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We consider distributed sensing of nonlocal quantities. We introduce quantum enhanced protocols to directly
measure any (scalar) field with a specific spatial dependence by placing sensors at appropriate positions and
preparing a spatially distributed entangled quantum state. Our scheme has optimal Heisenberg scaling and filters
out noise with different spatial dependence than the signal. We provide states, spatial sensor configurations, and
protocols to achieve optimal scaling. We explicitly demonstrate how to measure coefficients of spatial Taylor
and Fourier series, and show that our approach can offer an exponential advantage as compared to strategies that

do not make use of entanglement between different sites.
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I. INTRODUCTION

High precision measurements of physical quantities are
of fundamental importance in all branches of physics and
beyond. Quantum metrology offers a quadratic scaling ad-
vantage over a classical approach, and has hence received
tremendous attention in recent years. Most of the effort has
concentrated on local estimation problems, where an un-
known quantity such as field strength or frequency should be
measured. Optimal schemes have been designed for different
kinds of estimation problems, and demonstrated experimen-
tally [1].

In many physical problems, the quantity of interest is
however not a local property, but has a characteristic spatial
dependence such as, e.g., the gradient (or higher moment)
of a field, or a (spatial) Fourier coefficient. In this case,
multiple measurements performed at different positions are
required, i.e., one uses distributed sensors or sensor networks.
Such distributed sensors also allow one to increase resolution,
e.g., in classical imaging, where baseline telescopes are used.
Recently quantum sensor networks have been introduced,
and shown to offer an advantage in several problems: to
measure field gradients [2], to increase the accuracy of atomic
clocks [3], or of interferometers and telescope networks [4]
using entangled quantum states (see also [5-15]). Current
experimental capabilities (e.g., Ref. [16]) already allow the
implementation of quantum sensor networks on the scale of a
laboratory, and with the emergence of quantum networks [17]
large scale sensor networks shall become a promising
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application and a real possibility in the near future. General
quantum sensor networks are based on distributed multipar-
tite entangled quantum states, and in addition to optimizing
states, measurements, and strategies also the positioning of
sensors can be varied and optimized. Surprisingly, distributed
entanglement between remote sensors does not necessarily
help in the absence of noise and many repetitions (i.e.,
Fisher regime) when multiple quantities should be determined
simultaneously [5,18]. However, the practical applicability,
in particular in the presence of noise and imperfections, is
largely unexplored.

Here we introduce quantum enhanced protocols to directly
measure one or several scalar field components with a specific
spatial dependence, e.g., of sources at specific positions, or
coefficients of a spatial expansion function such as gradient
or higher moment in a Taylor series (see Fig. 1). We explicitly
determine positions and states in such a way that the states
are capable of sensing only the components of interest, but
are blind to all other processes with a different spatial depen-
dence. More precisely, all spatial functions that are linearly
independent of the signal. Typically J 4 1 sensor positions
are required to be insensitive to J signals. In this way, it is
possible to lock in to a specific signal from a given source
and filter out other signals, that otherwise contribute as noise.
This offers very general and flexible schemes with multiple
advantages: (i) the schemes have optimal Heisenberg scaling,
i.e., they offer a quadratic scaling advantage over classical
approaches; (ii) the schemes are insensitive to noise with
different spatial distribution than the signal field, and can offer
up to an exponential improvement (in terms of number of
locations) over strategies without distributed entanglement;
(iii) the same (exponential) advantage can be maintained in
noiseless single-shot experiments.

The applicability of a sensing scheme in a realistic envi-
ronment, i.e., under the influence of noise and decoherence,
is of particular importance. In local sensing it is known that
noise severely limits the applicability of quantum strategies.
In some limited cases advanced techniques such as error
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FIG. 1. Sketch of a distributed sensing setup. Several sensors P,
are located at different spatial positions. Different signals ¢ have
different spatial configurations of the field.

correction or fast control allow one to maintain Heisenberg
scaling [19-27]. But generically the quantum scaling advan-
tage is reduced to a constant factor [23,24,28-31]. Never-
theless, circumventing the dominant noise contributions may
allow one to prolong the quantum scaling advantage to larger
probe numbers and longer sensing times before other noise
contributions enforce the linear scaling.

