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During the past decade, a number of attempts to formulate a continuum description of complex states of
matter have been proposed to circumvent more cumbersome many-body and simulation methods. Typically,
these have been quantum systems (e.g., electrons) and the resulting phenomenologies collectively often called
“quantum hydrodynamics.” However, there is extensive work from the past based in nonequilibrium statistical
mechanics on the microscopic origins of macroscopic continuum dynamics that has not been exploited in this
context. Although formally exact, its original target was the derivation of Navier-Stokes hydrodynamics for
slowly varying states in space and time. The objective here is to revisit that work for the present interest in
complex quantum states—possible strong degeneracy, strong coupling, and all space-time scales. The result is
an exact representation of generalized hydrodynamics suitable for introducing controlled approximations for
diverse specific cases and for critiquing existing work.
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I. INTRODUCTION

Traditional hydrodynamics for a simple fluid describes the
dynamics of the average local conserved fields associated with
symmetries of the Galilean group [number density n(r, t ), en-
ergy density e(r, t ), momentum density p(r, t )] [1,2]. These
fields are chosen since they dominate the behavior on large
space and timescales, leading to a closed dynamics simpler
than that of the full many-body degrees of freedom. The
governing equations have their origin in the macroscopic con-
servation laws that follow from averages of the corresponding
exact microscopic conservation laws for the operators repre-
senting these fields. The averages are defined with respect to
a chosen state (ensemble) whose dynamics is governed by
the Liouville–von Neumann equation. The generic forms of
the macroscopic conservation laws, classical or quantum, do
not depend on the specific state of interest except through the
explicit forms for the average energy and momentum fluxes.
The latter are “constitutive equations” relating those fluxes
to the hydrodynamic variables for a closed description of
their dynamics. This is analogous to thermodynamics whose
formulation is general but which requires an equation of
state for each specific system. For variations on small space
and timescales, the Liouville–von Neumann equation can be
solved to obtain the average fluxes in the form of Fourier’s
law and Newton’s viscosity law [3,4]. The resulting hydrody-
namic equations are the nonlinear Navier-Stokes equations,
characterized by a thermodynamic pressure and transport
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coefficients given formally by Green-Kubo time correlation
functions [5].

The objective here is to extend the continuum descrip-
tion to general complex states being studied now in various
evolving fields of condensed matter physics and materials
sciences. Examples of recent reviews include warm, dense
matter [6], high-energy density physics [7,8], thermoelec-
tric transport [9], quantum plasmas [10,11], and electrons
in graphene [12]. This entails accommodating conditions of
strong coupling, strong quantum degeneracy, and/or shorter
space and timescales. This idea has been explored extensively
some years ago for calculating equilibrium time correlation
functions [13,14]. Such functions obey the linear Navier-
Stokes equations at low frequencies and long wavelengths
[15,16]. These conditions are met for the differential cross
section measured by laser light scattering, and the latter
is a useful tool for measuring the hydrodynamic transport
coefficients. However, that approach does not apply to the
neutron scattering cross section which samples much smaller
wavelengths and larger frequencies. To address this problem,
the hydrodynamic description is modified (generalized) to
include these extended domains. Typically, this is done by
making thermodynamic derivatives wave vector dependent
and transport coefficients frequency and wave vector depen-
dent. An early review of the methods with references is given
by Mountain [17].

The scope of the objective here is far greater, to provide
the basis for a continuum description of macroscopic dy-
namics under the most general conditions. It is a formally
exact resolution of the macroscopic conservation laws into
physically transparent components suitable for constructing
approximate models in specific cases of interest. In this way,
much of the present phenomenology about “new” hydrody-
namics can be critiqued and controlled. The analysis uses an
application of nonequilibrium statistical mechanics developed
long ago for linear response but is not limited to that case.
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The two earliest and most complete formulations are those of
McLennan and collaborators [3,18–20] and of Zubarev and
collaborators [4,21]. The present work can be viewed as a
“revisiting” of that approach, assuring its exact treatment of
extreme quantum and nonlocal effects. It is hoped in this way
an important largely forgotten tool will become available for
new developments in the formulation of practical continuum
dynamics models.

One motivation for this revisiting of generalized hydro-
dynamics is a growing current interest in a continuum de-
scription for the electron density in quantum devices (e.g.,
nanomaterials) and other charged particle quantum systems
(e.g., plasmonics). A very recent review of current activity in
quantum hydrodynamics for plasmas has just appeared [10].
There is a much earlier history of quantum hydrodynamics
associated with attempts to reinterpret the Schrodinger equa-
tion as an equivalent continuum description [22,23], time-
dependent Thomas-Fermi models [24], or from a macroscopic
Hamiltonian [25], each leading to different quantum poten-
tials occurring in related quantum continuum equations. See
the paper by Stanton and Murillo [26] for some resolution of
these different quantum potentials. Previous quantum hydro-
dynamics have often focused on nearly ideal plasmas (weak
coupling, weak spatial inhomogeneities). One interest here
is for the quite different states of warm dense matter [6],
composed of strongly coupled ions and electrons at solid
state densities and a wide range of temperatures and spatial
inhomogeneity. A direct approach by standard many-body
methods is very challenging. Density functional theory (DFT)
for equilibrium properties of such states has met with some
significant success [27]. Applications of time-dependent den-
sity functional theory (TDDFT) are still at an early stage in
this context [28–30]. In principle, the density and momentum
conservation laws provide the basis for a closed description
of the density if the momentum flux can be expressed as
a functional of the density via TDDFT [28,31]. Extensions
of this idea including energy conservation are also being
considered [9]. Here, the closure of all conservation laws
is provided by a representation of the fluxes in terms of a
formal solution to the Liouville–von Neumann equation as a
functional of the fields, nonlocal in both space and time.

In the next few sections, the basis for an exact continuum
description for the average density, internal energy density,
and momentum density (equivalently, flow velocity) is re-
viewed. The corresponding conservation laws are not closed
since the energy and momentum fluxes are not specified
as functionals of the dependent variables. Instead, they are
defined as averages of specific operators over a solution to
the Liouville–von Neumann equation. That solution is repre-
sented as a reference state plus its deviation. The reference
state is taken to be local equilibrium (also known as the
“relevant state” [21]). This is a composite state representing an
equilibrium system at each space and time point, constrained
to have the same values for the average local conserved densi-
ties as those for the actual nonequilibrium state. If only the hy-
drodynamic fields were measured, the local equilibrium state
would be indistinguishable from that for the actual system—
it is the best choice within information entropy theory
[21,32–34]. This local equilibrium contribution to the fluxes
gives results that are specific functionals of the hydrodynamic

fields. If deviations from the local equilibrium fluxes are
neglected, a closed set of equations for the fields is obtained.
This is referred to as “perfect fluid hydrodynamics.” The
terminology is chosen since these equations have no entropy
production. The perfect fluid hydrodynamics is local in time,
but nonlocal in space. Hence, there are no inherent limitations
on space and timescales. Calculation of the local equilibrium
energy and momentum fluxes is a problem closely related to
that of DFT for the thermodynamics of a nonuniform system.
Specific limits of these perfect fluid equations subsume all
previous “quantum hydrodynamics,” and important differ-
ences are noted. In the “local density approximation” where
spatial nonlocality is neglected, these become the usual Euler
equations of hydrodynamics extended to quantum states.

In Sec. IV, the remainder of the energy and momentum
fluxes, additions to the local equilibrium contributions, are
considered. These are defined by averages over a special
solution to the Liouville–von Neumann equation that is the
deviation from the local equilibrium ensemble. It is not ac-
tually a solution but rather a representation of a solution in
terms of the unknown macroscopic fields of interest. In this
way, averages of the fluxes are given as functionals of these
fields, allowing the desired closure of the macroscopic conser-
vation laws. The results are similar to those known for linear
constitutive equations, with the equilibrium time correlation
functions replaced by corresponding nonlinear local equilib-
rium time correlation functions. They apply for both classical
and quantum conditions, and no limitations are imposed on
length and timescales. With the energy and momentum fluxes
determined in this way as functionals of the hydrodynamic
fields, the macroscopic conservation laws become the desired
exact generalized hydrodynamic equations.

The derivation of the macroscopic local conservation laws
in the next section is based on the fundamental microscopic
Heisenberg dynamics for the system. This is contrasted with
some earlier treatments starting from a macroscopic mean-
field Hamiltonian [11,25,31]. The associated approximate
macroscopic Hamiltonian dynamics of the latter entails sev-
eral limitations, most importantly an irrotational velocity field,
a mean-field free energy functional, and no dissipative con-
tributions to the fluxes. The details of the exact microscopic
derivation here are relegated to the Supplemental Material
[35], so the next section is devoted to their averages, notational
conventions, and their transformation from energy and mo-
mentum fields to the more usual internal energy density and
flow velocity fields. Also, the energy and momentum fluxes
are divided into a local equilibrium contribution and dissi-
pative contribution. The interpretation of each is discussed.
Finally, the objectives and results are reviewed in the last
section with an outlook for future developments.

As noted above, the approach to macroscopic transport
given here follows closely the earlier applications of nonequi-
librium statistical mechanics [3,4,18–21]. The present work
updates this and provides easier access to that complex work
in the context of complex states not experimentally accessible
until recently. It retains validity for quantum effects, nonlin-
earity, strong coupling, and spatial inhomogeneity. Being a
formally exact representation of a continuum description, it
subsumes the phenomenological versions developed in recent
years, providing a structure for their critique and extension.
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Some examples of this connection to earlier work are given in
the text and conclusions section.

On conclusion of this work, a new review of quantum
hydrodynamics appeared [10], with extensive critique of var-
ious approximations in the context of plasmas and related
electronic systems. Consequently, no attempt will be made
here to make contact with the rather complete discussion there
of existing work. A primary premise there is that phenomeno-
logical quantum hydrodynamics has often been misused due
to a lack of understanding of its validity conditions. The need
for strong theoretical underpinnings of any approximation or
application is stressed. The objective here is to provide an
exact hydrodynamic formulation as the basis for introduction
of controlled applications.

The presentation given here is all within the context of a
one-component fluid with simple constituents (e.g., charges,
atoms, molecules) governed by nonrelativistic quantum me-
chanics. However, the philosophy of constructing an ex-
act formulation for the macroscopic fields prior to the in-
troduction of approximations extends to diverse other sys-
tems mutatis mutandis with different fields (e.g., polymers,
mixtures, broken symmetry states) or different dynamics
(e.g., relativistic, granular/active).

