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Landau ordering phase transitions beyond the Landau paradigm
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Continuous phase transitions associated with the onset of a spontaneously broken symmetry are thought to
be successfully described by the Landau-Ginzburg-Wilson-Fisher theory of fluctuating order parameters. In this
work, we show that such transitions can admit new universality classes which cannot be understood in terms of
a theory of order parameter fluctuations. We explicitly demonstrate continuous time reversal symmetry breaking
quantum phase transitions of 3 + 1-D bosonic systems described by critical theories expressed in terms of a
deconfined gauge theory with massless Dirac fermions instead of the fluctuating Ising order parameter. We dub
such phase transitions “Landau transitions beyond Landau description” (LBL). A key feature of our examples is
that the stability of the LBL fixed points requires a crucial global symmetry, which is nonanomalous, unbroken,
and renders no symmetry protected topological phase throughout the phase diagram. Despite this, there are
elementary critical fluctuations of the phase transition that transform projectively under this symmetry group.
We also construct examples of other novel quantum critical phenomena, notably a continuous Landau-forbidden
deconfined critical point between two Landau-allowed phases in 3 + 1-D.
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I. INTRODUCTION

The standard example of continuous equilibrium phase
transitions is that associated with the onset of a broken sym-
metry. The symmetry breaking is captured by a Landau order
parameter. The corresponding critical phenomena are then
associated with the long wavelength long time fluctuations
of this order parameter. These fluctuations can be described
by a continuum quantum field theory written in terms of this
order parameter field. This paradigm [developed primarily by
Landau, Ginzburg, Wilson, and Fisher (LGWF)] in combi-
nation with renormalization group (RG) methods provides a
powerful and remarkably successful framework for describing
phase transitions, both classical and quantum [1].

The LGWF paradigm is known to fail in a few different
situations. First, one or both phases may have order not
captured by a Landau order parameter (e.g., quantum Hall or
other topological phases). In this case, it is of course natural
that the critical point is not described by an order parameter-
based theory. Second, more surprisingly, it is known that there
are Landau-forbidden second order quantum phase transitions
between two phases that themselves are Landau allowed
[2–7]. Such phase transitions are more naturally described in
terms of fractionalized degrees of freedom which rear their
heads only at the critical point but are absent (confined) in
either of the two phases. Hence they are dubbed deconfined
quantum critical points.
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In this paper, we demonstrate the breakdown of the LGWF
framework even for a standard quantum phase transition be-
tween a trivial phase and a broken symmetry phase (which
is otherwise also trivial). The corresponding transition is
allowed to be in the standard universality class described by
LGWF theory based on the order parameter field. However,
we show the existence also of a different deconfined quantum
critical fixed point with emergent fractionalized excitations.
A schematic phase diagram is shown in Fig. 1. Examples
of multiple universality classes for the same phase transition
were discussed extensively in previous work [8] by two of
the authors. While the previous examples focused on topolog-
ical phase transitions, here our focus is on Landau ordering
transitions (see Fig. 2 for an illustration of the associated
renormalization group flow diagram showing both critical
fixed points). At the new fixed points we find the physics
cannot be described in terms of order parameter fluctuations
alone. Thus we have a situation where a Landau allowed
phase transition is not necessarily described within the Landau
paradigm. We dub such a phase transition “Landau beyond
Landau” (LBL).

The possibility that the LGWF framework might fail at
some Landau ordering transitions has long been suggested in
the context of experiments on heavy electron metals [9–13].
However, the complications of dealing with issues related to
the metallic Fermi surface has stymied progress on many basic
questions. The concrete examples we construct are in a much
simpler setting, and establish the point of principle that order
parameter fluctuations might distract from the true criticality
even for phase transitions between trivial and Landau ordered
phases.

Our basic example is a 3 + 1-D system of bosons with
a global symmetry group G × T , where G is a continuous
unitary group and T is time reversal (and hence anti-unitary).
The phase transition occurs between a phase with unbroken
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FIG. 1. A schematic plot of the phase diagram. In addition to the
standard Ising universality class the transition can also occur through
a distinct “deconfined critical” universality class.