Here we focus on a situation with several signal sources
that are located at different position or produce fields with
different spatial signature. In general this is a multiparameter
sensing scenario, where all signals are imprinted onto the
probes simultaneously. But we are interested in sensing only
one of the signals, which might be weak as compared to
others. These other signals can be subject to fluctuations,
and hence introduce noise. Our scheme is by construction
blind to signals with a different spatial dependence than the
signal of interest, and hence insensitive to noise coming from
fluctuations of these quantities. This is possible due to the
additional freedom of placing sensors at arbitrary positions,
and implies for example that gradients can be sensed despite
arbitrarily large fluctuations of the global field. Another pos-
sible application is filtering for signals with a given spatial pe-
riodicity analog to filtering for signals with a given frequency
in the time domain. This offers a huge promise for near-term
practical application of our methods.

We consider different kinds of estimation problems, in-
cluding a frequency and phase estimation in both Fisher
and Bayesian regimes. We demonstrate our approach for
specific examples, including spatial Taylor and Fourier series
for sensing of magnetic fields, and also treat the case of
various sources at different positions. In all cases we construct
quantum states and positions with optimal scaling. In the
Fisher regime the required measurements are in fact local (see
later), so one only needs to distribute entanglement for the
preparation of the probe state.

In order to understand the potential and limits of our
method we consider an idealized situation where all the
signals commute and the fluctuation of the other signals is
the only source of noise. Clearly, in a real world application
other noise mechanisms are present and have to be addressed
independently.

II. ESTIMATING NONLOCAL EXPANSION
COEFFICIENTS

Consider a network of J sensors at positions r; each
consisting of n; qubits. The temporal evolution of each lo-
cal system j is determined by the local field B(r;) = B;
and is given by U; = exp(itB;Z;), where Z; is the sum of
Pauli-z operators for each qubit located at position r;; for
convenience we will denote the state in the Z basis by
|+1) = o,|+1) and |—1) = —o,|—1), so that globally the
evolution is given by U = ) ; Uj. The spatial configuration
of the field can be expanded in some series of functions

{fx(r)} as
B(r) =) acfi(r). (1)
k

Typically, one is interested in the expansion where different
terms in the series f;(r) correspond to different physical
processes or signals. Then the parameters o give the strength
of each signal.

In terms of the parameters of interest oy, the tempo-
ral evolution can be rewritten as U = exp (it )_, axGy) =
exp (i ), ©xGy) with the global phases ®; = toy and the
global generators Gy = > i JejZj, where fij = fi(r;), and
we also define fy = (fy; ... fis)- In the Fisher regime, the
optimal precision (A®;, )? for determining a single parameter
@, is given by the Cramer-Rao bound (A®;, )* > m,

where (AGy,)? is the variance of the generator on the probe
state. When all the other parameters aj, are known, the
optimal precision can be attained by preparing the probe in
the superposition

) = (1) + [—8.))/V/2, )

of the eigenstates of Gy,, that corresponds to its maxi-
mal and minimal eigenvalue. Because the generators are
linear combinations of Pauli-z operators, all their eigen-
bases are given by product states for all the qubits involved
in the sensing. In particular, the extremal eigenstates are
given by

J

|£s,) = X [sen(Efi )" 3)

j=1

The variance of Gy, for that state takes the value (AGy,)* =
2
oyl fisl)