II. MACROSCOPIC LOCAL CONSERVATION LAWS

A. Microscopic local conservation laws

For simplicity of notation, only a one-component system is
considered here and below. A system of N identical particles
(bosons or fermions) contained in a volume � enclosed by a
surface

∑
has a Hamiltonian operator given by

HN =
N∑

α=1

[
p2

α

2m
+ vext (qα, t )

]
+ 1

2

N∑
α �=β=1

U (|qα − qβ |).

(1)

Here U (|qα − qβ |) is the interaction potential for the pair of
particles at positions qα, qβ , and vext (qα ) is an external single
particle potential. The boundary conditions are contained in
the external potential by the condition vext (qα ) → ∞ for qα ∈∑

. The state of the system is specified by a statistical density
operator ρ, defined in terms of its components for each N-
particle Hilbert space, ρN , and normalized according to∑

N>0

Tr(N ) ρN = 1. (2)

The definition of ρN is such that it includes a restriction to the
appropriate subspace of symmetrized or antisymmetrized ele-
ments of the N-particle Hilbert space. For a given observable
represented by the operator AN in the N-particle Hilbert space,
its expectation value in the state ρ is defined by

A = 〈A; ρ〉 ≡
∑
N>0

Tr(N ) ρN AN . (3)

The notation 〈A; ρ〉 instead of the simplified A will be used
should any confusion arise.

The Hamiltonian without the external potential has all the
continuous symmetries of the Galilei group (time transla-
tions, spatial translations, rotations, boosts) as well as discrete

symmetries of parity and time reversal. Associated with the
continuous symmetries are the usual conservation laws for
number, energy, linear momentum, and angular momentum.
Here only point particles (point sources of force) are consid-
ered so the relevant conservation laws are those of number
density, momentum density, and energy density. The operators
representing these densities are, respectively,

n(r) =
N∑

α=1

�(r − qα ), (4a)

p(r) =
N∑

α=1

1

2
[pα,�(r − qα )]+, (4b)

e(r) =
N∑

α=1

1

2

[
p2

α

2m
,�(r − qα )

]
+

+ 1

2

N∑
α �=β=1

U (|qα − qβ |)�(r − qα ), (4c)

where [, ]+ denotes the anticommutator, [A, B]+ = AB + BA.
Here �(r) is a function localized about some small domain
centered at r and normalized to unity∫

dr �(r) = 1. (5)

Often in the literature the ideal case of a δ function is con-
sidered, �(r) → δ(r). Exact microscopic local conservation
laws follow directly from the Heisenberg dynamics for the
densities in Eqs. (4a)–4(c). The analysis is straightforward
but lengthy. For completeness, the details are repeated in the
Supplemental Material [35], with the results

∂t n(r, t ) + m−1∇ · p(r, t ) = 0, (6a)

∂t e(r, t ) + ∇ · s(r, t ) = − 1

m
p(r) · ∇vext (r, t ), (6b)

∂t pi(r, t ) + ∂ jti j (r, t ) = −n(r, t )∂iv
ext (r, t ). (6c)

These operator equations are exact, with explicit expressions
for the energy flux s(r, t ) and momentum flux ti j (r, t ) given
in the Supplemental Material [35]. A summation convention
is adopted for repeated indices for Cartesian coordinates.

B. Macroscopic local conservation laws

The corresponding macroscopic averages of these micro-
scopic equations [defined as in (3)] give the corresponding
macroscopic local conservation laws:

∂t n(r, t ) + m−1∇ · p(r, t ) = 0, (7a)

∂t e(r, t ) + ∇ · s(r, t ) = − 1

m
p(r) · ∇vext (r, t ), (7b)

∂t pi(r, t ) + ∂ jt i j (r, t ) = −n(r, t )∂iv
ext (r, t ). (7c)

The sources in (7b) and (7c) represent the average work
done by the external force and the average external force
density, respectively. The microscopic conservation laws are
independent of the state of the system considered, while the
macroscopic conservation laws are specific to the state. Still,
they are quite general and apply for both mixed and pure
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states, classical and quantum. It remains to determine the
fluxes such as to provide a closed set of equations for the
average fields n(r, t ), e(r, t ), and p(r, t ).

Instead of the average momentum density, it is traditional
to consider the flow velocity field u(r, t ) defined by

p(r, t ) ≡ mn(r, t )u(r, t ). (8)

Also, it is useful to extract the purely convective parts of the
energy density and fluxes of energy and momentum [3]

e(r, t ) = e0(r, t ) + 1
2 mn(r, t )u2(r, t ), (9a)

si(r, t ) = s0i(r, t ) + e(r, t )ui(r, t ) + t0i j (r, t )u j (r, t ), (9b)

t i j (r, t ) = t0i j (r, t ) + mn(r, t )ui(r, t )u j (r, t ). (9c)

The operators with a subscript 0 are the same as those without
the subscript, except with all particle momentum operators
replaced by pα → pα − m u(r, t ). Hence, the corresponding
averages are those quantities in the local rest frame of the fluid
at point r. For example, e0(r, t ) is the average local internal
energy density.

The local conservation laws become

Dt n(r, t ) + n(r, t )∇ · u(r, t ) = 0, (10a)

Dt e0(r, t ) + e0(r, t )∇ · u(r, t ) + t0i j (r, t )∂iu j (r, t )

+∇ · s0(r, t ) = −n(r, t )u(r, t ) · ∇vext (r, t ), (10b)

mn(r, t )Dt ui(r, t ) + ∂ jt0i j (r, t ) = −n(r, t )∂iv
ext (r, t ),

(10c)

where Dt = ∂t + u · ∇ is the material derivative. The depen-
dent fields are now n(r, t ), e0(r, t ), and u(r, t ). The utility of
these exact equations depends on determination of the energy
and momentum fluxes, s0(r, t ) and t0i j (r, t ), in the local rest
frame.

C. Analysis of energy and momentum fluxes

For a closed set of equations, the required local rest frame
fluxes should be expressed as functionals of the fields so that
the macroscopic conservation laws would become a closed,
deterministic set of equations for the fields. That is the final
objective of the presentation here. It is accomplished in two
steps. The first is to identify the result for a “perfect fluid”
without dissipation. Next, the remainder responsible for dissi-
pation is obtained from a formal solution to the Liouville–von
Neumann equation.

Note that the time dependence can be shifted to the state ρ

using the cyclic invariance of the trace

s0(r, t ) = 〈s0(r); ρ(t )〉, (11)

t0i j (r, t ) = 〈t0i j (r); ρ(t )〉, (12)

which in turn requires the solution to the Liouville–von Neu-
mann equation for ρN (t )

∂tρN (t ) + LN (t )ρN (t ) = 0, (13)

where LN is the Liouville operator defined by

LN (t )X ≡ i[HN (t ), X ], (14)

for each N , for any operator X .
The solution is written as the sum of a reference state

ρ	
N [y(t )] plus its deviation �N (t )

ρN (t ) = ρ	
N [y(t )] + �N (t ). (15)

The reference state is entirely determined by a set of conjugate
fields {y(t )} in one-to-one correspondence with the macro-
scopic conserved fields. This correspondence is defined by the
requirements

n	(r|y(t )) ≡ n(r, t ), (16a)

e	
0(r|y(t )) ≡ e0(r, t ), (16b)

p	(r|y(t )) ≡ mn(r, t )u(r, t ), (16c)

where the superscript 	 denotes a reference ensemble average,
A

	 = 〈A; ρ	〉. The left sides of these equations are functionals
of the conjugate fields while the right sides are the fields
of the local conservation laws. In this way, the conjugate
fields {y(t )} are functionals of the average conserved fields
n(r, t ), e0(r, t ), u(r, t ), and vice versa. The reference state
therefore has the exact average values for the conserved fields
by construction.

A choice for ρ	 with these properties is the local equi-
librium ensemble [3,21]. To motivate it, note that the grand
ensemble for a system at rest is

ρeN [β, ν] = e−Q[β,ν]e−βH+νN , (17)

where by normalization

Q[β, ν] = ln
∑
N>0

Tr(N ) e−βH+νN . (18)

The corresponding result for a system moving with velocity w
is obtained by the replacement (transformation to the moving
frame) H → H − w · P + 1

2 mNw2, where P is the total mo-
mentum operator. Now consider an assembly of equilibrium
systems where β, ν, w vary at each point in space and time

ρ	
N [β(t ), ν(t ), w(t )] ≡ e−Q	[β(t ),ν(t ),w(t )]e− ∫

dr [β(r,t )(e(r)−w(r,t )·p(r)+ 1
2 mw2(r,t )n(r))−ν(r,t )n(r)], (19)

where

Q	[β(t ), ν(t ), w(t )] = ln
∑
N>0

Tr(N ) e− ∫
dr [β(r,t )(e(r)−w(r,t )·p(r)+ 1

2 mw2(r,t )n(r))−ν(r,t )n(r)]. (20)

The operators N, H, P have been replaced accordingly by the associated operators for their densities

{ψκ (r)} ≡ {n(r), e(r), p(r)}. (21)

023036-4



GENERALIZED HYDRODYNAMICS REVISITED PHYSICAL REVIEW RESEARCH 2, 023036 (2020)

In this notation, the local equilibrium ensemble becomes

ρ	
N [β(t ), ν(t ), w(t )] = e−η, η = Q	 +

∫
dr ψκ (r)yκ (r),

(22)

where summation over repeated indices is implied. The “con-
jugate fields” of this local equilibrium ensemble are the coef-
ficients of the corresponding conserved field operators

{y(r, t )} ↔ {−ν(r, t ) + β(r, t )mw2(r, t )/2,

β(r, t ),−β(r, t )w(r, t )}. (23)

It is interesting to note that this local equilibrium ensemble is
also the best choice in the sense that it maximizes the infor-
mation entropy for the given values of the conservative fields
[32–34]. Furthermore, the local equilibrium state describes
a “perfect fluid” in the sense that there is no dissipation, as
discussed in the next section.

