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Electric field on nucleus in solids and interaction of CP-violating nuclear electric
dipole moment with phonons
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In atoms and molecules, electrons screen the nucleus from the external electric field. However, if the frequency
of the electric field reaches the energy of atomic or molecular transition, the electric field at the nucleus may be
resonantly enhanced by many orders in magnitude. In this paper, we study the mechanisms of screening or
enhancement of electric field acting on the nuclei in solid states. We show that in dielectric crystals the phonon
oscillations of the lattice play a crucial role for determining the electric field on nuclei within the MHz–THz
region. As an application, we propose an experimental scheme for measuring the CP-violating nuclear electric
dipole moment in a solid state based on the coherent excitation of acoustic phonons.
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I. INTRODUCTION

According to Schiff’s theorem [1], atomic electrons screen
the nucleus from the external electric field. In particular, a
static electric field is completely screened inside neutral atoms
and molecules thus creating complications in the measure-
ments of the CP-violating nuclear electric dipole moment
(EDM). However, in real atoms and molecules this screening
is incomplete due to the magnetic moment effect [1,2]. More-
over, the atomic EDM can be generated by the nuclear Schiff
moment and magnetic quadrupole moment [3–5].

In ions and charged molecules the Schiff screening is in-
complete [6,7], but charged particles accelerate in the electric
field and quickly escape. Therefore, EDM measuring experi-
ments with ions require special configurations of the electric
and magnetic fields which trap the charged particles [8].

Another interesting possibility to circumvent Schiff’s
screening is to apply an oscillating electric field. As is demon-
strated in the recent paper [9], the oscillating electric field
inside atoms is screened only partly, and the suppression
factor is proportional to the dynamic atomic polarizability.
From the physical point of view, we understand this result as
a lag in the displacement of the electron cloud in the changing
electric field. However, when the frequency of the electric
field reaches one of the energy levels of atomic transitions, the
electric field at the nucleus may be enhanced by many orders
in magnitude [10].

In molecules, the pattern of screening or resonant enhance-
ment of the oscillating electric field is much more complex
owing to the presence of rotational and vibrational states in
addition to the electronic states [11]. Since the energies of
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rovibrational states are lower than the ones for electronic
states, even the fields in the microwave region may strongly
interact with nuclei.

This paper is devoted to the extension of our previous
results for atoms [9,10] and molecules [11] to the case of
solid states. On the one hand, a crystal can be viewed as a
molecule composed of a large number of atoms, and the gen-
eral consideration developed in [11] is applicable. However,
the general formulas in [11] do not allow us to give specific
numerical estimates as one needs to know the exact wave
functions which take into account the positions of all atoms
in the solid state including all excitations. On the other hand,
in dielectrics and semiconductors, the electric field inside the
solid state is well understood through the electric permittivity
ε = (1 + χ )ε0, where χ is the electric susceptibility and ε0

is the vacuum permittivity. Indeed, the electric field E creates
the polarization in the medium P = ε0χE which reduces the
electric field in the solid by the factor of εr = 1 + χ . However,
this electric field is macroscopic while we need to know the
microscopic electric field acting on each nucleus in the solid
state.

In this paper, we consider dielectric crystals with no free
electrons to avoid strong surface screening of the electric field.
As we will demonstrate, it is possible to estimate the electric
field at each nucleus when the phonon excitation of the lattice
is known. For our estimates, it will be sufficient to consider
phonon lattice oscillations semiclassically. Moreover, we will
restrict ourselves to the case of a harmonic crystal assuming
that anharmonic corrections are subleading.

To sketch the main idea, consider an ideal crystal in a state
with no phonons such that the atoms in the lattice do not
vibrate. This means that each nucleus sits in the minimum
of the electrostatic potential of the lattice such that the elec-
tric field on each nucleus is vanishing. Assume now that a
phonon is excited with a given wave vector q and frequency
ω. Then, for small perturbations, each atom (or ion) in the
lattice oscillates around its equilibrium position harmonically,
u(t ) = u0 cos ωt , where u is the deviation of the given atom
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from its equilibrium position. Discarding the magnetic in-
teraction, one can immediately deduce that each nucleus
with mass m and charge Ze accelerates in the electric field
Enucl = m

Ze ü.
Normally, at nonzero temperature, the lattice contains a

large number of phonons of all allowed frequencies and polar-
izations. In this case, the oscillation of each atom in the lattice
is chaotic, with no preferred direction, and the electric field
at the nucleus averages to zero. However, modern technology
allows one to coherently create a given number of phonons in
the solid state with fixed polarization and frequency (see, e.g.,
[12,13]). Thus, when the pattern of the phonons in the solid
state is known, one can deduce the value of the oscillating
electric field acting on each nucleus. This technique may be
useful in the experiments aiming to study properties of atomic
nuclei and, in particular, the nuclear EDM.