III. NOISE AND DECOHERENCE FREE SUBSPACES

In the noiseless case, the presence of further components
generated by Gy with k # k, is not detrimental to precision;
as all the generators of the signals commute there exists a
strategy that allows for optimal sensing of all the signals in
the same time [5]. However, this completely changes if some
components k # k, are noisy. If the value of the parameter o
fluctuates, the coherence between any two eigenstates of Gy
with different eigenvalues is reduced during the evolution. In
the worst case the coherence is completely washed out, as we
shall see later.
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A. Noise insensitive qubit subspace

In order to be insensitive to this effect one can prepare
the probe in a superposition |y ) = (|s) +1s'))/ V2 of two
product states |s) and |s’) that have the same eigenvalue for
all the generators Gj with k # k, but a different one for
Gy, .This condition guarantees that Gy, is not in the algebra
generated by all the other G. Hence it is more restrictive than
the condition derived for active (ancilla-free) error correction
of Lindbladian noise of [24,25,27]. However, the implemen-
tation of such error-correction codes generically require a
continuous supply of fresh entanglement between the sensors,
which is too demanding for our purpose.

Let us now denote s = (s, ..., sy) with each s; being
the eigenvalue Z;|s) = s;|s) and ignore the degeneracy of
this eigenvalue with respect to the permutations of the n;
qubits. A priori s; and r; can take only integers in the interval
[—n;, n;]. In many cases this is already sufficient as we show
later. Noninteger values can be obtained by adding dynam-
ical control. The time evolution for a given sensor can be
effectively slowed down if all the spins at the corresponding
location are flipped during the sensing process (either once
at some intermediate time #;, or with a certain frequency).
This results in an arbitrary effective value s; € [—n;, n;]. For
time invariant parameters a single switching suffices, while
a (fast) dynamical control allows one to do this in general.
If the dynamical decoupling is conditional on an auxiliary
qubit degree of freedom (e.g., the permutation degeneracy
we ignored), the slowing factor can be made different for
the states |s;) and |r;) of the jth sensor. Hence we can
take s,8' € O, = [—ny, ny] X - -+ x [—ny, ny] to be any two
vectors inside the J-orthotope (a box) Oy,.

The superposition state is then insensitive to the noises
generated by oy iff

t/(s—5)=0 Vk#k, 4

and the quantum Fisher information of such a superposi-
tion with respect to the signal oy, is given by 4(AG;.)* =
(fkT_ (s — s’))z. Hence, to find the optimal strategy we need two
vectors s and s’ that fulfill all the conditions in Eq. (4) and give
the maximal difference when projected on fj, .

As we show in Appendix A, the maximal sensitivity is
attained by the state of Eq. (2) with s, = argmax{f/s|f]s =
0 V k #k,.}. Importantly, the optimal measurement strat-
egy consists of performing local parity measurements and
combining the classical measurement outcomes, and therefore
does not require any entanglement.

Finally, let us also remark that if f;_is not linearly inde-
pendent from {f};,, one can rearrange the positions of the
sensors r; or add new sensors to make the generators Gy,
linearly independent from the others. The only case where
this cannot be done is when the spatial dependence of the
signal fi, (r) is linearly dependent from the noise processes
{fx(r)}xx2x,, which for example happens in the presence of
uncorrelated local noise. However, in this case the signal is
physically indistinguishable from the noise anyway. Yet, even
then if different noise processes have different time scales, by
protecting against the dominant terms one can profit from a
quantum advantage for a certain sensing time before weaker
noise contributions kick in.

Similarly, if one wants to be independent from another
noise process, one simply needs to add one additional sensor
position. In general, m + 1 sensors suffice to sense one signal
with optimal Heisenberg-limit scaling, and be insensitive to
m independent noise process. We also note that the whole
analysis remains true if the sensors are described by d;-level
systems and their evolution is governed by local Hamiltonians
B(r;)H; with any nontrivial Hermitian operators H;.