G × T symmetry to a phase which spontaneously breaks T
but preserves G. All excitations in either phase are gapped.
Further, neither phase has any exotic order (no intrinsic topo-
logical order or symmetry protected topological order). Then
the onset of spontaneous T symmetry breaking could happen
through the conventional 3 + 1-D Ising universality class
(which is Gaussian with a marginally irrelevant perturbation).
Here the G symmetry does not act on the low energy critical
degrees of freedom. However we will also find an alternate
route through a “deconfined critical” universality class with
emergent fermions and gauge fields. At this deconfined criti-
cal fixed point, the symmetry G acts nontrivially on the critical
degrees of freedom. Consequently local (i.e., gauge invariant)
operators that transform under G have power-law correlations
unlike at the conventional Ising universality class.

Though the “Landau beyond Landau” transitions are the
main focus of this paper, we will also briefly describe some
other possible novel quantum phase transitions. Particularly
interesting are concrete examples (see Appendix E) of con-
tinuous Landau-forbidden phase transitions between Landau
allowed phases in 3 + 1-D. We describe deconfined quantum
critical points for such transitions. These examples generalize
similar phenomena known in 2 + 1-D, and settle the matter-
of-principle question on whether such continuous quantum
phase transitions can occur in 3 + 1-D.

II. AN ISING TRANSITION BEYOND LANDAU
DESCRIPTION

To construct our examples we follow the same strategy as
in Ref. [8], and interpret some known conformal field theories
as quantum critical points.

FIG. 2. A schematic plot of the RG flow showing both the Ising
and the alternate deconfined critical fixed points for the same phase
transition.

A. Parton field theory and phase diagram

We begin by looking at SU(2) gauge theory in 3 + 1-D
with Nf Dirac fermions in the fundamental representation.
The Lagrangian is

L =
Nf∑
j=1

iψ̄ jγ
μ(∂μ − iaμ)ψ j − mψ̄ψ + 1

4g2
Tr f 2

μν + · · · ,

(1)
where aμ and fμν are the dynamical SU(2) gauge field1 and
field strength respectively, and ψ’s are Dirac fermions that are
in the spin-1/2 representation of the SU(2) gauge group. As
stressed in previous papers, despite appearances this theory
is intrinsically bosonic: all gauge invariant operators (e.g.,
baryons) are bosons. We will regard this Lagrangian as an
intermediate energy scale description of a microscopic system
of these gauge invariant bosons (possibly on a lattice). Stated
differently, the gauge theory can be viewed as a parton theory
of the underlying gauge invariant bosonic degrees of freedom.

Global symmetries of the theory will be important for
our discussion. Consider the symmetry of the parton theory
at generic mass m. First, there is a continuous global sym-
metry (see, e.g., Ref. [8] and Appendix A) G = PSp(Nf ) =
Sp(Nf )/Z2 corresponding to flavor rotations2 of the fermions
modulo gauge transformations. In addition, the theory also
preserves the discrete symmetries of time reversal T and
parity P .3 A detailed discussion of the global symmetries is
given in Appendix A. The actions of T and P on the fermions
and gauge fields are

T : ψ (t, x) �→ γ0γ5ψ
∗(−t, x), i → −i,

aI
0(t, x) �→ −aI

0(−t, x),

aI
i (t, x) �→ aI

i (−t, x),

P : ψ (t, x) → γ0ψ (t,−x),

aI
0(t, x) �→ aI

0(t,−x),

aI
i (t, x) �→ −aI

i (t,−x). (2)

Notice the PSp(Nf ) together with the T and P symmetries
are enough to prohibit all fermion bilinear terms other than
mψ̄ψ . Note also that we do not assume Lorentz symmetry,
which is not appropriate as an exact symmetry in condensed
matter systems. An explicit lattice model of low energy
Dirac fermions with T and P symmetries is presented in
Appendix C. We will describe the role of the continuous
symmetry group later.

Reference [8] studied this theory for Nf ∈ 2Z to find exam-
ples of quantum critical points between trivial and symmetry
protected topological (SPT) phases of the bosons. Here we

1If instead we consider an Abelian gauge field, in the m �= 0 regime,
the theory will not confine: the two phases are not gapped phases of
matter.

2Note that the group is actually larger than U(Nf ) because it also
involve rotations between particles and holes.

