j = −z(2)
j for all j. Any such point has

Z = 0, and the set of such configurations is invariant under
the dynamics. Within each group orbit, the dynamics on this
invariant N-dimensional torus are given by ż(α)

j = iω jz
(α)
j ,

which is periodic or quasi-periodic dynamics on an invariant
torus (see Fig. 3).

D. Order parameter dynamics: an example

In the example above, the steady-state dynamics off the
Poisson manifold are qualitatively different from those on the
Poisson manifold; however, the steady-state behavior of the
order parameter Z (t ) is the same: in both cases, Z (t ) → 0 as
t → ∞ for initial conditions sufficiently close to the incoher-
ent state or nearby invariant tori. In this section we present
an example where the dynamics off the Poisson manifold
are qualitatively different than the dynamics on it, even at
the level of the order parameters. In this example, we have
an attracting fixed point with order parameter 1/3 within
XP, so nearby trajectories on XP have order parameter ZP(t )
converging exponentially to 1/3; whereas the order parameter
ZDP(t ) for all trajectories in XDP − XP never converges. For
the sake of completeness, we present a careful derivation of
these assertions in the remainder of this section (these details
are not required to proceed to the subsequent sections).

Consider the system with N = 3, index j = −1, 0, 1 and
corresponding ω j = −1, 0, 1. We will assume that the j = 0
oscillator is a point ζ on the unit circle, and the j = ±1 pop-
ulations are represented by Poisson measures with centroids
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z±1 in the disk (the assumption |ζ | = 1 is necessary to find a
stable fixed point; if we allow perturbations of ζ off the unit
circle, we always get at least one unstable direction). This 5D
system has equations

ż−1 = −iz−1 + K

2

(
Z − Zz2

−1

)
,

ζ̇ = K

2
(Z − Zζ 2), (12)

ż1 = iz1 + K

2

(
Z − Zz2

1

)
.

We look for a fixed point of the form (−ib, 1, ib); this point
has Z = 1/3, and is stationary provided that

−b + K

6
(1 + b2) = 0 ⇐⇒ K = 6b

1 + b2
.

Thus we can choose any b ∈ (−1, 1) and get a fixed point for
(12) with K given by the equation above.

We can reduce the dynamics to dimension 4 by introducing
the variables y±1 = ζ z±1; then ζ drops out of the y±1 equa-
tions and we get the reduced system

ẏ−1 = −iy−1 + K

2

(
(Y − Y )y−1 + Y − Y y2

−1

)
,

ẏ1 = iy1 + K

2

(
(Y − Y )y1 + Y − Y y2

1

)
(13)

with

Y = ζZ = 1
3 (1 + y1 + y−1).

Observe that this system is invariant under the involution
(y−1, y1) �→ (y1, y−1). We linearize at the fixed point y±1 =
±ib by setting

y1 = ib + η, y−1 = −ib + ν.

The linearized system is invariant under the involution
(η, ν) �→ (ν, η), and this implies that the eigenspaces of the
involution, which consist of pairs (η, η) and (η,−η) respec-
tively, are invariant under the linearized system. Thus we can
study the 2D linear systems on these eigenspaces separately.

The linearized equation for η is

η̇ =
(

K

6
+i

(
1− Kb

2

))
η + K

6
(1−ib)ν + K

6
(b2+ib)(η+ν ).

On the eigenspace with ν = η, we get

η̇ =
(

K

6
(1+b2) + i

(
1− Kb

3

))
η + K

6
(1+b2)η

= (b + �i)η + bη,

with

� = 1 − b2

1 + b2
.

The matrix for this 2D system with respect to the real coordi-
nates (Re η, Im η) is

M1 =
(

b −�

� b

)
+

(
b 0
0 −b

)
=

(
2b −�

� 0

)
,

which has

tr M1 = 2b, det M1 = �2 > 0,

so this 2D system is stable for b < 0.