With ρ	
N specified, the left sides of Eqs. (16a)–(16c) can be

calculated as functionals of β(t ), ν(t ), w(t ). Inverting these
equations then gives these auxiliary fields as functionals of
the average conserved fields of interest, and consequently

ρ	
N [β(t ), ν(t ), w(t )] → ρ ′	

N [n(t ), e0(t ), u(t )]. (24)

To simplify and clarify the notation, the fields n(r, t ), e0(r, t ),
and u(r, t ) will be denoted

{ζ (r, t )} ≡ {n(r, t ), e0(r, t ), u(r, t )} (25)

so that (24) becomes

ρ	
N [y(t )] = ρ ′	

N [ζ (t )]. (26)

All local equilibrium averages therefore become functionals
of the conjugate variables, or equivalently of the average
conserved fields. To make these two representation clear, the
notation in the following will be

〈X (r); ρ	[y(t )]〉 ≡ X
	
(r|y(t )) ≡ X (r|ζ (t )), (27)

where the one-to-one relationship of (16a)–(16c) can be ex-
pressed as

y(r,t ) = y(r|ζ (t )) or its inverse ζ (r,t ) = ζ (r|y(t )). (28)

This functional relationship is local in time. As a specific
example, the local equilibrium fluxes are

〈s0(r); ρ	[y(t )]〉 = s	
0(r|y(t )) = s0(r|ζ (t )), (29)

〈t0i j (r); ρ	[y(t )]〉 = t 	

0i j (r|y(t )) = t0i j (r|ζ (t )). (30)

Since the operators s0(r) and t0i j (r) are given by the
derivation in the Supplemental Material [35], the functionals
s0(r|ζ (t )) and t0i j (r|ζ (t )) are given as explicit local equi-
librium averages, and can be taken as formally known. In

particular, it can be shown (see Appendix A) that

s0(r|ζ (t )) = 0, (31)

t0i j (r|ζ (t )) = πi j (r|n(t ), e0(t )). (32)

Here, πi j (r|n(t ), e0(t )) is the equilibrium pressure tensor for
a nonuniform system as a functional of the local density and
internal energy density, independent of the flow velocity. With
these results, the macroscopic conservation laws become

Dt n(r, t ) + n(r, t )∇ · u(r, t ) = 0, (33a)

Dt e0(r, t ) + e0(r, t )∇ · u(r, t ) + πi j (r|ζ (t ))∂iu j (r, t )

+t∗
0i j (r, t )∂iu j (r, t ) + ∇ · s∗

0(r, t )

= −n(r, t )u(r, t ) · ∇vext (r, t ), (33b)

mn(r, t )Dt ui(r, t ) + ∂ jπi j (r|ζ (t )) + ∂ jt
∗
0i j (r, t )

= −n(r, t )∂iv
ext (r, t ). (33c)

The fluxes have been separated explicitly

s0(r, t ) = s∗
0(r, t ), (34)

t0i j (r, t ) = πi j (r|ζ (t )) + t∗
0i j (r, t ). (35)

The contributions to the fluxes s∗
0(r, t ) and t∗

0i j (r, t ) are those
from �N (t ) in (15)

s∗
0(r, t ) ≡ 〈s0(r); �(t )〉, t∗

0i j (r, t ) ≡ 〈t0i j (r); �(t )〉, (36)

and are discussed in Sec. IV.
Equations (33a)–(33c) are the basis for all analysis of

continuum descriptions described here. They are still exact
and general, with the constitutive equations for s∗

0 and t∗
0i j to

be determined for specific states of interest. They remain to
be specified from a solution to the Liouville–von Neumann
equation. Explicit expressions are well known for states with
small space and time variations. In that case, the fluxes are
obtained to first order in the spatial gradients of the fields, with
transport coefficients given by Green-Kubo time correlation
functions. For the fluid phase, these are Fourier’s law for the
energy flux and Newton’s viscosity law for the momentum
flux. The resulting continuum equations are the Navier-Stokes
hydrodynamic equations. The exact general form for arbitrary
states is discussed in Sec. IV.

III. PERFECT FLUID HYDRODYNAMICS

In this section, it is first shown that the contributions
to dissipation (entropy production) are entirely due to the
components of the fluxes s∗

0 and t∗
0i j . Hence, their neglect

results in a “perfect fluid hydrodynamics.” In the local density
approximation (see below), they are the usual Euler-level hy-
drodynamics. More generally, they extend the Euler equations
to strong spatial nonlocality.

A. Entropy production

The entropy and local entropy are defined here from the
information entropy, maximized for the given average con-
served fields [32–34]

S = − max ln P[y(t )]P = η	[y(t )], (37)
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where

η	[y] ≡ − ln ρ	 = Q	[y(t )] +
∫

dr yκ (r, t )ψκ (r) (38)

is the index function for the local equilibrium ensemble in
(19), so (37) becomes

S[y(t )] = Q	[y(t )] +
∫

dr yκ (r, t )ψ
	

κ (r|y(t )). (39)

From Eq. (21), the operators for the conserved fields are
denoted by ψκ (r) (κ = 1, 2, 3) and the conjugate average
fields are those of Eq. (23). They are defined in terms of the
average conserved fields by the conditions Eqs. (16a)–(16c).
In this notation, Eq. (20) becomes

Q	[y(t )] = ln
∑

N

Tr(N ) e− ∫
dr yκ (r,t )ψκ (r). (40)

The entropy production is defined by

σ (t ) = ∂t S[y(t )] =
∫

dr yκ (r, t )∂tψ
	

κ (r|y(t )). (41)

Next use (16a)–(16c), which define the conjugate fields in
terms of the average conserved fields, to write

∂tψ
	

κ (r|y(t )) = ∂tψκ (r, t ). (42)

Then using the macroscopic conservation laws,

∂tψκ (r, t ) = −∂ jγ jκ (r, t ) + f κ (r, t ), (43)

where

γ jκ (r, t ) = {n(r, t )u j (r, t ), s j (r, t ), t i j (r, t )}, (44)

f κ (r, t )={0,−n(r, t )u(r)·∇vext (r, t ),−n(r, t )∂iv
ext (r, t )}.

(45)

The entropy production becomes

σ (t ) =
∫

dr γ iκ (r, t )∂iyκ (r, t ) + σext (t ), (46)

where σext (t ) is the entropy production due to the external
force

σext (t ) =
∫

dr yκ (r, t ) f κ (r, t ). (47)

To interpret this further, write γ iκ (r, t ) = γ 	
iκ (r|y(t )) +

γ ∗
iκ (r, t ) and use the cyclic invariance of the trace to show

that the contributions from γ 	
iκ (r|y(t )) and the external force

cancel [see Eq. (A17) of Appendix A]

0 =
∑

N

Tr(N ) Lρ	[y(t )]

=
∫

dr γ 	
iκ (r|y(t ))∂iyκ (r, t ) + σext (t ). (48)

Consequently, all of the entropy production is due to γ ∗
iκ (r, t )

σ (t ) =
∫

dr γ ∗
iκ (r, t )∂iyκ (r, t ). (49)

All dissipation is associated with γ ∗
iκ (r, t ).

B. Hydrodynamics without dissipation

A special case of interest is conditions for which the
irreversible energy and momentum fluxes can be neglected,
s∗

0i → 0 and t∗
0i j → 0. This is never strictly true but can be a

reasonable approximation for certain flows:

Dt n(r, t ) + n(r, t )∇ · u(r, t ) = 0, (50a)

Dt e0(r, t ) + e0(r, t )∇ · u(r, t ) + πi j (r|ζ (t ))∂iu j (r, t )

= −n(r, t )u(r, t ) · ∇vext (r, t ), (50b)

mn(r, t )Dt ui(r, t ) + ∂ jπi j (r|ζ (t )) = −n(r, t )∂iv
ext (r, t ).

(50c)

The resulting continuum equations are referred to as the
perfect fluid equations. These equations have no unknown
components (except the external forces to be chosen) and
hence compose a closed set of equations for the fields, justify-
ing the terminology “hydrodynamics.” The explicit functional
dependence of πi j (r|ζ (t )) on the fields requires evaluation of
the local equilibrium average, Eq. (32).

The simplest approximation is the “local density approx-
imation” whereby the functionals are replaced by functions
of the fields at the point of interest r. The local equilibrium
ensemble defined as a functional of the conjugate fields then
becomes the equilibrium grand canonical ensemble, defined
as a function of the fields at r,

ρ	
N [β(t ), ν(t ), w(t )] → ρe(β(r, t ), ν(r, t ), w(r, t )). (51)

Similarly, the relation of these conjugate fields to the average
conserved fields, (21), becomes

〈ψκ (r); ρe(β(r, t ), ν(r, t ), w(r, t ))〉 = ψκ (r, t ). (52)

The local equilibrium averages on the left side then become
equilibrium averages. Then (52) expresses them as functions
of the non-equilibrium-conserved fields. The associated pres-
sure tensor is

t0i j (r|ζ (t )) → δi jπ
e(n(r, t ), e0(r, t )). (53)

The problem then reduces to a determination of the equi-
librium pressure for the system being considered. This is a
two-step process. First, calculate the pressure as a function
of β(r, t ), ν(r, t ) and then use the equilibrium relations,
β(r, t ) = βe(n(r, t ), e0(r, t )), ν(r, t ) = νe(n(r, t ), e0(r, t )) to
express the pressure as a function of n(r, t ), e0(r, t ). This is
the usual procedure in the derivation of Navier-Stokes hydro-
dynamics for states with small spatial gradients and hence the
local density approximation is justified. More generally, it is
an uncontrolled assumption that must be removed for states
with strong spatial inhomogeneities.

C. Pressure tensor

The pressure tensor and other local equilibrium averages
simplify by transforming to a local rest frame to elimi-
nate their dependence on the flow field. The local equilib-
rium ensemble depends on the velocity field only through
pα j − mw j (qα ). A unitary transformation can be performed to
p′

α = pα − mw(qα ) (see the Supplemental Material [35])

p′
α = e− 1

ih̄ G(pα − mw(qα ))e
1
ih̄ G, (54)
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where G([qα]) is the generation of the transformation. There-
fore,

ρ	
N [β(t ), ν(t ), 0] = e− 1

ih̄ Gρ	
N [β(t ), ν(t ), w(t )]e

1
ih̄ G. (55)

In particular, the average momentum density can be written

〈p(r); ρ	[y(t )]〉 = 〈
e− 1

ih̄ Gp(r)e
1
ih̄ G; e− 1

ih̄ Gρ	[y(t )]e
1
ih̄ G

〉
= mn(r, t )w(r, t ). (56)

Comparison to the condition (16c) shows

w(r, t ) = u(r, t ). (57)

Let A0(r; u(r, t )) be an operator in the local rest frame;
i.e., it depends on the particle momenta through p′

α = pα −
mu(qα, t ). Then its local equilibrium average is independent
of the velocity field

A
	

0(r|β(t ), ν(t ), u(r, t ))

≡ 〈A0(r; u(r, t )); ρ	[β(t ), ν(t ), u(t )]〉

= A
	

0(r|β(t ), ν(t ), 0). (58)

In all of the following, the averages of interest are for opera-
tors in the local rest frame and therefore the flow velocity is
taken to be zero.