3There is actually no independent notion of charge conjugation C
in these theories; the action of what we might naively refer to as C is
already incorporated into the PSp(Nf ) symmetry.
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FIG. 3. RG flow and phase diagram of the parton theory as a
function of the fermion mass. For m < 0, we are free to choose
a regularization such that the gauge theory has trivial θ term and
thus flows to a trivial confined phase. On the contrary, for m > 0, at
low energy, the gauge theory has θ = π , which leads to a flow to a
confined phase that spontaneously breaks the T symmetry.

focus on the case of Nf ∈ 2Z + 1. We examine the phase
diagram of the theory as a function of the fermion mass. At
the massless point, with large enough flavors of fermions,
the gauge theory is either in a strongly coupled [14–17] or
noninteracting conformal field theory in the infrared (IR). We
will interpret this as a critical point separating two gapped
phases. For simplicity let us specialize to Nf large enough that
the gauge coupling is (marginally) irrelevant and the theory
is IR free. When a nonzero fermion mass is turned on, the
RG flow of the gauge coupling (see Fig. 3) will turn around
at a scale given by the mass. At lower energy scales we can
integrate out the fermions to obtain a pure gauge theory. At
long distances, apart from the usual Yang-Mills term this
induced effective action may have a theta term

Leff = 1

4g2
Tr f 2

μν + θ

16π2
Tr εμνλρ fμν fλρ + . . . (3)

The difference of the θ angle4 for m > 0 and m < 0 is �θ =
Nf π . We are free to choose a regularization such that the m <

0 side has trivial θ angle. In this phase, we have a pure SU(2)
gauge theory which enters a featureless confined phase in the
infrared limit. This phase has a gap to excitations, preserves
all the global symmetries, and has no topological order (even
of the SPT kind). On the other side, m > 0, the SU(2) gauge
theory has a nontrivial θ = Nf π , which is equivalent to π as
Nf is odd and θ is 2π periodic.

The infrared dynamics of such an SU(2) gauge theory is
not fully understood. However, a variety of reasons, which we
review below, suggest a confining phase with spontaneously
broken T and P symmetry as a promising candidate [18–21].

4This can be explicitly shown by calculating the ratio of the
partition function between positive and negative mass with a fixed
background gauge field and using the index theorem; see Ref. [8] for
details.

In this section we will proceed by assuming this is the case,
and show that we are then lead to the promised non-Landau
description of a Landau ordering transition. We will later
refine our discussion in two ways. First we will generalize the
theory to gauge groups Sp(Nc) and SU(Nc) where for large-Nc

it is known with more confidence that the pure gauge theory
at θ = π enters a confined T and P broken phase. These
generalizations will provide concrete examples of Landau
ordering transitions beyond the Landau paradigm. A second
refinement is to return to the SU(2) gauge theory and allow
for the possibility that the ground state at θ = π preserves
T and P symmetries. Interesting possible alternate ground
states were proposed in Ref. [19]: the two we will focus on
are deconfined U(1) or Z2 gauge theories. From a condensed
matter perspective these correspond to U(1) or Z2 quantum
spin liquid phases of the underlying boson system. We will
show that in these scenarios the theory in Eq. (1) describes
novel quantum critical points between such quantum spin
liquids and a trivial gapped phase.

Assuming therefore for now that pure SU(2) gauge theory
at θ = π enters a confined phase with broken T symmetry,
we conclude that this is also the fate for the m > 0 side of the
theory in Eq. (1). Thus the m = 0 IR-free theory will describe
a critical point between a symmetry preserving trivial phase
(for m < 0) and a T breaking phase (for m > 0). Clearly
both phases preserve the global PSp(Nf ) symmetry. Further-
more, neither phase has any intrinsic topological order or
any gapless excitations. This transition is apparently allowed
within the usual LGWF framework and should be in the
3 + 1-D Ising universality class; instead our critical theory is
a deconfined gauge theory which is clearly distinct from the
Ising universality class.

However, there is a potential loophole to be closed before
we can reach this conclusion. We still need to examine if either
phase has SPT order associated with any of the unbroken
global symmetries. If such order were present, the transition
could clearly be in a distinct universality class from that in the
LGWF framework. We will turn to this issue momentarily.

B. The role of the global symmetry

First consider the continuous global symmetry G =
Sp(Nf )/Z2 = PSp(Nf ) (for an explanation of how this arises,
see Appendix A). This symmetry is not anomalous and is
unbroken at any point of the phase diagram. However, this
symmetry is important for our story. If we allow this sym-
metry to be explicitly broken, then we can add additional
fermion bilinear terms (for instance different masses for
different fermion flavors) to the theory, which are strongly
relevant at the critical point. These relevant perturbations
either lead the system to a gapped intermediate phase or lead
the renormalization group flow to a new fixed point—possibly
the Ising fixed point if the PSp(Nf ) is completely broken.
Thus the contemplated nontrivial phase transition is protected
by this additional global symmetry. Similar phenomena are
also observed in recent developments on 1 + 1-D deconfined
quantum critical points [22–24]. We will comment more on
this protection and related similar phenomena in other models
in Sec. IV.
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Given the importance of this symmetry let us now address
whether the two massive phases—apart from T symmetry
breaking—are topologically distinct in the SPT sense. A
simple way to detect an SPT phase is to identify a quantized
topological response to background gauge fields that couple to
the global symmetry [25–27]. Topological responses include
the terms labeled by a continuous tuning parameter, such
as the θ term, as well as terms labeled only by discrete
parameters [28] (known as discrete theta terms). As explained
in Ref. [8] in the presence of a nontrivial bundle of the
background gauge fields, we require that