On the eigenspace with ν = −η, we get

η̇ =
(

K

6
(1 − b2) + i

(
1 − 2Kb

3

))
η + K

6
(b2 − 1 + 2ib)η

= (b� + i(2� − 1))η + (−b� + i(1 − �))η.

The matrix for this 2D system is

M−1 =
(

b� 1 − 2�

2� − 1 b�

)
+

( −b� 1 − �

1 − � b�

)

=
(

0 2 − 3�

� 2b�

)
,

which has

tr M−1 = 2b�,

det M−1 = (3� − 2)� = (1 − 5b2)(1 − b2)

(1 + b2)2
,

so this 2D system is stable for −√
5/5 < b < 0. Combining

both results, we see that the fixed point with y±1 = ±ib is
stable for (13) provided that −√

5/5 < b < 0.
In the original system (12), we can rewrite the ζ̇ equation

as

ζ̇ = K

2
(Y − Y )ζ ,

and we have Y (t ) − 1/3 → 0 decaying exponentially, for
initial conditions sufficiently near the fixed point (−ib, 1, ib),
provided that −√

5/5 < b < 0. This implies that ζ (t ) will
converge to a constant, and hence the order parameter Z (t )
converges to a constant of the form ζ0/3 with ζ0 ∈ S1.

Now let’s consider any trajectory γ (t ) in the double Pois-
son space XDP for the finite-N continuum system with N = 3,
j = ω j = −1, 0, 1. Suppose the order parameter Z (t ) → ζ0/3
for some ζ0 ∈ S1; by rotating γ by ζ 0, we can assume that
Z (t ) → 1/3. So γ has the same steady-state order parameter
dynamics as the fixed points analyzed above. Any point
(ρ−1, ρ0, ρ1) in the forward limit set L(γ ) (which is nonempty
since XDP is compact) must have Z = 1/3. Represent any
point in L(γ ) by a vector (z(1)

−1, z(2)
−1, z(1)

0 , z(2)
0 , z(1)

1 , z(2)
1 ) with

z(α)
j ∈ �. Since Z = 1/3 is constant on L(γ ), the z(α)

j must
satisfy the equations

ż(α)
1 = iz(α)

1 + K

6

(
1 − (

z(α)
1

)2)
,

ż(α)
0 = K

6

(
1 − (

z(α)
0

)2)
,

ż(α)
−1 = −iz(α)

−1 + K

6

(
1 − (

z(α)
−1

)2)
, α = 1, 2. (14)

We can solve the equations in Eq. (14) explicitly; for
example the first equation (momentarily dropping the sub- and
superscripts) is equivalent to

− 6

K

dz

dt
= z2 − 6iz

K
− 1 = (z − ib)(z − ib−1),

which can be integrated via partial fractions to obtain

z − ib

z − ib−1
= ei�t z(0) − ib

z(0) − ib−1
.
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Let H1 be the Möbius map given by

H1(z) = z − ib

z − ib−1
;

then

z = ib−1 + i(b − b−1)

1 − ei�t H1(z(0))
.

We have |b| < 1, which implies that |H1(z)| < 1 for any z ∈
�; therefore we can expand

z = ib + i(b − b−1)
∞∑

n=1

ein�t H1(z(0))n.

Similarly, the solution to the third equation in Eq. (14) is

z = −ib − i(b − b−1)
∞∑

n=1

e−in�t H−1(z(0))n,

with

H−1(z) = z + ib

z + ib−1
.

The middle equation with ω0 = 0 has fixed points at z = ±1;
for K < 0 we have z = −1 attracting and z = 1 repelling. Any
solution z(t ) to this equation will converge to −1, unless it is
the fixed point z(t ) = 1.

Therefore any solution to (14) will have order parameter

Z (t ) = z(1)
0 (t ) + z(2)

0 (t )

6
+ i(b − b−1)

6

×
∞∑

n=1

[
ein�t

(
H1

(
z(1)

1 (0)
)n + H1

(
z(2)

1 (0)
)n)

− e−in�t
(
H−1

(
z(1)
−1(0)

)n + H−1
(
z(2)
−1(0)

)n)]
.