B. Multiparameter estimation

One can find also a whole subspace of states that is insen-
sitive to a finite number of noise processes Gy, but sensitive
to multiple signals. This is important in multiparameter es-
timation problems, which can hence be simultaneously made
insensitive against multiple noise processes. A simple strategy
that already gives optimal Heisenberg scaling is to divide
the sensing time among signals. A simultaneous sensing of
different signals with an improved sensitivity is also possible.
However, it is not clear how to devise optimal strategies, and
if local measurements suffice in this case.

C. Single event estimation (Bayesian)

The quantum Fisher information determines the precision
of a metrology scheme in the “frequentist” scenario where
the same experiment is repeated many times (also known
as Fisher regime) via the Cramer-Rao bound, and also in a
single-shot scenario (also known as Bayesian regime) if the
parameter is approximately known and only a small deviation
around this value needs to be determined [32].

In a general Bayesian scenario one starts with some initial
knowledge of the parameters o described by the correspond-
ing probability distributions p,, and aims to performs a single
experimental run in such a way as to reduce the uncertainty
about a certain parameter as much a possible. In some cases
this procedure can then be repeated with the updated knowl-
edge of the parameters, but in others one is limited to a single
run. For example, the latter can describe an event detection
scenario, where all the information about an event has to be
gathered in a short time window. We restrict our attention to
these cases.

Generically, preparing the probes in a superposition of two
eigenstates with the largest possible spectral gap A (maximal
QFI) is not a good strategy for single-shot scenarios. The
reason is simple: QFI only quantifies the rate at which the
information about the signal can be gathered by the probes.
But the total amount of information such binary superposition
states encode is limited to one bit by the Holevo bound [33].
To overcome this limit eigenstates with intermediate eigenval-
ues become useful; see, e.g., Refs. [32,34]. Hence in a generic
Bayesian scenario both the QFI of the probe state and the
number of different eigenvalues (and their actual values) are
important. We will treat this in a separate publication [35].

IV. EXAMPLES

We now discuss several examples for using different ex-
pansion functions or spatial dependent signals; see Fig. 2.
The first example plays a special role, as it demonstrates that
in the presence of noise entangled sensor array can give an
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FIG. 2. Examples of a few scenarios with sensors distributed on
a line, discussed in the text. Noise is depicted in blue dashed and
signal in red solid. (a) Short wavelength signal and local correlated
noise. (b) Taylor series expansion. (c¢) Fourier series expansion.

exponential improvement over local estimation in terms of the
number of sensors involved. The other examples are discussed
only briefly; additional details can be found in Appendix C.

A. Entangled vs product sensors. Example of exponential
quantum advantage

The scheme discussed above is universally applicable and
offers optimal Heisenberg scaling, i.e., a quadratic improve-
ment over classical strategies. By construction it is completely
insensitive to noise on all coefficients f;,. We now consider an
explicit example to demonstrate that such a scheme that uses
global entanglement can give an exponential improvement
(in terms of the number of sensors or noise functions) over
schemes without entanglement between sensors, in contrast
to the noiseless case [5].

Consider J equidistant sensors (with J even) on a line at
positions r; = j/J, consisting of a single qubit each. The sig-
nal to sense is generated by the alternating function f,(r;) =
(—1)/,i.e., a high frequency Fourier coefficient where sensors
are placed in the maximas. In addition, we assume local
correlated noise processes fi with fi(r;) = 8k ; + &, j+1 act-
ing on two neighbors only for k =1,...,J — 1; see Fig. 2.
Moreover, we consider the worst case scenario, where the
effect noise on the probe state is captured by applying a
twirling map, as described in Appendix B.

The optimal state is then given by (|s,) + |—Ss))/ /2 with
[s«) = |1, —1, 1, ..., —1). This state is already insensitive to
all noise processes described above. In fact, |s,) and |—s,)
form the only pair of states with matching eigenvalues for
all noise generators {Gy}r=. .. j—1—all other states differ in
at least one eigenvalue. This can be seen by noting that
Gi>1 force any pair of neighboring qubits to be antialigned
[1)|=1) iy or [=1);|1), . We remark that this construction
is also insensitive to global noise generated by a constant field
fo=(,...,1).