w
SO(3)g

2 + w
PSp(Nf )
2 = 0 (mod 2). (4)

Here w2 refers to the second Stiefel-Whitney class of the
corresponding gauge bundle [the SO(3)g fields are dynami-
cal, while the PSp(Nf ) fields are background], and we have
restricted to flat space-time manifolds.5 The notation SO(3)g

here is due to the fact that when a topologically nontrivial
background field for the global symmetry is turned on, the
dynamical gauge field may be lifted to an SU(2)/Z2 = SO(3)
gauge field so long as (4) is obeyed, which ensures that the
fermions can be parallel-transported self-consistently.

For m < 0, where we have θ = 0 for the SU(2) gauge field,
we can also choose the regularization such that it is in a trivial
phase of the global symmetry.6

For m > 0, T and P are broken.7 Therefore we only need
to examine whether the state is an SPT for the PSp(Nf )
symmetry.

For the group PSp(Nf ) with Nf odd, there is only one
distinct type of topological response possible [28], namely,
the ordinary θ term

Ltopo = iθ

8π2
Tr (F ∧ F ), (5)

where F is the field strength of the PSp(Nf ) background field.
The fact that there are no possible additional independent
discrete terms arising from PSp(Nf ) bundles that do not lift
to Sp(Nf ) bundles is important for us, and is explained in
Appendix B. The quantization of the θ angle in (5) requires
T or P , which is absent on the m > 0 side. Thus there cannot

5When the theory is placed on a generic nonspin manifold we need
to consider more general bundles that satisfy w

SO(3)g
2 + w

PSp(Nf )
2 +

wT M
2 = 0, mod 2 where T M is the tangent bundle of the manifold.
6Equation (1) without the dynamical SU(2) gauge field has a global

SO(4Nf ) symmetry. We can choose a regularization such that a
background SO(4Nf ) gauge field has trivial response in the m < 0
phase. As a result, the m < 0 theory will have trivial response for all
subgroups of SO(4Nf ), including PSp(Nf ).

7The reader may wonder if we could have spontaneously broken
T without breaking P or vice versa. This however is ruled out for
the following reason. In this massive phase, the universal low energy
physics is captured by a Lorentz invariant field theory which satisfies
the CPT theorem. However, as emphasized before, in this theory
there is no distinct notion of C that is independent from the global
symmetries already considered, and hence we really have a PT
theorem. Then broken T implies broken P and vice versa, with a
C transformation playing no role in the physics (see Appendix A for
details).

be a nontrivial SPT for the PSp(Nf ) symmetry. We conclude
therefore that both of the two massive phases in the present
theory are topologically trivial.8

A more physical way to identify SPT phases is to gauge
the global symmetry and study the quantum statistics and
symmetry quantum numbers of the excitations. Therefore let
us gauge the PSp(Nf ) symmetry and inspect the properties of
its magnetic monopoles.9 For the m < 0 side, the monopoles
are trivial bosons. However, on the m > 0 side, the monopoles
can potentially trap fermion zero modes. The diagnosis of
a possible SPT phase can be done by asking whether there
exists a monopole with trivial quantum numbers once the
discrete symmetries are broken. Let us look at the simplest
case with Nf = 1, where the continuous global symmetry is
PSp(1) = SO(3). The system has two Dirac fermions, (ψ↑,
ψ↓), which form an SU(2) gauge doublet. The overall phase
rotation of the ψ’s is the z-direction rotation of the SO(3)
global symmetry, with the other two generators involving
rotations in particle-hole space.