Now we must have Z (t ) = 1/3 for all t . This can only occur
if all the coefficients of e±in�t are 0, and the convergent terms
z(α)

0 (t ) are constant = 1. Hence we must have

H1
(
z(1)

1 (0)
)+ H1

(
z(2)

1 (0)
)= H1

(
z(1)

1 (0)
)2 + H1

(
z(2)

1 (0)
)2 = 0,

which implies H1(z(1)
1 (0)) = H1(z(2)

1 (0)) = 0, and hence
z(1)

1 (0) = z(2)
1 (0) = ib; similarly z(1)

−1(0) = z(2)
−1(0) = −ib. So

we have shown that the only trajectory in XDP for
(14) which has Z (t ) = 1/3 constantly is the fixed point
(−ib,−ib, 1, 1, ib, ib), which is the fixed point (−ib, 1, ib) in
XP.

The argument above shows that if Z (t ) → 1/3 for some
trajectory γ (t ) in XDP, then the forward limit set of γ

must be the single point (−ib, 1, ib) in XP; in particular,
this implies γ (t ) → (−ib, 1, ib). However, if the initial point
of γ has either z(1)

1 	= z(2)
1 or z(1)

−1 	= z(2)
−1, then γ (t ) cannot

converge to (−ib, 1, ib), because the hyperbolic distances
dhyp(z(1)

±1(t ), z(2)
±1(t )) are constant. In other words, if we perturb

the initial condition off the fixed point (−ib, 1, ib) by splitting
the Poisson densities with centroids ±ib into double Poissons,
then the long-term behavior of the order parameter Z (t ) will
not have the same steady-state dynamics |Z (t )| → 1/3 that
we get for perturbations of the fixed point inside the Poisson
manifold (see Fig. 4).

FIG. 4. For −√
5/5 < b < 0, the example fixed point is stable on

the Poisson manifold XP; the order parameter |ZP(t )| → 1
3 (in red).

This fixed point is unstable off XP; the order parameter asymptotic
dynamics (|ZDP(t )| in blue) are qualitatively different.

E. Multi-Poissons are dense

We conclude this section with a remark on the level of gen-
erality of averaged Poisson measures. The Poisson measure ρ

with centroid z ∈ � has density function

gz(ζ ) = 1 − |z|2
|ζ − z|2 .

Let f be a continuous function on S1; then the classic Poisson
integral of f is the function on � defined by

f̃ (z) = 1

2π i

∫
S1

f (ζ ) gz(ζ )
dζ

ζ
.

It is well-known [20] that f̃ is a continuous extension of f to
the disk �; therefore the function fr on S1 defined by fr (ζ ) =
f̃ (rζ ) for 0 < r < 1 converges uniformly to f on S1 as r → 1.
We have

fr (ζ ) = 1

2π

∫ 2π

0
f (eis)

1 − r2

|eis − rζ |2 ds

= 1

2π

∫ 2π

0
f (eis)

1 − r2

|ζ − reis|2 ds.

Now suppose f is a density function on S1, so f � 0 and

1

2π

∫ 2π

0
f (eis) ds = 1.

Fix r, and consider the regular partition of [0, 2π ] with inter-
vals [s j−1, s j], j = 1, . . . , n and �s = 2π/n. For any ε > 0,
we can choose n large enough so that there exist s∗

j ∈ [s j−1, s j]
such that

1

2π

n∑
j=1

f (s∗
j )�s = 1

and

| f (s) − f (s∗
j )| < ε,

∣∣∣∣ 1 − r2

|ζ − reis|2 − 1 − r2

|ζ − reis∗
j |2

∣∣∣∣ < ε

for all s ∈ [s j−1, s j]. This implies that as ε → 0 the sums

1

2π

n∑
j=1

f (eis∗
j )

1 − r2

|ζ − reis∗
j |2 �s → fr (ζ )
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uniformly in ζ . The sum above is a weighted average of Pois-
son density functions, with centroids z j = reis∗

j and weights
w j = f (s∗

j )�s. This shows that we can uniformly approxi-
mate fr , and hence any continuous density function f , by
weighted averages of Poisson densities.