In this paper, unless other units are explicitly specified, we
use natural units, in which h̄ = c = 1, where c is the speed of
light.

The rest of the paper is organized as follows. In the next
section we derive analytical expressions for the electric field at
the nucleus induced by acoustic and optical phonons in solids.
In Sec. III, we numerically estimate the largest magnitude
of the electric field at the nucleus in solid xenon created
by coherent acoustic phonons. We also consider the optical
phonons in a sodium chlorine crystal and show that they may
enhance the external electric field acting on the nucleus when
the frequency of this field is in resonance with the frequency
of transverse optical phonons. In Sec. IV, we present a theoret-
ical idea of how the coherently excited acoustic phonons may
be used in experiments aimed at measuring the permanent
nuclear EDM. In the last section we summarize and briefly
discuss the obtained results.

II. ELECTRIC FIELD ON THE NUCLEUS DUE TO
PHONON LATTICE OSCILLATIONS

In this section, we derive analytic expressions for the
electric field acting on nuclei in crystals due to acoustic
and optical phonons. In our derivation we restrict ourselves
to the theory of harmonic crystals, leaving the analysis of
anharmonic corrections for further studies.

A. Electric field due to acoustic phonons

Acoustic phonons with long wavelengths may be consid-
ered as sound waves in a continuous medium with a frequency
ω and a wave vector q:

u(r, t ) = u0 cos(q · r − ωt ), (1)

where u0 is the amplitude. Consider, in particular, the oscil-
lations of the atom at r = 0, in the direction u0 = (0, 0, u0),
u(t ) = u0 cos ωt . This oscillation reaches the maximum am-
plitude when the crystal is nearly melted or destroyed. Typi-
cally, this oscillation amplitude is of order 0.1 of interatomic
distance a [14]:

u0,max = ηa, η ≈ 0.1. (2)

Thus, in the harmonic approximation, the largest oscillation
of the atomic nucleus due to the given phonons reads

u(t ) = ηa cos ωt . (3)

This motion is produced by the microscopic electric field
acting on the nucleus:

Enucl = m

Ze
ü = −ηamω2

Ze
cos ωt, (4)

where m is the mass of the nucleus and Ze is its charge. Thus,
the maximum amplitude of the electric field on the nucleus
due to acoustic phonons reads

E0 = −ηamω2

Ze
. (5)

As we will show in Sec. III A, for low frequencies this electric
field may be much stronger than the screened external electric
field.

B. Electric field due to optical phonons

Let us consider a simple cubic lattice with two ions per
unit cell. Let (u1, m1) and (u2, m2) be pairs of coordinates
and masses of the two ions in the unit cell. To describe
the oscillations around the common center of mass, it is
convenient to introduce the phonon coordinate

u =
√

mN (u1 − u2), (6)

where m is the reduced mass, m−1 = m−1
1 + m−1

2 , and N is the
atom number density. In the external oscillating electric field
E = E0 cos ωt the dynamics of the variable u is described by
the equation

ü + γ u̇ + ω2
t u = Z∗E0 cos ωt, (7)

where γ is the phonon inverse lifetime, ωt is the transverse
optical phonon frequency, and Z∗ is the effective ion charge.
The latter may be expressed via the dielectric constants of the
solid state (see, e.g., [14]):

Z∗ = ωt

√
εstat − εopt

4π

3

εopt + 2
, (8)

where εstat and εopt are the electric permittivity for static and
high-frequency electric fields, respectively.

In the harmonic approximation, both ωt and Z∗ are con-
stants. More generally, one can consider the phonon dynamics
with anharmonic corrections, but this problem is beyond the
scope of this paper.