Physically, the constraint (4) means that a monopole con-
figuration of the background SO(3) gauge field is correlated
with the flux configuration of the dynamical gauge field.
Namely, a π flux through the z direction of the background
field is associated with a π flux through the z direction of the
dynamical gauge fields. Such a flux configuration explicitly
breaks the SO(3) global symmetry down to SO(2). ψ↑ sees
a 2π flux of this remaining SO(2) while ψ↓ sees no flux,
and therefore the monopole traps one fermion zero mode. We
thus have two monopole states M†|0〉 and f †M†|0〉. These
two states will be degenerate and have half-quantized SO(2)
charge if T symmetry is unbroken. However, these nontrivial
properties are gone once T is broken. Physically, the fermion
mode will no longer sit at zero energy and the degeneracy
is violated, making the monopole trivial. The cases with odd
Nf > 1 have similar structure, which we do not list here.

Summarizing, we have shown that neither the m < 0 nor
the m > 0 phase has any SPT order. Thus the m < 0 phase is
a completely trivial gapped phase of the underlying bosons,
while the m > 0 phase breaks T symmetry but is otherwise
trivial. The corresponding phase transition is certainly within
the purview of standard LGWF theory in terms of a fluctuating
order parameter field φ that is odd under T but is a singlet
under PSp(Nf ). This leads to the 3 + 1-D Ising universality
class, i.e., the usual Gaussian fixed point with a marginally
irrelevant φ4 interaction. However, in our model, the transition
happens through a different fixed point which has emergent
deconfined fermions and gauge fields. This is an example
of a deconfined quantum critical point for a Landau-allowed

8If there had been allowed discrete theta terms independent from
Eq. (5) then we could not make such a conclusion, since the coef-
ficients of these terms are quantized even in the absence of T , and
hence can not be tuned away after the spontaneous breaking of T . In
principle, such a discrete term could arise when performing the path
integral over the dynamical SO(3) gauge field, since the constraint
Eq. (4) means that the dynamical gauge field carries information
about the discrete class w

PSp(Nf )
2 of the background fields.

9Since π1(PSp(Nf )) = Z2, the PSp(Nf ) gauge group has a Z2

monopole.
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transition in 3 + 1-D. Note that the emergent massless
fermions transform projectively under PSp(Nf ). Thus, in
sharp contrast to the usual LGWF theory, gauge-invariant
operators that transform nontrivially under PSp(Nf ), e.g.,
fermion bilinears in a singlet under the gauge SU(2) but a
nontrivial representation of PSp(Nf ), will have power-law
correlations at this deconfined quantum critical point. This ob-
servation also implies that there is no possibility of describing
this deconfined critical fixed point in any theory that involves
just the fluctuating order parameter field φ.

In a lattice realization, both the Landau and non-Landau
allowed universality classes can presumably be accessed by
tuning parameters (a schematic phase diagram is shown in
Fig. 2).

C. Crossovers and critical exponents

Having established the zero temperature phase dia-
gram, let us move on to the finite temperature phase
diagram/crossovers and critical exponents for this LBL tran-
sition. Near this fixed point the gauge coupling g2 is dan-
gerously irrelevant. As usual this leads to two diverging
length/timescales. First there is an obvious length scale ξ ∼
1
m . At shorter length scales (but still long compared to any
lattice spacing), the system can be described in terms of
massless fermions and gluons. At the length 1/m the gauge
coupling g2 is small and starts growing at longer distances.
Confinement sets in only at a much larger length scale ξconf ∼
ξ y. The universal exponent y is found by matching the RG
flow of the massless theory with that of the pure gauge
theory. To be explicit consider, the well known RG flow
for non-Abelian gauge theories [29,30] with gauge group Gg

with Nf fundamental massless fermions as a function of a
dimensionless scaling parameter l:

dg2

dl
=

(
11

3
C2 − 4

3
tNf

)
g4

8π2
. (6)

Here, C2 is the quadratic Casimir of the gauge group Gg and
t is defined by Tr (T aT b) = tδab for generators T a,b of the
Lie algebra in the fundamental representation. Solving this
equation for Nf > 11C2

4t , as assumed, at large RG scale l , we
have

g2(l ) ≈ 1

l

8π2(
4
3 tNf − 11

3 C2
) . (7)

When the fermions have a bare mass m, we stop this RG flow
at a scale l0 at which mel0 = � (the cutoff scale). At longer
scales l  l0, the coupling grows as per the flow of the pure
gauge theory, i.e., Eq. (6) with Nf = 0. This leads to a solution

g2(l  l0) = g2(l0)

1 − 11C2
24π2 (l − l0)g2(l0)

. (8)

The coupling becomes strong at a scale l∗ (at which confine-
ment occurs) such that

l∗ − l0 = 24π2

11C2g2(l0)
. (9)

FIG. 4. A finite temperature phase diagram of the beyond Landau
transition.