The above argument shows that the uniform closure of
the set of weighted averages of Poisson measures is the set
of all probability measures with continuous density functions
on S1. In the natural topology on Pr(S1), which is weaker
than the uniform topology on continuous densities, measures
with continuous density functions are dense, so in the natural
topology the set of weighted averages of Poisson measures
is dense in Pr(S1). Consequently, in principle all of the
dynamics for the finite-N continuum system will be revealed
on the subset of weighted averages of Poisson measures.

III. INFINITE-N CONTINUUM SYSTEM

A. System setup

Next, we turn to the infinite-N continuum version of (1),
which is the setting for the famous Ott-Antonsen ansatz and
analysis. In this model, we consider the frequency ω ∈ R to
vary continuously, according to a density function g(ω), which
we will take to be the Lorentzian density function

g(ω) = 1

π

1

ω2 + 1
.

A state of the system consists of a family of probability
measures ω �→ ρω parametrized by ω ∈ R; in other words,
a state is a function f : R → Pr(S1). We need at least a
mild regularity condition on the function f ; in Ref. [15], we
assumed only that the map f is measurable. Let X be the
state space consisting of all measurable families ρω. For any
ρω ∈ X , we can define the order parameter

Z =
∫
R

∫
S1

ζ dρω(ζ )g(ω) dω,

which naturally generalizes (4) to the infinite-N continuum
case. The evolution equation for the state ρω is

ρ̇ω + ∂

∂ζ
(vωρω ) = 0, with vω(ζ ) = iωζ + K

2
(Z − Zζ 2).

(15)
As in the finite-N continuum case, for each ω the measure ρω

evolves in its Möbius group orbit Gρω.

B. Poisson and OA manifolds

As in the finite-N continuum case, the Poisson manifold XP

consisting of Poisson densities ρω for each ω is an invariant
subspace under the dynamics. Since a Poisson measure is
determined by its centroid z ∈ �, states in the Poisson man-
ifold are determined by (measurable) functions f : R → �,
zω = f (ω). The dynamics on the Poisson manifold are given
by the system

żω = iωzω + K

2

(
Z − Zz2

ω

)
, (16)

with

Z =
∫
R

zωg(ω) dω.

The key to the ingenious calculation in Ott and Antonsen’s
famous paper [5] is to assume a rather strong regularity
condition on f , namely that f extends to an analytic function
in the upper half plane Re ω > 0, which is bounded and
approaches 0 as |ω| → ∞. Ott and Antonsen proved that this
condition is preserved by the system dynamics, so the OA
manifold XOA consisting of Poisson states f satisfying this
additional condition is invariant. (Actually, Ott and Antonsen
parametrized their Poisson densities by the conjugate of the
centroid, so their analytic continuation was in the lower half-
plane.) The analysis of the order parameter Z on XOA is
facilitated by the analytic continuation condition; as shown
in Ref. [5], if we integrate (16) over R against g(ω), we obtain

Ż = i
∫
R

ω f (ω)g(ω) dω + K

2

(
Z − Z

∫
R

f (ω)2g(ω) dω

)
.

We express

g(ω) = 1

2π i

(
1

ω − i
− 1

ω + i

)

and use this to evaluate Z and the other two integrals above by
the method of residues: the functions in each integrand have a
single pole at ω = i in the upper half plane, and converge to 0
as |ω| → ∞. Therefore∫

R
f (ω) dω = f (i) = Z,∫

R
ω f (ω) dω = i f (i) = iZ,∫

R
f (ω)2 dω = f (i)2 = Z2,

and we obtain the Ott-Antonsen evolution equation for Z on
XOA:

Ż = −Z + K

2
(1 − |Z|2)Z =

(
K

2
− 1

)
Z − K

2
|Z|2Z. (17)

The beauty of this equation is that it is independent of the
details of the individual Poisson measures parametrized by
zω, and is also very easy to analyze: the flow (17) is radial,
the origin is stable for K � 2, and loses stability for K > 2
where a stable solution with |Z| > 0 exists. Unfortunately,
the analytic continuation condition really is necessary; the
dynamics of Z do not obey (17) in the full Poisson manifold.
As shown in Ref. [21], there are initial conditions in XP for
which Z (t ) does not decay to 0 exponentially, as predicted by
(17), when K < 2.