Consider now a general state that is a product with respect
to different sensors, i.e., has no spatial entanglement. Such

a state can be written as ®j(aj|(—l)j) + b;|(—1)/*1)) with
lag|? + |b|> = 1. The twirling map projects any such state
onto the subspaces labeled by possible eigenvalues of the
noise generators. However, we have just seen that the only
nontrivial subspace is given by ITy = [S.) (S| + |—S«) (—S«l,
while all the other subspaces are of dimension one and cannot
encode any information. It follows that a product state can
only sense the signal if it is projected onto ITp, but the
probability that it happens Py = ]_[jzl(a_,-)2 + Hle(b i) <
2-U=D decreases exponentially with J. Consequently, also the
QFI for any strategy without entanglement between different
sensors is 27~ times lower than for the optimal state. This
shows that, in case of noise, spatial entanglement between
sensors can provide up to an exponential advantage.

Note that also in a (Bayesian) single event detection sce-
nario, one may again have an exponential improvement with
the number of sensors; however, in this case even in a noise-
less case. Indeed, the presence of additional signals, that do
not need to be sensed but have very broad prior distributions,
generate random unitary transformations of the probe’s state
and ultimately result in the same twirling map, as obtained in
the noisy Fisher case above.

B. Taylor series

As a first example of generating functions in 1D, we
consider the Taylor expansion with fi(r) = (r/ro)¥, where
ro defines a length scale; see Appendix C1 for details. J
sensors placed at arbitrary but mutually distinct locations
r; are enough to discriminate the signals of {fi} with 0 <
k < J. The determination of the optimal probe state Eq. (2)
to determine &y~ simplifies in the presence of J — 1 noise
sources. In this case we determine f,, with f; =f, +f
and fffk = 0 Vk # k,, with the help of the Gram-Schmidt
orthogonalization. The optimal state is then determined by
s || f. since the decoherence free subspace is one dimensional.
In the presence of noise with the same parity as the signal
we find f; # £ and thus the sensitivity is reduced although
Heisenberg scaling is preserved.

C. Fourier series

As a second example we consider standing waves with
boundary conditions B(r) =0 at positions r/rp =0 and
r/ro = 1; see Appendix C2 for details. In this case, the
generating functions are given by f;(r) = sin[km (r/rg)]. The
Fourier coefficient 1 < k < J can be uniquely determined
by J equidistant placed sensors (compare discrete Fourier
transform). To determine the Fourier coefficient for k, = J,
it is optimal to place the sensors at the extremal points, that is
fi(rj) = £1, with alternating spins s; = (—=1)/n, where we
assumed n qubits at each sensor j. This state is not only
optimal in the noiseless case but also in the noisy case where
all fi.(r) with k < J act as noise sources since fJTfk =0.

D. Point sources at different locations

As a third example, consider J field sources at different
locations ry, where the distance dependence of the signal
specifies the function fi, fi(r) = Brge(Ir — rk|’/3) with 8 >
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1. The f; are linearly independent, and a choice of J sensor
locations provides a scheme with optimal Heisenberg scaling
for one specific source that is insensitive to all / — 1 other
sources. If the degree of freedom of all noise sources is less
than J — 1 we obtain a multidimensional decoherence free
subspace as outlined in the example in Appendix C 3. In this
case, the optimal s is not necessarily parallel to f; but is given
by some of the extremal points of the polytope P,. Here,
P, describes the decoherence free subspace bounded by the
maximal number of qubits per sensor.

V. SUMMARY AND CONCLUSION

In this work we have introduced general sensing schemes
to directly measure a given quantity of interest with a certain
spatial distribution. The schemes are designed for spatially
distributed sensors in a quantum network, and allow one to,
e.g., measure the spatial dependence of the earth magnetic or
gravitational field on large scales.