The steady-state solution of Eq. (7) reads

u = u0 cos(ωt + φ), (9)

where

u0 = − Z∗E0√(
ω2

t − ω2
)2 + (ωγ )2

, (10)

φ = arctan
ωγ

ω2 − ω2
t

. (11)

The electric field acting on the ions can be found as

Eion = 1

q

√
m

N
ü = −ω2

q

√
m

N
u0 cos(ωt + φ), (12)
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where q is the charge of the ion. The amplitude of this field is

Eion,0 = −ω2

q

√
m

N
u0

= Z∗

q

√
m

N

ω2√(
ω2

t − ω2
)2 + (ωγ )2

E0. (13)

When the frequency of the external electric field ω is far
from the phonon resonance frequency ωt , ω � ωt , Eq. (13)
reduces to

Eion,0 = Z∗

q

√
m

N

ω2

ω2
t − ω2

E0. (14)

In contrast, near resonance, ω ≈ ωt , |ω − ωt| � γ , the ampli-
tude of the electric field amplifies:

Eion,0 = Z∗

q

√
m

N

ωt

γ
E0. (15)

Finally, we point out that the bound electrons of each ion
further screen the electric field on the nucleus by the law [9]

Enucl = Eion

(
q

Z
− αion(ω)

ω2m2
e

Ze2

)
, (16)

where αion(ω) is the atomic polarizability of the ion.

III. NUMERICAL ESTIMATES

In this section, we give numerical estimates of the electric
field on nuclei induced by acoustic and optical phonons. For
the acoustic phonons, we consider solid xenon because it may
be further applied in nuclear EDM measurement experiments.
The electric field due to the optical phonons is considered in
the sodium chlorine crystal because its optical and dielectric
properties are well represented in the literature.

A. Electric field in solid xenon

Let us consider 129Xe noble gas in the solid state below
the melting temperature Tmelt = 161 K. The nuclear mag-
netic dipole moment of this isotope is μ ≈ −0.78μN [15],
where μN is the nuclear magneton. In a strong magnetic
field B = 10 T, the nuclear spin Larmor precession frequency
is ω = 2μB = 2π × 119 MHz = 4.9 × 10−7 eV. We will be
interested in acoustic phonons in the xenon crystal with this
frequency ω.

The crucial assumption in our estimate will be that it is
possible to coherently excite the phonons in the solid state
with the given frequency and the wave vector. In particular,
it is possible to use a pulsed laser with pulses modulated to
a given frequency ω to coherently generate acoustic phonons
(see, e.g., [12] for a review). Moreover, we point out that mod-
ern technology allows one to measure precisely the number of
phonons created in the solid state [13]. Without going further
into the details of these techniques we will assume that they
may be applied to a solid xenon sample.

Given that the lattice parameter in the solid xenon is a =
6.2 Å, the maximum electric field at the nucleus may be
estimated from Eq. (5):

E0,max ≈ 0.9V/m. (17)

It is instructive to compare the electric field due to phonon
lattice vibrations with the screening of the external electric
field on the nucleus in an isolated Xe atom. According to [9],
the electric field at the nucleus induced by the external electric
field E = E0 cos(ωt ) is

Enucl = α̃ω̃2

Z
E ≈ 1.6 × 10−16E , (18)

where α̃ = 27.3 is the static atomic polarizability of xenon
and ω̃ = ωaB/e2 ≈ 1.8 × 10−8 is the energy in atomic units.
Thus, for any reasonable laboratory electric field E0 the
electric field on the nucleus due to phonons (17) is much
stronger than the external electric field screened by the atomic
electrons (18).

B. Electric field due to optical phonons in sodium chloride

Dielectric and phonon properties of NaCl are well known
(see, e.g., [14]). In particular, the electric permittivity for static
and optical frequency electric fields is εstat = 5.9, εopt = 2.34,
and the transverse optical phonon resonant frequency is ωt =
0.02 eV. The phonon width γ may be estimated as ωt/γ ≈
50 [16]. The reduced mass for the NaCl molecule is m =
13.9mp, and the atom number density is N ≈ 2 × 1022 cm−3.
According to Eq. (15), the electric field acting on each ion is

Eion,0 ≈ 39E0. (19)

Given the electric field at the ion, the field at the nucleus
may be obtained with Eq. (16). At the frequency ω = ωt the
last term in Eq. (16) is negligible. Then, for the Na ion Z = 11
and Ne = 10, and we have

Enucl ≈ 1

11
Eion ≈ 3.5E . (20)

Thus, the oscillating electric field in resonance with the trans-
verse optical phonons not only reaches the nucleus, but may
also be enhanced by the factor of 3.5.