C. Multi-Poisson and OA manifolds: dynamics off XP and XOA

Now we address the main question: is the OA manifold
attracting? Analogous to the finite-N continuum case, we
can define the double Poisson manifold XDP and double OA
manifold XDOA. The measures ρω in XDP are averages of two
Poisson measures, so can be parametrized by two functions
f (1), f (2) : R → � defining the centroids

z(1)
ω = f (1)(ω), z(2)

ω = f (2)(ω);

for XDOA we assume these functions also satisfy the OA
analytic continuation condition. The z(α)

ω evolve according to
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the system

ż(α)
ω = iωz(α)

ω + K

2

(
Z − Z

(
z(α)
ω

)2)
, α = 1, 2,

Z = 1

2
(Z (1) + Z (2) ), Z (α) =

∫
R

z(α)
ω g(ω) dω. (18)

If the functions satisfy the condition | f (α)(ω)| < 1 for all
ω, then for each ω the hyperbolic distance dhyp(z(1)

ω , z(2)
ω ) is

invariant under the system dynamics. Consider any state f ∈
XP such that the set A = {ω : | f (ω)| < 1} has measure >0.
Suppose t �→ ( f (1)

t , f (2)
t ) is a trajectory for (18) in XDP that

converges to f in some topology. For any reasonably strong
topology, say the Lp topology with 1 � p � ∞, this implies
the existence of a subsequence tn → ∞ such that f (1)

tn , f (2)
tn →

f a.e. [20]. Therefore the distance dhyp( f (1)
tn (ω), f (2)

tn (ω)) → 0
a.e. on A. But this distance is invariant under the dynamics,
so we must have f (1)

0 = f (2)
0 a.e. on A. This proves that a

trajectory in XDP with f (1)
0 	= f (2)

0 on A cannot converge to the
state f ∈ XP.

Hence for any reasonably strong topology on XDP, the
Poisson manifold XP is not attracting for the dynamics given
by (18): it is impossible to approach a state ρω with |zω| < 1
from XDP − XP. The same is true for XOA inside XDOA. This is
all perfectly analogous to the finite-N continuum case.

D. Order parameter dynamics off XOA

If we restrict our attention just to the macroscopic order
parameter Z , as is often the practice in studying infinite-
N systems, then something different happens compared to
the finite-N continuum case. Consider any state ( f (1), f (2) )
in XDOA with corresponding order parameters Z (1), Z (2). A
residue calculation exactly as in the single Poisson case gives
the equations

Ż (α) = −Z (α) + K

2
(Z − Z (Z (α) )2), α = 1, 2.

We will show that these equations imply that |Z (1) − Z (2)| →
0 decaying exponentially, which implies that the dynamics
of the average Z are the same as on the manifold XOA. In
other words, the long-term order parameter dynamics on XDOA

and XOA are the same. The crucial ingredient here is the
−Z (α) term coming from the residue calculation. To see this,
consider any flow on � of the form

ż = −z + Y − Y z2, (19)

where Y can depend on time t , but we assume |Y | is bounded.
If z(t ) satisfies (19), then

(|z|2)˙= żz + zż = (−z + Y − Y z2)z + z(−z + Y − Y z2)

= −2|z|2 + 2(1 − |z|2) Re(Y z).

Observe that (|z|2)˙= −2 if |z| = 1; since |Y | is assumed
bounded, we can find 0 < r < 1 so that (|z|2)˙� −1 on the
annulus r � |z| � 1. Therefore any solution z(t ) must have
|z(t )| < r for t sufficiently large (actually for t � 1 − r2).