The pressure tensor is defined as the local equilibrium
average of the microscopic momentum flux in the local rest
frame t0i j (r)

t 	

0i j (r|y(t )) ≡ π	
i j (r|β(t ), ν(t )) = πi j (r|n(t ), e0(t )) (59)

with (see Supplemental Material [35])

t0i j (r) = 1

4m

N∑
α=1

[piα, [p jα,�(r − qα )]+]+

+ 1

2

N∑
α �=σ=1

Fασ i(|qα − qσ |)D j (r, qα, qσ ), (60)

and

Di(r, q1, q2) ≡
∫ λ1

λ2

dλ
dxi(λ)

dλ
�(r − x(λ)),

x(λ1) = q1, x(λ2) = q2. (61)

In all of the following, the choice

�(r − qα ) → δ(r − qα ) (62)

is made.
Separate the pressure tensor into its diagonal and traceless

parts

π	
i j (r|β(t ), ν(t )) = δi jπ

	(r|β(t ), ν(t )) + π̃ 	
i j (r|β(t ), ν(t )).

(63)

The first term on the right will be referred to as the mechanical
pressure

π	(r|β(t ), ν(t )) = 1
3 t 	

0ii(r|y(t )). (64)

The second term of (63) is the traceless part of the pressure
tensor. Its volume integral must vanish∫

drπ̃ 	
i j (r|β(t ), ν(t )) = 0, (65)

since there is no external vector from which a nondiagonal
tensor can be formed. Otherwise, the off-diagonal contribu-
tions to π̃ 	

i j (r|β(t ), ν(t )) are nonzero, in general.

1. Local pressures

The trace of the momentum flux operator follows from (60)

t0ii(r, 0) = eK
0 (r) + 1

2m

N∑
α=1

pαi�(r − qα )pαi

+ 1

2

N∑
α �=γ=1

Fαγ i(|qα − qγ |)Di(r, qα, qγ ), (66)

where eK
0 (r) is the kinetic energy density operator

eK
0 (r) = 1

4m

N∑
α=1

[
p2

α,�(r − qα )
]
+. (67)

The mechanical pressure is therefore

π	(r|β(t ), ν(t )) = 2

3
eK

0

	
(r|y(t )) + 1

6

∑
α �=γ

Di(r, qα, qγ )Fαγ i(qα, qγ )
	

∣∣∣∣∣∣
y(t )

+ 1

4m
∇2

r n(r, t ), (68)

where the notation introduced in Eq. (27) has been extended for the local equilibrium average of products by defining

〈X (r)Y (r′); ρ	[y(t )]〉 ≡ X (r)Y (r′)
	∣∣

y(t ) (69)

and use has been made of the identity

1

2m

∑
α

pαiδ(r − qα )pαi = eK
0 (r) + 1

4m
∇2

r n(r). (70)
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To interpret the result in Eq. (68), it is useful to introduce a local pressure associated with the virial equation

πv (r|β(t ), ν(t )) = 2

3
eK

0

	
(r|y(t )) + 1

6

N∑
α �=γ=1

�(r − qα )(qα − qγ ) · Fαγ (|qα − qγ |)
	
∣∣∣∣∣∣∣
y(t )

(71)

such that

∫
drπv (r|β(t ), ν(t )) = 2

3
K[y(t )]

	 + 1

6

N∑
α �=γ=1

(qα − qγ ) · Fαγ (|qα − qγ |)
	
∣∣∣∣∣∣∣
y(t )

, (72)

K ≡ 1

2m

N∑
α=1

p2
α j . (73)

Equation (72) is recognized as the virial equation associated
with the local equilibrium ensemble. Then it follows that the
mechanical pressure has the same volume integral as the virial
pressure∫

drπ	(r|β(t ), ν(t )) =
∫

drπv (r|β(t ), ν(t )). (74)

To obtain this, use has been made of∫
drD(r, qα, qγ ) = qα − qγ . (75)

A third local pressure, the thermodynamic pressure
πT (r|β(t ), ν(t )), can be identified from the partition function
Q[β(t ), ν(t )] to define the thermodynamics of a local equilib-
rium system∫

drβ(r, t )πT (r|β(t ), ν(t )) ≡ Q[β(t ), ν(t )]. (76)

Since Q[β(t ), ν(t )] is extensive, this can also be expressed as

1

V

∫
drβ(r, t )πT (r|β(t ), ν(t )) = ∂Q[β(t ), ν(t )]

∂V
. (77)

The volume derivative in (77) is evaluated in Appendix B with
the result that the thermodynamic local pressure is the same as
the local virial pressure

πT (r|β(t ), ν(t )) = πv (r|β(t ), ν(t )). (78)

In summary, the volume integrals of all three local pres-
sures are the same∫

drπ	(r|β(t ), ν(t )) =
∫

drπv (r|β(t ), ν(t ))

=
∫

drπT (r|β(t ), ν(t )) (79)

but the local mechanical pressure differs from the virial and
thermodynamic local pressures

π	(r|β(t ), ν(t )) �= πT (r|β(t ), ν(t )) = πv (r|β(t ), ν(t )).

(80)

In summary, there are several “reasonable” definitions
for a local pressure that all agree with the thermodynamic
global pressure but differ otherwise. In the present context,
the correct local pressure for the hydrodynamic equations is

that obtained by direct evaluation of (68). A definition of
the thermodynamic local pressure and its relationship to an
associated pressure tensor coupling thermal and mechanical
properties is given by Refs. [36,37].

2. Relation of pressure gradient to free energy gradient

It is often chosen to use a free energy density functional
rather than the pressure to characterize the local equilibrium
contribution to the momentum flux. To see how this is done,
define the Legendre transform

F[β(t ), n(t )] = −Q	[β(t ), ν(t )] +
∫

drn(r,t )ν(r,t )

= −
∫

dr[β(r, t )πT (r|β(t ), ν(t ))

+ n(r, t )ν(r, t )]. (81)

It follows from the definition of Q	 that the first functional
derivatives are

δQ	[β(t ), ν(t )]

δν(r, t )

∣∣∣∣
β

= n(r, t )
δF[β(t ), n(t )]

δn(r, t )

∣∣∣∣
β

= ν(r, t ).

(82)

Here F[β(t ), n(t )] is the dimensionless free energy (in the
uniform β limit F → βF ). Consider the special case

δν(r, t ) = ν(r+δr, t ) − ν(r, t ). (83)

The corresponding variation in Q	[β(t ), ν(t )] at constant β is

δQ	[β(t ), ν(t )]|β =
∫

drn(r, t )δν(r, t )

=
∫

drn(r, t )(ν(r+δr, t ) − ν(r, t ))

=
∫

drn(r, t )δr · ∇ δF[β(t ), n(t )]

δn(r, t )

∣∣∣∣
β

.

(84)
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Next express δQ	[β(t ), ν(t )]|β in terms of δπT (r|β(t ),
ν(t ))|β from (76)

δQ[β(t ), ν(t )]|β = −
∫

drβ(r,t )δπT (r|β(t ), ν(t ))|β

= −
∫

drβ(r,t )δr · ∇πT (r|β(t ), ν(t ))|β.

(85)

Finally, equating (84) and (85) and taking δr → 0

β(r,t )∇πT (r|β(t ), ν(t ))|β = n(r, t )∇ δF[β(t ), n(t )]

δn(r, t )

∣∣∣∣
β

.

(86)

This is the commonly used expression by others for the case
of constant β(r,t ). In our case, it is important to remember
there is another contribution to ∇πT (r|β(t ), ν(t )) due to its
variation with respect to β(r,t ). This can be treated in the
same way by introducing a double Legendre transformation
from β(t ), ν(t ) to e0(t ), n(t ). The result is

β(r,t )∇πT (r|β(t ), ν(t )) = n(r, t )∇ δF[e0(t ), n(t )]

δn(r, t )

∣∣∣∣
e0

− e0(r, t )∇ δF[e0(t ), n(t )]

δe0(r, t )

∣∣∣∣
n

.

(87)

D. Relation to previous work

As noted at the end of the introduction, a new review of
quantum hydrodynamics for plasmas has just appeared [10].
It provides an overview of much of the previous work on con-
tinuum descriptions for electrons, with extensive references.
In most cases, the phenomenology does not originate with
traditional hydrodynamics, but is “reinvented.” Consequently,
the brief discussion here is motivated by recovering typical
examples from the present exact analysis showing how some
common limitations (weak inhomogeneities, weak coupling)
can be removed in a controlled fashion.

Most previous work is based on the continuity equation
and the momentum equation, without reference to the energy
conservation law and without dissipation (i.e., special cases
of the perfect fluid equations). Exceptions are Refs. [8,9]
and [38], although the latter is restricted to pure states. The
implicit assumption in neglecting the energy equation is that
the pressure tensor is independent of the internal energy. Then
it is possible to show for the perfect fluid that the inverse
temperature β is spatially uniform and dissipation is weak [3].
The perfect fluid equations (50a)–(50c) reduce to

Dt n(r, t ) + n(r, t )∇ · u(r, t ) = 0, (88a)

mn(r, t )Dt ui(r, t ) + ∂ jπi j (r|n(t )) = −n(r, t )∂iv
ext (r, t ).

(88b)

With the condition of uniform temperature, these equations
are still general, following from the underlying conservation
laws for mass and momentum. In contrast, most earlier work
is restricted to pure states or phenomenological macroscopic

(coarse-grained) Hamiltonian dynamics. Important restric-
tions to that work are explicit at the outset: (1) there is no
dissipation, (2) the velocity field is irrotational (∇×u(r, t ) =
0), and (3) there are no off-diagonal elements to the pressure
tensor.