Note that, in Eq. (20), the electric field at the nucleus
grows linearly with E only for a weak external field when the
harmonic description of phonons applies. We stress that the
magnitude of the electric field cannot exceed the value (5) at
which the lattice oscillations reach the maximum amplitude.
For the NaCl crystal, this maximum electric field is of order
107 V/m at the frequency ω = ωt = 2π × 480 GHz.

Note also that if one considers the electric field off the
resonance with the optical phonon frequency, Eq. (14) applies.
In this case, instead of the resonance enhancement there is
off-resonance suppression.

IV. APPLICATION: NUCLEAR EDM MEASUREMENT

Recently, a few experiments have been proposed to mea-
sure nuclear and electron EDMs with solid-state samples
[17–21]. It is expected that such experiments may have better
sensitivity as compared to traditional EDM experiments on
atoms and molecules in the vapor state or in beams and stored
ions in traps. However, as was noticed in [19,22], one of
the issues of the solid-state EDM experiments is that the
oscillating strong electric field causes heating of the sample
and thermal depolarization of spins. This problem does not
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FIG. 1. Orientation of magnetic and electric fields in the solid-
state EDM experiments. The external magnetic field B is created by
a strong magnet while the electric field E is the microscopic electric
field on nuclei created by coherent phonon lattice oscillations in the
given direction. The interaction of the nuclear EDM with an oscillat-
ing electric field creates the transverse macroscopic magnetization M
of the sample which may by detected by a superconducting quantum
interference device magnetometer.

arise in the CASPEr experiment [22,23] aimed at the detection
of the oscillating EDM induced by axion dark matter.

In this section, we will present an idea of how to measure
the permanent nuclear EDM using the phonon excitations
in solids instead of applying an external oscillating electric
field. We will consider an experimental setup similar to the
CASPEr experiment [22,23], but with important modifica-
tions needed to measure the permanent nuclear EDM. A very
schematic design of this experiment with main emphasis on
the orientation of electric and magnetic fields is shown in
Fig. 1. Nuclear spins in this solid state are prepolarized by
the external strong magnetic field B. The magnitude of this
field determines the Larmor precession frequency ω = 2μB,
where μ is the nuclear magnetic moment. Nuclear EDMs are
also prepolarized by this field, because the nuclear EDM is
parallel to the nuclear spin.

The oscillating electric field Enucl = Enucl,0 cos ωt acting
on the nuclei should be created in the orthogonal plane. We
assume that this field is coherently created due to acoustic
phonons as described in Sec. III A. The frequency of this field
should match the Larmor precession frequency of nuclear
spins. In this case, the NMR-like interaction of the oscillating
electric field with the nuclear EDM dN creates the macro-
scopic magnetization M of the sample in the direction orthog-
onal to both B and Enucl. For a small (dNt ) this magnetization
grows linearly with time:

M(t ) ≈ NμEnucldNt sin(2μBt ), (21)

where N is the number density of nuclear spins, μ is the
nuclear magnetic moment, and B is the external magnetic
field. This magnetization may be detected by a magnetometer
like a superconducting quantum interference device (SQUID).

For the solid state, it is convenient to use solid xenon due
to a number of reasons.

(i) It has odd stable isotopes 129Xe and 131Xe with nuclear
spins 1/2 and 3/2, respectively, which are often used in the
EDM measurements with NMR technology [24–26]. Here, for
simplicity, we consider 129Xe only although other options are
possible.

(ii) The melting temperature of xenon is high compared to
other noble gases.

(iii) In solid state, xenon possesses a cubic lattice which
makes it simple for theoretical studies.

(iv) Lastly, since all electron shells are closed, only the
nuclear EDM interacting with the electric field may be respon-
sible for the macroscopic magnetization of the sample.

For solid xenon, the parameters in Eq. (21) are N = 1.66 ×
1022 cm−3, μ = −0.78μN , and 2μB = 4.9 × 10−7 eV for
B = 10 T. The maximum electric field at the nucleus due to
phonon lattice oscillations is estimated in Eq. (17), Enucl ≈
0.9 V/m.