The methods are however equally well applicable within
small sensing devices, where naturally different sensing sys-
tems are arranged in a specific spatial way, e.g., in a 1D line
in a Paul trap in the case of trapped ions [16] or in a 3D
arrangement as for NV centers in a crystal structure [16]. In
this case, the available control of such systems allows one
to generate the required entangled states using established
techniques, and to build magnetic field sensors for gradients
or other spatial functions that are completely insensitive to
spatially correlated noise processes. Notably, the majority
of mechanisms limiting the frequency stability of a clock
transition of trapped ions enter as a spatially dependent energy
shifts [36], as considered in our model.

Another potential application of our results is the limit on
the resolution of sensor arrays imposed by self-interaction of
the sensors [37]. When the sensors are brought closer together
their interaction, governed, e.g., by H;; = f(r; — r;)Z;Z;, can-
not be neglected. Nevertheless, a similar method might be
applied to engineer geometries and internal sensor states that
are insensitive to this interaction while capable of sensing a
uniform field.

We have illustrated our methods for using standard ex-
pansion functions such as Taylor or Fourier series, where
one of the expansion coefficients should be determined while
other coefficients are effected by noise, but our methods can
be adapted to provide insensitivity against dominant noise
processes whenever they show a different spatial dependence
than the signal to be sensed. This additional freedom gained
by using spatially distributed entangled states is a powerful
tool to maintain quantum enhancement even in the presence
of noise and imperfections. As we have shown entangling
the sensors within a network can offer up to an exponential
advantage in precision.
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APPENDIX A: OPTIMAL QFI FOR THE SIGNAL STAYING
INSENSITIVE TO NOISE

Here we show that if the generator of the signal Gy, is
linearly independent from the noise, i.e., the set of generations
{G}rst,, the superposition state of Eq. (2) in the main text
with s, given by s, = argmax(f/s|fls =0 V k# k] is
insensitive to noise and gives the maximal QFI with respect to
the signal among all states insensitive to noise.

Following the discussion in the main text, we define a
vector space Vyoise = span{fi}i.c, and assume that fy, is lin-
early independent from the set of all other vectors f;. Then it
can be uniquely decomposed as f;, =f, + f; with f; € Vigiee
and fffk =0 for k # k,. In the same way the vectors can
be decomposed in orthogonal components s = s.f; + s +
Sext» Where s € Vioise and Sex is orthogonal to both f; and
Vioise- The insensitivity to noise constraints can be satisfied
by choosing s =s| = v|. To obtain the optimal strategy it
remains to find the two vectors

S = S*fL + A + Sext € On, (Al)

s = S;fj_ + v+ S{cxt € Oy (A2)

maximizing the QFI = (s, — s;)z. To do so, we first get rid
of the components sy and s.,,, by projecting the orthotope Oy,
onto the subspace spanned by f; and all the vectors in Vjgise-
This gives a polytope P, that is symmetric under inversion,
i.e., for any vector v € P, the opposite vector —v is also in P,.

The optimization becomes
max{(s, — S;)2|S =0 + V| € P,, s = S;fl +v) € P,.}.
(A3)

Because of the symmetry of P, the maximal difference is
always attained for vj = 0. This is because for any two such
two vectors s and s’ in P, their inverses —s and —s’ are also
inside the polytope. By convexity, so are the vectors

S =3(s—5) = 305 —sDfL = S, (A4)

S =1 —s)=—1(s, —sDfL =S, (A5)

that yield the quantum Fisher information (S, — S, ) = (5, —
s,)? and satisfy v, = 0. Furthermore, we get s, = —s,. By
the same inversion symmetry it follows that, for the state s =
Sifk + Sext € Oy, attaining the value s,, it’s inverse attains —s,.
Hence the optimal vectors can be taken to be