The origins and applications of continuum equations
such as (88a) and (88b) have been reviewed extensively in
Refs. [11,39] in addition to the review noted above [10].
Instead, the focus is limited to results obtained from a
phenomenological macroscopic Hamiltonian dynamics, due
to Bloch [25] and developed primarily by others, e.g.,
Refs. [39–41]. A Hamiltonian depending on the macroscopic
fields n(r) and φ(r), where the flow velocity is defined in
terms of this scalar potential by u(r) = ∇φ(r), is

H[n, φ] = F [n] +
∫

dr
(

1

2
m|∇φ(r)|2 + vext (r, t )

)
. (89)

Here βF [n] is the dimensionless equilibrium free energy
functional defined above, and vext (r) is the given external
single particle potential. Then, the usual Hamilton equations
for the variables n(r) and φ(r) give the forms (88a) and (88b)
with

∇πi j (r|n(t )) → δi jn(r)∇ δF [n]

δn(r)
. (90)

(Note that the free energy here includes the Hartree contribu-
tion, whereas that of reference [11] has extracted it explicitly.)
This result is in fact the same as the diagonal part of the
pressure tensor in (63) where the thermodynamic pressure and
free energies are related by (86)

∇π (r|n(t )) = n(r)∇ δF [n]

δn(r)
. (91)

Most of the literature on generalized hydrodynamics for elec-
trons (88b) therefore has the form

Dt u(r, t ) + m−1∇
(

δF [n(t )]

δn(r, t )
+ vext (r, t )

)
= 0. (92)

There is considerable analysis of F [n(t )] within recent
finite-temperature DFT [6]. It is typically written as

Fe[n] = Fs[n] + FH[n] + Fxc[n], (93)

where Fs, FH, Fxc are the noninteracting, Hartree, and
exchange-correlation contributions respectively. The
parametrization of each term by the constant temperature
β−1 has been left implicit. The most common case considered
is weakly coupled electrons, for which Fxc is neglected.
Determination of the noninteracting contribution as an explicit
functional of the density is still a formidable challenge, but
for weakly inhomogeneous states it can be calculated from a
gradient expansion. To second order in the density gradient, it
is [42]

Fs[β, n] → FTF[β, n] +
∫

dr a2(β, n(r))
|∇n(r)|2

8n(r)
. (94)

Here FTF[β, n] is the Thomas-Fermi free energy [43]. The
coefficient of the square gradient contribution is known ex-
actly for the special case of the uniform electron gas. More
generally, it is known in terms of the density response function
for the corresponding uniform equilibrium system.
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As a special case, the results for the uniform electron gas
at zero temperature are

Fs[β, n] = 3

10m
(3π2)2/3

∫
drn5/3(r) + 1

9m

∫
dr

|∇n(r)|2
8n(r)

,

(95)

where a2(β, n(r)) → 1/(9m) in (94). The momentum equa-
tion (88b) becomes in this case

Dt u(r, t ) + (mn(r, t ))−1∇πTF(β, n(r, t ))

+ m−1∇(vH (r) + vB(r) + vext (r, t )) = 0, (96)

where vH (r) is the Hartree potential and where the Thomas-
Fermi pressure πTF(β, n(r, t )) and Bohm potential vB(r) [23]
are

πTF(β, n(r, t )) → 1

5m
(3π2)2/3n(r)5/3, (97)

vB(r) → 1

9m

( |∇n(r)|2
8n(r)2

− ∇2n(r)

4n(r)

)
. (98)

The appearance of the Bohm potential in this context has
led to considerable confusion [11,26]. A result similar to
(96) follows from an exact transformation of the Schrödinger
equation (Madelung transform [9,22]) except without the
Thomas-Fermi pressure and without the factor of 1/9 for the
Bohm potential. Its validity is strictly related to a pure state
and does not extend to the mixed state ensembles considered
here [39]. The approximation (96) is reasonable as long as the
density of the underlying system stays close to homogeneity.

E. Application to strong coupling and strong inhomogeneities

The perfect fluid equations may have important applica-
tions to the complex electron-ion systems of warm, dense
matter. Although neglecting dissipation, they describe the
dominant convective dynamics without restriction to length
and timescales. To incorporate the strong coupling, all three
contributions of the free energy functional in (93) must be
included. Furthermore, since electrons in the vicinity of ions
will have strong inhomogeneities, the limitation to gradient
expansions must be relaxed. The range of temperatures for
the electrons should extend from near zero to well above
the Fermi temperature. This ambitious scope of applicability
has been addressed successfully and two main advances are
now available. An accurate representation of the equilibrium
free energy for the uniform electron gas across the entire
temperature-density plane has been developed from recent
quantum Monte Carlo simulations [44,45]. This provides the
essential local density approximation that is necessary to
assure the uniform limit of any approximate functional for
real electron-ion systems [46]. Functional development for
strong inhomogeneities has included a generalized gradient
approximation for both the noninteracting free energy [47]
and the exchange-correlation free energy [27]. With these
developments, the perfect fluid hydrodynamics can be applied
to warm dense matter conditions.

F. Linear modes

The simplest application of the perfect fluid equations is
their linearization about an equilibrium reference state,

n(r, t ) = n(0)(r, t ) + n(1)(r, t ) + · · · , (99)

e0(r, t ) = e(0)
0 (r, t ) + e(1)

0 (r, t ) + · · · , (100)

u(r, t ) = u(0)(r, t ) + u(1)(r, t ) + · · · . (101)

Choose u(0)(r, t ) = 0 and the external force equal to zero.
The solution sought is therefore the response to an initial
perturbation. To lowest order, the equations give uniform,
time-independent quantities n(0)(r, t ) = n(0), e(0)

0 (r, t ) =
e(0)

0 , πi j (r|n(0)(t ), e(0)
0 (t ), u(0)(t )) = δi jπ

(0)(n(0), e(0)
0 ). To next

order, they are

∂t n
(1)(r, t ) + n(0)∇ · u(1)(r, t ) = 0, (102a)

∂t e
(1)
0 (r, t ) + h(0)

(
n(0), e(0)

0

)∇ · u(1)(r, t ) = 0, (102b)

mn(0)∂t u
(1)
i (r, t ) + ∂ jπi j (r|n(t ), e0) = 0, (102c)

where h(0)(n(0), e(0)
0 ) = e(0)

0 + π (0)(n(0), e(0)
0 ) is the enthalpy

density. The pressure tensor contribution is

∂ jπi j (r|n(t ), e0(t )) = ∂ j

∫
dr ′cn(|r − r′|)δi jn

(1)(r′, t )

+ ∂ j

∫
dr ′ce0 (|r − r′|)δi je

(1)
0 (r′, t ).

(103)

The pressure derivatives are evaluated at the uniform equilib-
rium state and are equilibrium response functions

cn(|r − r′|)δi j ≡ 1

n

δπi j (r|n(t ), e0(t ))
δn(r′, t )

∣∣∣∣
n(0),e(0)

0

, (104a)

ce0 (|r − r′|)δi j ≡ 1

n

δπi j (r|n(t ), e0(t ))
δe0(r′, t )

∣∣∣∣
n(0),e(0)

0

. (104b)

The linear equations (102a)–(102c) are most easily solved in
a Fourier representation, with the notation

f̃ (k) =
∫

dr eik·r f (r). (105)

The velocity field is written in terms of its longitudinal com-
ponent (̂k · ũ(1)) and two transverse components (̂e1 · ũ(1), ê2 ·
ũ(1) ). Transverse modes decouple from the others and have no
time dependence. The remaining three variables have coupled
dynamics with three eigenvalues

λ(k) = (
k
√

[h(0)̃ce0 (k) + n(0)c̃n(k)],

− k
√

[h(0)̃ce0 (k) + n(0)c̃n(k)], 0
)
. (106)

The first two are the generalization of long-wavelength sound
modes to arbitrary length scales, while the last is a constant
heat mode (since there is no dissipation). For Coulomb inter-
actions, they become generalizations of the plasmon modes.
This is the simplest example of “generalized hydrodynamics.”

A more interesting example would be linearization around
the stationary state imposed by an external force, such as that
of a configuration of ions or a confining force. These will be
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discussed elsewhere. All of the perfect fluid hydrodynamics
above neglect dissipation. Two attempts to improve this have
been described. The first [11] makes a phenomenological
modification of the coefficient a2 in the gradient expansion
of the free energy, Eq. (94), to make it nonlocal in space
and time. This new dependence is then determined by the
requirement that the linearized equations reproduce chosen
representations for the linear response, e.g., random-phase
approximation. In the present context, it is seen that this is
attempting to capture effects that properly are contained in
the dissipative fluxes, through an ad hoc modification of the
local equilibrium free energy. A more consistent extension of
the perfect fluid equations is to include an approximation to
the irreversible fluxes, e.g., using those known in the Navier-
Stokes limit for small space and time variations [7]. The result
is a mixed representation of perfect fluid effects on all length
scales but weak dissipation on long length scales. Still, it is
a reasonable first attempt at including all relevant physical
effects.

IV. DISSIPATIVE FLUXES AND GENERALIZED
HYDRODYNAMICS

Return now to the exact equations for n(r, t ), e0(r, t ), and
u(r, t ), (33a)–(33c), it remains to determine the irreversible
fluxes s∗

0(r, t ) and t∗
0i j (r, t ) as functionals of these fields. They

are defined as averages over the deviation of the solution to the
Liouville–von Neumann equation from the local equilibrium
ensemble

s∗
0(r, t ) = s0(r, t ) − s	

0(r, t ) =
∑

N

Tr(N ) s0(r)�N (t ), (107)

t∗
0i j (r, t ) = t0i j (r, t ) − t 	

0i j (r, t ) =
∑

N

Tr(N ) t0i j (r)�N (t ),

(108)

where �N (t ) is the deviation from local equilibrium

ρN (t ) = ρ	
N [y(t )] + �N (t ). (109)

The formal solution for �N (t ) is obtained in Appendix C,

�N (t ) =
∫ t

0
dt ′e−L(t−t ′ )

∫
dr(�α (r|y(t ′))∂iγ

∗
iα (r, t ′)

− �iα (r|y(t ′))∂iψα (r, t ′))ρ	[y(t ′)], (110)

where L denotes the Liouville operator (14) and a time-
independent external force has been chosen here for simplicity
of notation. Also, �iα (r|y(t )) is

�iα (r|y(t ))

= �iα (r|y(t )) −
∫

dr′�β (r′|y(t ))ψβ (r′)�iα (r|y(t ))
	|y(t ).

(111)

Recall the notation

AB
	|y(t ) = 〈AB; ρ	[y(t )]〉. (112)

The operators �β, �iα are transformations of those represent-
ing the local conserved densities ψα (r) and their fluxes γiα (r)

�α (r|y(t )) =
∫

dr′ψ̃β (r′|y(t ))g−1
βα (r′, r|y(t )),

�iα (r|y(t )) =
∫

dr′γ̃iβ (r′|y(t ))g−1
βα (r′, r|y(t )), (113)

gαβ (r, r′|y(t )) ≡ ψα (r)ψ̃β (r′|y(t ))
	|y(t ) = −δψ

	

α (r|y(t ))
δyβ (r′, t )

.