Suppose we have two solutions z(t ),w(t ) to an equation
of the form (19); we wish to prove that the hyperbolic dis-
tance dhyp(z,w) → 0 decaying exponentially. The hyperbolic
metric dhyp(z,w) is given by Eqs. (6) and (7). We claim that

δ(z,w) satisfies the equation

δ̇ = −δ Re

(
1 + zw

1 − zw

)
;

we can derive this directly using (19), though there is a better
way that avoids this tedious calculation. Observe that Y − Y z2

is an infinitesimal isometry for the hyperbolic geometry on
the disk, and therefore will have no affect on the conformal
invariant δ; in other words, one can assume that Y = 0,
ż = −z, ẇ = −w and get the general result. (If this seems
like magic, we assure the skeptical reader that we carefully
performed this calculation including the Y terms, and saw that
indeed they drop out. It was only afterwards that we realized
why this had to happen.) The quantity λ(z,w) from (6) has

λ̇ = (1 − zw)(w − z) − (z − w) · 2zw

(1 − zw)2
= (w − z)(1 + zw)

(1 − zw)2
;

δ2 = λλ, so

δδ̇ = Re(λ̇λ) = Re

(
(w − z)(1 + zw)

(1 − zw)2

z − w

1 − zw

)

= −δ2 Re

(
1 + zw

1 − zw

)
,

which gives the desired result.
Next, observe that

Re

(
1 + zw

1 − zw

)
= Re ((1 + zw)(1 − zw))

|1 − zw|2 = 1 − |zw|2
|1 − zw|2

� 1 − r2

1 + r2
= c > 0

for |z|, |w| � r. Any two solutions z(t ),w(t ) to (19) will
satisfy |z|, |w| < r after time t0 = 1 − r2, and then δ(z,w)
will decay exponentially, dominated by e−ct ; in other words,
we have proved that

δ(t ) � e−c(t−t0 )δ(t0)

and therefore

dhyp(z(t ),w(t )) = 2

(
δ(t ) + δ(t )3

3
+ δ(t )5

5
+ · · ·

)

� 2e−c(t−t0 )

(
δ(t0) + e−2c(t−t0 )δ(t0)3

3

+ e−4c(t−t0 )δ(t )5

5
+ · · ·

)

� e−c(t−t0 )dhyp(z(t0),w(t0))

for t � t0. We also see that the Euclidean distance |z(t ) −
w(t )| → 0 dominated by e−ct , since the distortion factor |z −
w|/dhyp(z,w) is bounded if |z|, |w| � r < 1. This completes
the proof that |Z (1) − Z (2)| → 0, decaying exponentially. A
slight variation of this argument extends to the case of
weighted averages of Poissons on the analogous generalized
OA manifold.

We conclude this section with an explanation of how
the OA or Poisson manifold could still in some sense be
attracting, in light of the discussion above. A state consisting
of double Poissons, with centroids z(1)

ω 	= z(2)
ω , can converge

under the dynamics in a weak sense to the Poisson manifold.
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For example, consider the system (18) with coupling K = 0;
then each z(α)

ω evolves independently, giving

z(α)
ω (t ) = eiωt z(α)

ω (0), α = 1, 2.

The functions z(α)
ω (t ) converge to 0 weakly as t → ∞, as a

consequence of the Riemann-Lebesgue lemma [20]: for any
integrable function f on R, we have∫

R
eiωt z(α)

ω (0) f (ω) dω → 0

as t → ∞. Note that this conclusion does not depend on any
analytic continuation assumptions on the initial functions f (α).
Our arguments above show that weak convergence to the OA
manifold is all that one could hope for; on the other hand,
weak convergence is all that is required to capture the order
parameter dynamics.