S = 5.f1 + Sexts (A6)

s = —s. (A7)

APPENDIX B: ACTION OF NOISE AS ORTHOGONAL
PROJECTION ON DECOHERENCE FREE SUBSPACES

In the noiseless case the evolution of the probes for
a time ¢ is described by a global unitary operator U =
exp (it Y, o Gy) = exp (i ), ©xGy). Suppose now, that one
is only interested in measuring the signal «,, while the other
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signals o fluctuate and therefore add noise to the final state,
and we refer to those as noise processes. In particular, we con-
sider the most pessimistic case where for any finite evolution
time ¢ the values o (for k # k,) fluctuate in such a way that
the parameters ®; are independent random variables sampled
anew for each experimental run. In other words, at each run
the effect of each noise process on the state of the probes is to
apply a unitary ¢/®*G+ with a random value ®; unknown to the
experimenter. Hence the evolution is no longer unitary, but is
given by a completely positive trace preserving map

Ep, [0] = &P | Tg 00 Tg, [o] |7+, (BI)
N —— e’
k#k,,

where each T, [o] = [ d Dy POt 0 e 'Ck with [ d Py = 1,
is a twirling map [38]. Such a twirling map destroys the co-
herence between any two eigenstates of Gy that have different
eigenvalues. Hence it can equivalently be represented as an
orthogonal projection onto blocks that only contain product
states that are degenerate for all the noise generators [39]

Tle] =Tg, 0 0T o]l =P Mo,  (B2)
ktk A

where

IT), = Z [s)(s| such that Gx|s) = A|s) Vk # k., (B3)
S

and A = (A; ... Ay) labels the blocks by the eigenvalues of all
noise generators.

Such a noise process destroys any coherence between two
states belonging to different blocks A and A/, that is initially
present in the probe state. Hence it is not only convenient to
prepare the probes in noise incentive states, but in fact any
probe state gets projected into a mixture of noise insensitive
states by the evolution.

APPENDIX C: EXAMPLES

1. Taylor expansion

The Taylor expansion is created by the generating func-
tions fix(r) = (r/ o), where ry defines a length scale. Further-
more, we assume that our sensors are placed at the positions
ri/ro € {0, £1, £2}. In this case, all vectors f; with odd k are
orthogonal to all vectors with even k and vice versa. However,
the subgroup of all odd (even) vectors are not orthogonal
within their subgroup. As an example, we want to measure
@5 without noise from the order k € {0, 1, 2, 4}. The vector
f3 = ((—2)%, (=1),0, 13, 237 is already orthogonal to fy, £,
and f; but not to f; = (=2, —1,0, 1, 2)". With the help of
the Gram-Schmidt process we obtain the orthogonal vector
f, =(—1,2,0, =2, )T, which is orthogonal to all f; with
k # 3 and has maximal overlap with f5. By placingn = |[N/6]
qubits at positions r;/ro = %2, 2n qubits at positions r;/ry =
+1, and zero qubits at r;/ro = 0, we can create the optimal
probe state

|ng) = \%(I—n, 2n,0, —2n, n) + |n, —2n, 0, 2n, —n)).
(C1)

Note that in this case all values are integer and can be
matched by placing an appropriate number of qubits at each
sensor position. If the number of sensing systems is, however,
restricted, e.g., to a single qubit per sensor, then local control
is required to obtain required effective eigenvalues.

2. Fourier expansion

In the following, we consider the generating functions
given by fi(r) = sin[km (r/ro)], which corresponds to stand-
ing waves with boundary conditions B(r) = 0 at positions
r/ro = 0 and r/ry = 1. Without noise, it is optimal to place
the sensors at positions 7; with maximal absolute field strength
| fx.(rj)| =1, that is

7] ith j=1---k (€2)
ri=—[j—= wi =1---k,.
j k. J ) J
As a result, we obtain a coefficient vector f; =

(1,—-1,1,—1,...) with alternating entries and maximal
absolute values. The optimal probe state to measure @y, is
then given by

W)= Sn —nn )+ =nm =), (C3)

if each sensor consists of n = N/k, qubits.
In addition, this state is an eigenstate of all generators Gy
with k # k,(1 + 2m) with m € N, since

k = ko(1 +2m),

bo(Z1y [ k<. 1)} {(—1)’",
Z sin|mt—\(j—=)|=
ko ko 2 0, else.