(114)

The tilde over an operator is defined by

Ã(r|y) ≡
∫ 1

0
dxe−xη[y](A(r) − A

	
(r|y))exη[y],

η[y] = − ln ρ	
N [y]. (115)

This transformation is closely related to the Kubo transform
of correlation functions for linear response (see Appendix A
for its origin here).

With these results, the equation for the irreversible fluxes
can be written from (107). The energy flux s∗

0i(r, t ) and
momentum flux t∗

0i j (r, t ) are found to be (see Supplemental
Material [35])

s∗
0i(r, t |y) =

∫ t

0
dt

∫
dr′

{
[eL(t−t ′ )s0i(r)]φ0 j (r′|y(t ′))

	∣∣
y(t ′ )∂

′
jβ(r′, t ′) − [eL(t−t ′ )s0i(r)]σ0k j (r′|y(t ′))

	∣∣
y(t ′ )β(r′, t ′)∂ ′

juk (r′, t ′)

− [eL(t−t ′ )s0i(r)]̃ξ0(r′|y(t ′))
	∣∣

y(t ′ )∂ks∗
0k (r′, t ′|y) + [eL(t−t ′ )s0i(r)] p̃k (r′|y(t ′))

	∣∣
y(t ′ )

β(r′)
mn̄(r′)

∂ jt
∗
jk (r′, t ′|y)

}
, (116)

t∗
0i j (r, t |y) =

∫ t

0
dt

∫
dr′{−[eL(t−t ′ )t0i j (r)]φ0k (r′|y(t ′))

	∣∣
y(t ′ )∂

′
kβ(r′, t ′) + [eL(t−t ′ )t0i j (r)]σ0km(r′|y(t ′))

	∣∣
y(t ′ )β(r′, t ′)∂ ′

muk (r′, t ′)

− [eL(t−t ′ )t0i j (r)]̃ξ0(r′|y(t ′))
	∣∣

y(t ′ )∂ks∗
0k (r′, t ′|y) + [eL(t−t ′ )t0i j (r)] p̃m(r′|y(t ′))

	∣∣
y(t ′ )∂kt∗

km(r′, t ′|y)}. (117)

These expressions involve local equilibrium correlation functions for the flux operators with three others:

φ0i(r|y(t )) = s̃0i(r|y(t )) −
∫

dr′ p̃0 j (r|y(t ))
β(r′, t )

n̄(r′, t )
p0 j (r′ )̃s0i(r|y(t ))

	

∣∣∣∣
y(t )

, (118)

σ0i j (r|y(t )) = t̃0i j (r|y(t )) −
∫

dr′
(

ñ(r|y(t ))
δπ0i j (r|y(t ))

δn̄(r′, t )

∣∣∣∣
e

+ ẽ0(r′|y(t ))
δπ0i j (r|y(t ))

δe(r′, t ′)

∣∣∣∣
n̄

)
+ β−1(r, t )̃ξ0(r, t )t∗

i j (r
′, t |y),

(119)
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ξ̃0(r|y(t )) =
∫

dr′
(

δβ(r,t )

δn(r′, t )
ñ(r|y(t ))+ δβ(r, t )

δe0(r′, t )
ẽ0(r|y(t ))

)
.

(120)

In summary, the exact generalized hydrodynamic equa-
tions obtained here are Eqs. (33a)–(33c),

Dt n(r, t ) + n(r, t )∇ · u(r, t ) = 0, (121)

Dt e0(r, t ) + e0(r, t )∇ · u(r, t ) + πi j (r|ζ (t ))∂iu j (r, t )

+ t∗
0i j (r, t |y)∂iu j (r, t ) + ∇ · s∗

0(r, t |y)

= −n(r, t )u(r, t ) · ∇vext (r, t ), (122)

mn(r, t )Dt ui(r, t ) + ∂ jπi j (r|ζ (t )) + ∂ jt
∗
0i j (r, t |y)

= −n(r, t )∂iv
ext (r, t ), (123)

with the constitutive equations

πi j (r|ζ (t )) = π	
i j (r|y(t )) = t 	

i j (r|y(t )), (124)

and s∗
0(r, t |y) and t∗

0i j (r, t |y) given by Eqs. (116) and (117)
above.

Several remarks are appropriate at this point.
(1) These expressions for the irreversible fluxes are exact.

Although complex, the difficult many-body problem has been
reduced to calculating local equilibrium time correlation func-
tions. This is a formidable problem, extending that already
present for linear response expressed in terms of correspond-
ing equilibrium time correlation functions. The fields of the
local equilibrium ensemble for the correlation functions are
β(r,t ) and ν(r,t ) only, since the latter are in the local rest
frame.

(2) They are linear integral equations for the fluxes since
they appear also on the right sides of (116) and (117) as
well. This complication can be eliminated by introducing an
appropriate projection operator, at the price of a more complex
generator for the dynamics than the Liouville operator. This is
described briefly in Appendix C.

(3) These expressions provide the desired closure of the
formal hydrodynamic equations (33a)–(33c), giving the irre-
versible fluxes as functionals of the local conserved fields.
This is done indirectly, with (116) and (117) expressed first
as functionals of the conjugate fields of the local equilibrium
ensemble. These conjugate fields are directly related to the
conserved fields through (16a)–(16c). The choice to represent
the hydrodynamic equations in terms of the conserved fields
or the conjugate fields is a matter of convenience for a given
physical state.

(4) The fluxes are nonlocal in space, just as the pressure
tensor functional, and hence can describe states with strong
spatial inhomogeneity. This is an extension beyond the usual
Navier-Stokes hydrodynamics that is limited to small spatial
gradients.

(5) In contrast to the perfect fluid hydrodynamics, the
irreversible fluxes are also nonlocal in time. Hence, they
describe all timescales and also hysteresis (memory effects).

(6) The response to small initial perturbations or external
forces about equilibrium give the exact hydrodynamic re-
sponse. Since the hydrodynamic equations describe all space
and time scales, the exact response functions are obtained
from this description. Of course, they are given in terms of the

corresponding limits for the local equilibrium time correlation
functions. This is the generalized linear hydrodynamics for
equilibrium time correlation functions studied some time ago
[13,14].

(7) The equilibrium response functions obtained from the
hydrodynamic equations provide an interesting new exact
representation. The generalized hydrodynamic form allows a
direct crossover to the small wave vector, low-frequency limit:
the Navier-Stokes limit. As discussed by Kadanoff and Martin
[16], this is a singular limit not directly obtained by standard
many-body methods.

(8) A linearization about local equilibrium for the pressure
tensor and irreversible fluxes yields the nonlinear Navier-
Stokes hydrodynamics with the Green-Kubo expressions for
transport coefficients. This is more general than linear re-
sponse about equilibrium, in that the pressure and transport
coefficients are local functions of the hydrodynamic fields
at the space and time point of interest (in density functional
theory this is the “local density approximation,” extended to
all fields).

V. SUMMARY AND DISCUSSION

A very general class of problems across many fields is
currently being addressed via a continuum description of a
few relevant macroscopic fields. For example, time-dependent
density functional theory focuses solely on the space and
time-dependent average electron number density. Properties
of interest are presumed to be expressed as functionals of
that density. A broader class of macroscopic fields, as con-
sidered here, include the energy density and momentum den-
sity, which together with the number density have a spe-
cial feature: They are averages of the set of exact locally
conserved quantities. Historically, this property has provided
the basic framework for phenomenological macroscopic bal-
ance equations for number, energy, and momentum. For spe-
cial states, the phenomenology can be justified and supple-
mented by materials properties from the underlying statistical
mechanics.

The present context is an interest in this approach for
nontraditional systems (e.g., degenerate electrons) with the
introduction of new phenomenology and applications whose
validity and context are not yet fully explored. The ob-
jective here has been to suggest an alternative approach,
that of starting from an exact continuum formulation and
building more controlled approximations from it. For ex-
ample, the Euler equations of hydrodynamics is a well-
understood and useful approximation to the full Navier-
Stokes equations; here, the perfect fluid hydrodynamics of
Sec. III is understood as the analogous approximation (no
dissipation) to the exact hydrodynamics, extended to arbitrary
space and timescales. Furthermore, the perfect fluid equations
are seen to provide the exact short time behavior of the
system.

The analysis here is quite general within the limit of a
single-component nonrelativistic fluid. Extensions to multi-
component systems and inclusion of relativistic effects (e.g.,
graphene) follow directly. The primary results obtained are
the exact balance equations (121)–(123) for the average local
conserved fields, and the exact “constitutive equations” for
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the fluxes (116) and (117). The balance equations require
a pressure tensor as a functional of the density and energy
density in the local equilibrium state. This is an extension
of the corresponding problem of density functional theory
to include nonuniform energy density (or temperature) as
well as number density. This formal extension has been de-
veloped but is still awaiting application [9,48]. The connec-
tion of the local hydrodynamic pressure to thermodynamics
and an associated pressure tensor are discussed above and
elsewhere [36,37,49]. Recent practical forms for strong cou-
pling and strong spatial inhomogeneities have been devel-
oped recently [27,47]. Further developments for conditions
of warm, dense matter remain a forefront computational
challenge.

The constitutive equations for the dissipative energy and
momentum fluxes are nonlocal functionals of the fields with
respect to both space and time. While quite complex, their
exact representation parallels closely that for Navier-Stokes
hydrodynamics—linear in the spatial gradients of the conju-
gate fields with coefficients given by equilibrium time cor-
relation functions that are local in space and time functions
of the fields. These are Fourier’s law and Newton’s viscos-
ity law. The many-body challenge has been compressed to
calculating or modeling the time correlation functions. The
exact forms here, (116) and (117), have a similar structure
generalized to nonlocality and nonlinearity in the conjugate
fields, characterized by local equilibrium time correlation
functions. The many-body challenge is now calculating or
modeling these new correlation functions. The advantage of
all the formal analysis behind these equations is to embed
this limited (but difficult!) computation within a structure that
assures the correct physics of the underlying conservation
laws. Approximations made in the computation are expected
to have quantitative rather than qualitative consequences.