IV. CONCLUSION

For the finite-N continuum Kuramoto model, the Poisson
manifold is generally not attracting, and does not capture the
complexity of the dynamics on the full state space. We demon-
strated this by defining the larger double Poisson manifold and
showed that one can assign a measure of the distance of a
state to the Poisson manifold which is dynamically invariant.
We also gave explicit examples of how the dynamics can
become more complicated off the Poisson manifold. This has
important consequences for the study of this and more general
finite-N continuum models. For example, one can investigate
multipopulation models which have different coupling within
populations compared to across populations. In this study,
researchers have focused on so-called chimera states, in which
some of the populations are in sync, whereas others are
distributed according to smooth Poisson measures. We plan
to address the consequences of our methodology to this class
of models in detail in a follow-up paper, so we offer here only
some brief remarks on this topic. Our analysis above easily
extends to this setting and implies that chimera states are not
attracting in the full state space, even if they are attracting
within the OA manifold.

The simplest chimeras occur for the model with N = 2
populations studied in Ref. [8], which has a 4D OA mani-
fold consisting of pairs of Poisson densities. For this model,
chimera states are fixed states consisting of one smooth and
one δ function Poisson; depending on parameters, chimeras
may exist and be stable in the OA manifold. But off the
OA manifold, the dynamics is restricted to 6D group orbits.
Chimera states correspond to limit cycles inside the aug-
mented OA manifold (consisting of marked Poisson densities)
and therefore we must have stable limit cycle dynamics on the
group orbits sufficiently near the OA manifold, which do not
relax back to chimera states on the OA. This N = 2 model can
also have stable limit cycles within the OA manifold called
breathing chimeras; these cycles correspond to stable quasi-
periodic orbits in the augmented OA manifold. Therefore

perturbing off the OA will also result in stable quasiperiodic
dynamics; which again do not relax back to the breathing
chimeras on the OA. Our methodology rigorously establishes
these dynamic phenomena, which were conjectured and sup-
ported numerically in Ref. [4]. Our analysis also suggests
a potential pitfall in numerical simulations of finite-N con-
tinuum models. If one approximates a continuum chimera
state (stable in the OA) with M discrete oscillators approxi-
mating the chimera distribution, then this discrete oscillator
population will have limit cycle dynamics on its group orbit
for sufficiently large M, and cannot flow to sync. However,
numerical simulations may fail to reveal periodic dynamics
because the numerically approximated trajectories will not
generally be constrained to remain on the original group orbit.

Perhaps most importantly, our method using double Pois-
sons or more general weighted averages of Poissons provides
a framework for systematically exploring the dynamics of
multipopulation finite-N continuum models off the Poisson
manifold, which can reveal the more complex dynamics that
is missed by focusing exclusively on Poisson states. The story
is more subtle for the infinite-N continuum Kuramoto model,
and comes down to a matter of interpretation as to what “at-
tracting” really means. The Poisson and OA manifolds are not
attracting in the traditional sense, meaning trajectories starting
sufficiently close to these manifolds converge to them in some
reasonable topology. We demonstrated this by defining similar
measures of distance to the Poisson or OA manifolds on the
larger double Poisson versions of these manifolds, which are
again dynamically invariant. So on the level of individual
measures, we don’t get convergence to the Poisson or OA
manifolds. However, the sense in which the OA manifold may
be considered attracting is that with appropriate assumptions
of the initial state, the macroscopic order parameter Z for
the system has the same steady-state dynamics on the larger
double Poisson version of these manifolds, or more generally
weighted average Poisson versions. Essentially, going to mul-
tiple Poisson densities does not effect the macroscopic order
parameter dynamics, as long as the functions parametrizing
the families of Poisson measures satisfy the OA analyticity
conditions. We explicitly demonstrated this using hyperbolic
geometry techniques.

To sum up, the technique of multiple Poisson manifolds
provides a systematic framework for studying the dynamics
of multipopulation continuum Kuramoto networks beyond the
restrictions of the Poisson and OA manifolds, and has the
potential to reveal more intricate dynamical behavior than has
previously been observed for these networks.
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