J=1

(C4)
As a consequence, this probe state is already insensitive to
all noise sources with k # ko(1 + 2m) and especially k < k.
Notice that one can also achieve insensitivity against noise
sources with a higher k than the signal, which might require
the usage of additional sensor positions.

3. Point sources

We now investigate a case where the noise and the signal
field are created by point sources with a 1/r? distance de-
pendence. We consider a specific, simple setting in order to
illustrate the construction of optimal states for sensing. We
assume that the noise sources N; and N, have equal strength
but opposite sign. As a consequence, there exists a plane
incorporating all points where the noise of N; and N, cancel
each other. Furthermore, we assume that the two sensors P;
and P, lie exactly in this plane as depicted in Fig. 3. A
third sensor P; as well as the signal source S are positioned
somewhere outside this plane.

The noise sources can be described by a single effec-
tive vector fy = fy, — £y, = (0, 0, 1)T. The vector describing
the generating function of the signal source is given by
fg = (l/r%, 1/r§, 1/r§ )T with the orthogonal component f; =
(r3,77,0)". However, the decoherence free subspace is two
dimensional and is spanned by f| and sex, = (17, —r3,0)7. In
this case, the optimal probe state is not described by s || £, if
the maximal number of spins at the sensors P/, are limited by
ny 2 withny /ny # r3 /ri. To construct the optimal s we need to
project the polytope O, = [—ny, n1] X [—ny, na] X [—n3, n3]
onto the decoherence free subspace. The polytope O, is
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FIG. 3. Strength of the signal S should be determined via three
sensors P;. The two noise sources N, and N, are equidistant from the
sensor P, as well as P;.

given by a cube for n; = n, = n3 and its projection on the
decoherence free subspace is determined by a square with the
extremal points (1, +1,0) for ny = n, = 1 as depicted in
Fig. 4. Here, we have chosen s3 = 0 because the optimal state
can always be obtained by choosing v; = 0 (see Appendix
C1) leading to s3 = 0 in our case. The maximal projection
s, = f's is obtained for the two extremal points of the poly-
tope described by &s = (1, 1, 0)” as shown in Fig. 4.

Let us briefly come back to the general case of point
emitters described by field configurations

fi(r) = (C5)

Ir — Ry |f’
where all such functions are linearly independent as long as
the locations of all the sources are different Ry # Ry. In a
situation where the size of the sensors’ network is small as
compared to the distance to the nearby emitter, that is, |r; —

(-1, +1,0) (+1,+1,0)

[
(-1,-1,0)

(+1,-1,0)

FIG. 4. Polytope defined by (£1, £1, 0) describes the decoher-
ence free subspace if there is only a single qubit present at each
sensor. The two states s = |1, 1, 0) and —s lead a maximal projection
onto f) of states within the polytope.

r¢| < |Rg], it is natural to expand the signal configurations in
a Taylor series around a point ry

L@ =4+ @ —r) )+ (C6)

However, in contrast to the original function, the expansions
up to a fixed order n are not linearly independent in general:
there are (”+')2(”+2) and (”H)("’gz)("%) linearly independent
polynomials of degree n for r € R? (two variables) and r €
R3 (three variables), respectively. This shows that n has to
be taken large enough if the analysis is done from the Taylor
expansion perspective. In addition, one sees that in such a
situation the signal is rather weak after projection in the noise-
insensitive subspace: the difference between the sources will
only appear in the last orders of the expansion.
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