Practical applications face two kinds of formidable chal-
lenges: (1) calculation of the pressure tensor functional of
the fields β(r, t ), ν(r, t ) and the inversion to a functional
of e0(r, t ), n(r, t ); (2) calculation of local equilibrium time
correlation functionals for dissipative response functions.
Consider the case of electrons in warm, dense matter—a
strongly coupled, inhomogeneous system of electrons in an
external potential of a frozen configuration of neutralizing
ions. The exact initial dynamics for given initial conditions
or external perturbation is described by the perfect fluid equa-
tions. This requires only the pressure tensor functional and
a good numerical solver for hydrodynamics. For states with
smoothly varying (almost constant) β(r, t ), determination of
the pressure tensor would appear to be equivalent to the
thermodynamic problem of DFT. More generally, the gener-
alization of DFT for nonuniform β(r, t ) has been suggested
and is under development [9,48,50]. However, in this case it
has been shown recently [49] that the thermodynamic local
pressure is not equivalent to that from the local equilibrium
average mechanical pressure tensor, but the precise relation-
ship has been established. Thus a practical application of the
perfect fluid hydrodynamics, e.g., normal modes of electrons
in strongly coupled, inhomogeneous warm, dense matter is a
realistic objective.

The inclusion of dissipation, beyond the perfect fluid ap-
proximation, requires addressing 2) above. The timescales for

decay of the correlation functions is short. Once done, the
generalized hydrodynamics provides the means for extrapo-
lating to much longer timescales. For weak inhomogeneity,
a local approximation for the fields in the time correlation
functions leads to the results similar to those of linear re-
sponse. This approach has been proposed in Ref. [7]. The
associated nonlinear response functions are functions, not
functionals, of the fields. This is still a challenge for the
strong coupling, quantum states of warm, dense matter, but
one within equilibrium statistical mechanics.

The more general and complex case of spatially inhomoge-
neous states also has been explored within the DFT commu-
nity, albeit by more phenomenological methods. Both Green-
Kubo time correlation functions and dynamic structure factor
have been explored for warm, dense matter conditions. A
two-step process is executed: First, a calculation of electronic
dynamics for the time correlation function at a given ionic
configuration, and then an average over configurations sam-
pled from a Born-Oppenhiemer molecular dynamics for the
ions. The first step for the electrons corresponds to evaluation
of a time correlation function for a nonuniform state, the case
of interest here. For uniform β(r, t ) (or local approximation),
this is done analytically for a system of noninteracting elec-
trons with a mean-field Hamiltonian chosen to be Kohn-Sham
(Kubo-Greenwood method [51,52]). In the present context,
for given values of the fields e0(r, t ), n(r, t ) the local equilib-
rium ensemble and Heisenberg dynamics are calculated from
the Kohn-Sham eigenvalues and eigenvectors. The values of
the fields are then updated on the longer time scale using
the generalized hydrodynamic equations. It remains to see
if some version of this is practical for the hydrodynamic
application.

In summary, new challenges are presented by the results
here. Their origin is in the evaluation of constitutive equations
for the local equilibrium state, both its structure and time
correlations. This is a direct extension of the corresponding
equilibrium problem to nonuniform equilibrium states, and
it is expected that application of systematic formal methods,
models, and novel simulation techniques will bear fruit in the
near future.
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APPENDIX A: PROPERTIES OF THE LOCAL
EQUILIBRIUM ENSEMBLE

The objective of this Appendix is to derive identities for
δρ	

N [y(t )]/δyα (r, t ), ∂tρ
	
N [y(t )], and LNρ	

N [y(t )]. The local
equilibrium ensemble is defined by

ρ	
N [y(t )] = e−η[y(t )],

η[y(t )] = Q	[y(t )] +
∫

dr yκ (r, t )ψκ (r). (A1)
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The functional derivative of a functional is defined from its
first-order differential variation

lim
δy→0

(
e−η[y+δy] − e−η[y]) →

∫
dr

δe−η[y]

δyκ (r)
δyκ (r). (A2)

The dependence of y on t has been suppressed to simplify
notation at this point. Next, define

e−xη[y+δy] ≡ e−xη[y]U (x), (A3)

so that U (x) obeys the equation

∂xU (x) = −exη[y](η[y + δy] − η[y])e−xη[y]U (x). (A4)

Integrating from x = 0 to x = 1, and using the fact that
U (0) = 1 gives

e−η[y+δy] − e−η[y] = −
∫ 1

0
dx′e(x′−1)η[y](η[y + δy]

− η[y])e−x′η[y]U (x′), (A5)

and so to linear order in δy

δρ	
N [y]

δyκ (r)
= −

∫ 1

0
dx′e−x′η[y] δη[y]

δyκ (r)
ex′η[y]ρ	

N [y]

= −ψ̃κ (r|y)ρ	
N [y]. (A6)

The tilde above an operator is defined in (115). The functional
derivative of any local equilibrium average is therefore

δX
	|y(t )

δyκ (r, t )
= −X ψ̃β (r|y(t ))

	∣∣
y(t ). (A7)

For example,

δψ
	

κ (r|y(t ))
δyλ(r′, t )

= −ψκ (r)ψ̃λ(r′|y(t ))
	∣∣

y(t )

= −gκλ(r, r′|y(t )). (A8)

Now, restoring the dependence of y on t , the time derivative
of ρ	[y(t )] can be calculated directly:

∂tρ
	
N [y(t )] =

∫
dr

δe−η[y(t )]

δyκ (r, t )
∂t yκ (r, t )

= −
∫

dr ψ̃κ (r|y(t ))∂t yκ (r, t )ρ	
N [y(t )]. (A9)

Finally, consider the Liouville operator acting on the local
equilibrium ensemble:

LN e−η = i[H, e−η] = iHe−η − ie−ηH. (A10)

Define

H (x) = exηHe−xη, (A11)

which obeys the equation

∂xH (x) = [η, H (x)]. (A12)

Integrating from 0 to 1 gives

eηHe−η = H +
∫ 1

0
[η, H (x)]dx, (A13)

or

iHe−η − ie−ηH =
∫ 1

0
e−ηi[η, H (x)]dx

=
∫ 1

0
e−η(1−x)i[η, H]e−xηdx

=
(∫ 1

0
e−zηi[η, H]ezηdz

)
e−η (A14)

and so

LN e−η[y] = −
(∫ 1

0
e−zη[y](LNη[y])ezη[y]dz

)
e−η[y]

= −
∫

dryα (r, t )

(∫ 1

0
e−zη[y](LNψα (r))ezη[y]dz

)
e−η[y]

=
∫

dryα (r, t )
(
∂i

(
γ̃iα (r|y(t )) + γ 	

iα (r|y(t ))
)
e−η[y]

− [
f̃iα (r|y(t )) + f

	

iα (r|y(t ))
])

e−η[y], (A15)

where the microscopic conservation law corresponding to
(43)–(45) has been used, and

γ̃iα (r|y(t )) =
∫ 1

0
e−zη

(
γiα (r) − γ̃ 	

iα (r|y(t ))
)
ezηdz. (A16)

One final simplification follows from the average of (A15),

0 =
∑

N

Tr(N ) LNρ	
N [y(t )]

=
∫

dryα (r, t )
(
∂iγ

	
iα (r|y(t )) − f

	

iα (r|y(t ))
)
, (A17)

since X̃
	 = 0 for any operator X . Then (A15) becomes

LN e−η[y] =
∫

dryα (r, t )(∂iγ̃iα (r|y(t )) − f̃iα (r|y(t )))e−η[y].

(A18)

Local equilibrium averages

Consider a local equilibrium average of an operator A(r)
in its local rest frame [function of the relative momenta
pα − mu(qα )]. Also note that ρ	

N depends on the flow velocity
only through the local momenta. Therefore, a unitary transfor-
mation [see (54), (55), and the Supplemental Material [35])
removes the velocity dependence; for simplicity of notation,
the dependence on y(t ) is suppressed in this subsection:

A(r)
	 =

∑
N

Tr(N ) e−GA(r)ρ	
N eG = A(r)

	∣∣
u=0. (A19)

Now, let T denote the antiunitary time-reversal opera-
tor (see Supplemental Material [35]), with the property
T pαT −1 = −pα , T qαT −1 = qα . Suppose A(r) has the prop-
erty TA(r)T −1 = −A(r). Then its local equilibrium average
for u = 0 vanishes:

A(r)
	∣∣

u=0 = TA(r)T −1
	∣∣

u=0 = −A(r)
	∣∣

u=0. (A20)

The first equality is nontrivial since the cyclic invariance of
the trace does not hold for antiunitary operators; it is proved

023036-14



GENERALIZED HYDRODYNAMICS REVISITED PHYSICAL REVIEW RESEARCH 2, 023036 (2020)

in Sec. III of the Supplemental Material. Also, use has been
made of T ρ	

N T −1 = ρ	
N .

As an example, consider the choice A(r) → s0(r), the
energy flux in the local rest frame. According to (A20), its
local equilibrium average must vanish,

s	
0(r) = T s0(r)T −1

	 = −s	
0(r) = 0. (A21)

As a second example, consider the matrix gαβ (r, r′) =
〈ψα (r)ψ̃β (r′)〉	 in the local rest frame. The conserved densi-
ties are odd or even under time reversal operation. Hence, the
matrix elements for densities with opposite signs must vanish.

APPENDIX B: THERMODYNAMIC PRESSURE

The objective here is to identify the local thermodynamic
pressure given in (77),

1

V

∫
drβ(r, t )πT (r|β(t ), ν(t )) ≡ ∂Q[β(t ), ν(t )]

∂V
. (B1)

The volume derivative is taken at constant β, ν. To make
explicit the volume dependence of Q[β(t ), ν(t )], assume a
cubic volume with V = L3 and define the unitary operator UL

with the properties [53]

ULqαU −1
L = Lqα, ULpαU −1

L = L−1pα. (B2)

Then

Q[β(t ), ν(t )] = ln
∑
N>0

Tr(N ) U −1
L ULe− ∫

dr[β(r,t )e(r)−ν(r,t )n(r)]SN = ln
∑
N>0

Tr(N ) e−UL
∫

dr[β(r,t )e(r)−ν(r,t )n(r)]U −1
L SN . (B3)

Recall that the flow velocity dependence has been transformed away. The explicit form for the exponent is∫
dr

[
β(r, t )ULe(r)U −1

L − ν(r, t )ULn(r)U −1
L

] =
N∑

α=1

1

4m

[
L−2 p2

α j, β(Lqα, t )
]
+

+ 1

2

N∑
α �=γ=1

V (|Lqα − Lqγ |)β(Lqα, t ) −
N∑

γ=1

ν(Lqγ , t ). (B4)

The derivative with respect to L at constant β, ν is

∂

∂L
UL

∫
dr[β(r, t )e(r) − ν(r, t )n(r)]U −1

L = 1

L

N∑
α=1

1

4m

[−2L−2 p2
α j, β(Lqα, t )

]
+ + 1

L

1

2

N∑
α �=γ=1

β(Lqα, t )L
∂

∂L
V (|Lqα − Lqγ |).