The macroscopic magnetization of the sample may be
detected with a magnetometer. We assume a SQUID mag-
netometer with sensitivity 10−15 T/

√
Hz. Assuming that the

measurement time may be of order t ∼ 1000 s (see, e.g., [27]),
the solid-state EDM experiment may detect the permanent
nuclear EDM of order

dN ≈ 1.2 × 10−22 e cm. (22)

The above estimate is very close to current experimental
limits on the nuclear EDM. The best limit on the atomic EDM
in xenon was obtained in [24]: |dXe| < 1.5 × 10−27 e cm.
According to [2], in xenon, the nuclear EDM contributes to the
atomic EDM as dXe = 4.4 × 10−6dN . Thus, the xenon EDM
experiment puts the following limit on the nuclear EDM in
xenon:

|dN | < 2.5 × 10−22 e cm. (23)

As a result, it may be promising to develop an experimental
technique for measuring the nuclear EDM using phonon
lattice oscillations.

We stress that Eq. (22) represents a very crude estimate of
sensitivity of an experiment aimed at measuring the nuclear
EDM in solids using lattice oscillations. In a more accurate
estimate one is to analyze the signal-to-noise ratio by taking
into account different noise sources in realistic experiments.
This analysis will be done elsewhere. Here we only present the
theoretical idea of possible application of coherent phonon ex-
citations in solids to the nuclear EDM measurement. We point
out that our proposal allows for direct nuclear EDM measure-
ment which is free from the problem of Schiff’s screening
arising in classic EDM experiments with paramagnetic atomic
and molecular systems [26,28–30]. These experiments aim to
measure the atomic EDM which may be, in particular, induced
by the nuclear Schiff moments [3,4].

Finally, we point out that the experimental technique de-
scribed in this section may be applied to ionic crystals. In
this case, it might be possible to measure the EDMs of ions
induced by the nuclear Schiff moment, magnetic quadrupole
moment, or electron EDM. The electric field on the nucleus
induced by the phonon lattice oscillations may also be used
to measure the oscillating nuclear EDM induced by the axion
dark matter. The possibility of this measurement for atoms and
molecules with the use of an external oscillating electric field
was discussed in [31].

V. SUMMARY

In this paper, we estimated the magnitude of the electric
field induced on the atomic nuclei by phonon lattice oscil-
lations in solid states. In these oscillations, the maximum
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deviation of atoms from their equilibrium positions is typ-
ically of the order of one-tenth of the interatomic distance
that corresponds to the maximum magnitude of the electric
field acting on the nuclei as in Eq. (5). If the atoms oscillate
randomly due to the thermal motion, this field averages out
in time. However, if the acoustic phonons can be created
coherently in all atoms in the solid state with a given wave
vector and polarization, this electric field becomes significant.
As we demonstrated, for low frequencies (characteristic of the
acoustic phonons) this electric field acting on atomic nuclei
due to phonon lattice oscillation is much stronger than the
external electric field screened by the atomic electrons. In
particular, in solid xenon, this field is of order 1 V/m at
frequency 119 MHz.

The crucial assumption in our estimate is that the acoustic
phonons may be excited coherently with a given wave vector
and polarization. This assumption is based on advances in
phonon generation and counting (see, e.g., [12,13]). As we
advocate in Sec. IV, this technique may be applied to mea-
sure the nuclear EDM. We expect that possible NMR-like
experiments based on the phonon lattice oscillations may

be sensitive to the nuclear EDM of order 10−22 e cm. This
sensitivity is very close to the current constraint on the nuclear
EDM (23) arising from the recent atomic EDM measurement
in xenon [24]. Thus, it is tempting to develop an experimental
technique for measuring the nuclear EDM with phonon lattice
oscillations in solids.

We also estimated the electric field at the nucleus due to
optical phonons which are present in many ionic crystals. In
contrast to the acoustic phonons, the optical ones interact di-
rectly with the external electric field. When this electric field is
in resonance with the frequency of transverse optical phonons,
it may be enhanced on the nucleus. Possible experimental
applications of the electric field on the nucleus induced by
the optical phonons will be discussed elsewhere.
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