(B5)

The desired volume derivative is, inverting back the scale transformation

∂

∂V
Q[β(t ), ν(t )] = ∂L

∂V

∂

∂L
ln

∑
N>0

Tr(N ) e−UL
∫

dr[β(r,t )e(r)−ν(r,t )n(r)]U −1
L SN

= 1

3L3

⎡
⎢⎣ N∑

α=1

1

2m

[
p2

α j, β(qα, t )
]
+

	
∣∣∣∣∣∣∣
y(t )

+ 1

2

N∑
α �=γ=1

β(qα, t )(qγ − qα ) · Fαγ (|qα − qγ |)
	
∣∣∣∣∣∣∣
y(t )

⎤
⎥⎦ (B6)

= 1

3V

∫
drβ(r, t )

⎡
⎢⎣ N∑

j=1

1

2m

[
p2

α j,�(r − qα )
]
+

	
∣∣∣∣∣∣∣
y(t )

+ 1

2

N∑
α �=γ=1

�(r − qα )(qγ − qα ) · Fαγ (|qα − qγ |)
	
∣∣∣∣∣∣∣
y(t )

⎤
⎥⎦.

(B7)

Finally, comparison with (77) gives

πT (r|β(t ), ν(t )) = 1

3

⎡
⎢⎣ N∑

α=1

1

2m

[
p2

α j,�(r − qα )
]
+

	
∣∣∣∣∣∣∣
y(t )

+ 1

2

N∑
α �=γ=1

�(r − qα )(qγ − qα ) · Fαγ (|qα − qγ |)
	
∣∣∣∣∣∣∣
y(t )

⎤
⎥⎦, (B8)

πT (r|β(t ), ν(t )) = 2

3
eK

0

	
(ry(t )) + 1

6

N∑
α �=γ=1

�(r − qα )(qα − qγ ) · Fαγ (|qα − qγ |)
	
∣∣∣∣∣∣∣
y(t )

. (B9)

Comparison with (71) shows this is the same as the local virial pressure:

πT (r|β(t ), ν(t )) = πv (r|β(t ), ν(t )). (B10)
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APPENDIX C: SOLUTION TO LIOUVILLE–VON NEUMANN EQUATION

The Liouville–von Neumann equation is

(∂t + LN )ρN (t ) = 0. (C1)

Look for solutions of the form

ρN (t ) = ρ	
N [y(t )] + �N (t ). (C2)

Integrating (C1),

ρN (t ) = e−LN tρ	
N [y(0)] = ρ	

N [y(t )] −
∫ t

0
dt ′∂t ′

(
e−LN (t−t ′ )ρ	

N [y(t ′)]
)
, (C3)

gives

�N (t ) = −
∫ t

0
dt ′e−LN (t−t ′ )(LN + ∂t ′ )ρ	

N [y(t ′)]. (C4)

For simplicity of notation, the case of a time-independent external force has been chosen. More generally, the solution operator
must be changed everywhere below as follows:

e−LN (t−t ′) → G(t, t ′) (C5)

with

(∂t + LN )G(t, t ′) = 0, G(t, t ) = 1. (C6)

Using (A9) and (A18), this becomes

�N (t ) = −
∫ t

0
dt ′e−LN (t−t ′)

∫
dr(−ψ̃α (r|y(t ′))∂t ′yα (r, t ′) − γ̃iα (r|y(t ′))∂iyα (r, t ′) − yα (r, t ′) f̃iα (r|y(t ′)))ρ	

N [y(t ′)]

= −
∫ t

0
dt ′e−LN (t−t ′)

∫
dr(�α (r|y(t ′))∂t ′ψα (r|y(t ′)) + �iα (r|y(t ′))∂iψα (r, t ′) − yα (r, t ′) f̃iα (r|y(t ′)))ρ	

N [y(t ′)], (C7)

where

�α (r|y(t ′)) =
∫

dr′ψ̃β (r′|y(t ′))g−1
βα (r′, r|y(t ′)), �iα (r|y(t ′)) =

∫
dr′γ̃iβ (r′|y(t ′))g−1

βα (r′, r|y(t ′)) (C8)

and g−1
αβ (r, r′|y(t ′)) is the inverse of gαβ (r′, r|y(t ′)) given by (A8)

∫
dr′′gασ (r, r′′|y(t ′))g−1

σβ (r′′, r′|y(t ′)) = δαβδ(r − r′). (C9)

Next, using the macroscopic conservation law [45]

∂tψα (r|y(t )) + ∂iγ α (r, t ) = f α (r, t ) (C10)

to eliminate ∂t ′ψα (r, t ′) leads to

�N (t ) = −
∫ t

0
dt ′e−LN (t−t ′ )

∫
dr(�α (r|y(t ′))[−∂iγ iα (r, t ′) + f α (r, t )] + �iα (r|y(t ′))∂iψα (r|y(t ′))

− yα (r, t ′) f̃ 	
iα (r|y(t ′)))ρ	

N [y(t ′)]

= −
∫ t

0
dt ′e−LN (t−t ′ )

∫
dr(−�α (r|y(t ′))∂iγ

∗
iα (r, t ′) − �α (r, t ′)∂iγ

	
iα (r, t ′) + �α (r, t ′) f α (r, t )

+ �iα (r, t ′)∂iψα (r|y(t ′)) − yα (r, t ′) f̃iα (r|y(t ′)))ρ	
N [y(t ′)]. (C11)
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The contribution from the local equilibrium flux can be written

∂iγ
	
iα (r, t ′) = −LNψα (r)

	|y(t ′) + f
	

α (r,t ′)

=
∫

dr′ ∑
N

Tr(N ) ψα (r)[−γ̃iβ (r′|y(t ′))∂iyβ (r′, t ′) − f̃iβ (r′|y(t ′))yβ (r′, t ′)]e−η(y) + f
	

α (r,t ′)

=
∫

dr′(−ψα (r′)γ̃iβ (r′|y(t ′))
	∣∣

y(t ′ )∂iyβ (r′, t ′) − ψα (r) f̃β (r′, t ′)
	∣∣

y(t ′ )yβ (r′, t ′)
) + f

	

α (r,t ′). (C12)

Therefore, (C11) becomes

�N (t ) = −
∫ t

0
dt ′e−LN (t−t ′ )

∫
dr

(
− �α (r|y(t ′))∂iγ

∗
iα (r, t ′) + �α (r|y(t ′))

∫
dr′ψα (r)γ̃iβ (r′, t ′)

	

∣∣∣∣
y(t ′ )

∂iyβ (r′, t ′)

+�iα (r, t ′)∂iψα (r|y(t ′)) − (
f̃iα (r|y(t ′))yα (r, t ′) − �α (r|y(t ′))ψα (r) f̃iβ (r′|y(t ′))

	∣∣
y(t ′ )yβ (r′, t ′)

))
ρ	

N [y(t ′)] (C13)

=
∫ t

0
dt ′e−LN (t−t ′ )

∫
dr

(
[�α (r|y(t ′))∂iγ

∗
iα (r, t ′) − �iα (r|y(t ′))∂iψα (r, t ′)]

−
[

f̃iα (r|y(t ′)) −
∫

dr′�β (r′|y(t ′))ψβ (r′) f̃iα (r|y(t ′))
	∣∣

y(t ′ )

]
yα (r, t ′)

)
ρ	

N [y(t ′)] (C14)

with

�iα (r|y(t )) = �iα (r|y(t )) −
∫

dr′�iβ (r′|y(t ))ψβ (r′)�iα (r|y(t ′))
	∣∣

y(t ′ ). (C15)

The last line of (C14) is the component of the sources f̃α (r) orthogonal to the local conserved densities. The energy and
momentum sources are both proportional to conserved densities and hence this term vanishes, leaving

�N (t ) =
∫ t

0
dt ′e−LN (t−t ′)

∫
dr([�α (r|y(t ′))∂iγ

∗
iα (r, t ′) − �iα (r|y(t ′))∂iψα (r|y(t ′))])ρ	

N [y(t ′)]. (C16)

Projection operator representation

It is useful to note some properties of the operators occurring in (C14). First, it is observed that the operators ψβ (r) and
�α (r|y) form a biorthogonal set in the sense

ψα (r)�β (r′|y(t ))
	∣∣

y(t ) =
∫

dr ′′ψα (r)ψ̃σ (r′′|y(t ))
	∣∣

y(t )g
−1
σβ (r′′, r′|y(t )) = δ(r − r′)δαβ. (C17)

Also, �iα (r|y) is orthogonal to this set:

ψα (r)�iβ (r′|y(t ))
	∣∣

y(t ) = ψβ (r)�iα (r′|y(t ))
	∣∣

y(t ) −
∫

dr ′′ψα (r′)�σ (r′′|y(t ))
	∣∣

y(t )ψσ (r′′)�iα (r′|y(t ))
	∣∣

y(t ) = 0. (C18)

Define a related projection operator Pt for trace operators Y

PtY =
∫

dr �α (r)
∑

N

Tr(N ) ψα (r)Y,
∑

N

Tr(N ) Y < ∞. (C19)

Then, it is straightforward to show

P2
t Y = PtY, Pt�α (r)ρ	

N = �α (r)ρ	
N , Pt�α (r)ρ	

N = 0, (C20)

and consequently, from (C14)

Pt�N = 0. (C21)

The equation of motion for �N from (C14) is

(∂t + L)�N (t ) =
∫

dr (�α (r, t )∂iγ
∗
iα (r, t ) − �iα (r, t )∂iψα (r, t ))ρ	

N [y(t )]. (C22)
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Equivalently, using �N (t ) = Qt�N (t ) with Qt = 1 − Pt ,

(∂t + QtLN Qt )Qt�N (t ) = Qt

∫
dr (�α (r|y(t ))∂iγ

∗
iα (r, t ) − �iα (r|y(t ))∂iψα (r, t ))ρ	

N [y(t )]

= −
∫

dr �iα (r|y(t ))ρ	
N [y(t )]∂iψα (r, t ). (C23)

Finally, integrating this with the initial condition �N (0) = 0 gives the desired result:

�N (t ) = −
∫ t

0
dt ′U (t, t ′)

∫
dr �iα (r|y(t ′))∂iψα (r, t ′)ρ	

N [y(t ′)]. (C24)

The evolution operator U (t, t ′) gives the modified Liouville–von Neumann dynamics

(∂t + QtLN Qt )U (t, t ′) = 0, U (t, t ) = 1. (C25)

In contrast to (C14), there is now no longer an explicit dependence on γ ∗
iα (r, t ) in (C24).
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