Using Eq. (7), we thus find

l∗ − l0 = l0

(
4tNf − 11C2

11C2

)
. (10)

The ratio of the confinement scale and ξ is el∗−l0 . It follows
that the confinement length scale satisfies

ξconf

ξ
= el0(

4tN f
11C2

−1)
. (11)

Finally using ξ = 1
m = el0

�
, we get ξconf = 1

my with y = 4tNf

11C2
>

1. Specializing to SU(2) gauge theory with Nf fundamental
fermions we have y = Nf

11 . At intermediate length scales be-
tween ξ and ξconf the system may be described in terms of
massive deconfined fermions coupled to weakly interacting
massless gluons.

It is important that the true nature of the two phases is only
established beyond the confinement scale ξconf . In particular
the time reversal breaking for m > 0 sets in only at this scale,
which also sets the scale of the energy gaps in either phase.
These two distinct length scales will also lead to two distinct
temperature scales for the crossovers at nonzero temperature
(see Fig. 4). The broken time reversal symmetry will lead to a
finite temperature phase transition with a Tc ∼ my, i.e., at the
confinement scale. Note that this transition is expected to be
in the 3D Ising universality class though the zero temperature
quantum phase transition is “beyond Landau”.

It is interesting to obtain the critical exponents associated
with this LBL universality class. The two length scales dis-
cussed above lead to two distinct correlation length exponents
ν = 1 (associated with ξ ) and νconf = y (associated with
ξconf ). The order parameter φ is a scaling field at the LBL fixed
point. It may be identified with the operator ψ̄γ 5ψ , which
is odd under T , but is a singlet under PSp(Nf ). As at the
fixed point the fermions are free, we see that φ has scaling
dimension �φ = 3, and thus its two-point correlator decays
as ∼1/x6 for space-time separation x. This corresponds to a
very large value for the ηexponent: η = 4. This large η is
another striking contrast with the standard Ising universality
class (where η = 0).

Finally let us consider the exponent β that describes how
the order parameter rises as a function of the tuning parameter
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TABLE I. Comparison of critical exponents. There are two en-
tries for ν at the DQCP, as there are two diverging length scales.

exponents Ising DQCP

ν 1/2 ν1 = 1, ν2 = y = 4tNf

11C2
> 1

η 0 4
β 1/2 4y − 1

m close to the transition. In the massive phase, the low energy
correspondence of the order parameter ψ̄γ 5ψ is ∼ 1

m Tr(F ∧
F ), which scales as 1

m Tr(F ∧ F ) ∼ �4
Y M/m ∼ m4y−1. This

gives β = 4y − 110, which leads to a very slow rise of the
order parameter compared to the usual Ising universality class
(where β = 1/2). The exponents are summarized in Table I.11

III. PURE GAUGE THEORIES AT θ = π

Given its crucial importance we now review what is known
about the pertinent physics of pure non-Abelian gauge the-
ories with a theta term at θ = π in 3 + 1-D. The appealing
arguments for the T broken confining phase are twofold.
The early evidence [18,21] is by inspecting the ground state
energy, E (θ ), as function of θ angle [for SU(Nc) pure Yang-
Mills gauge theory]. The compatibility between large-Nc scal-
ing and the periodicity of the θ angle implies that the ground
state energy E (θ ) must have multiple branches and level
crossings at θ = π that break the T symmetry. This is shown
explicitly through holographic methods for some large-Nc

theories [18]. The same argument is readily seen to also apply
to Sp(Nc) gauge theories in the large Nc limit which we will
consider below. What happens at smaller Nc [in particular for
SU(2) gauge theory] is left unresolved by this reasoning.

Recently a new anomaly argument has provided strong
constraints on the IR fate of such theories. Specifically, it
precludes a trivial confining phase for pure SU(Nc) gauge
theory with θ = π [19,32–36]. Pure SU(Nc) gauge theory has
unbreakable electric strings in the center ZNc of the gauge
group. This is captured by saying that the pure gauge theory
has a ZNc 1-form symmetry [37]. At θ = π the theory is also
time reversal symmetric. However it is shown in Ref. [19]
that for any Nc ∈ 2Z, the time reversal symmetry and the ZNc

1-form symmetry have a mixed anomaly. Physically, one can
show that the time reversal symmetry will be broken if one
gauges the 1-form symmetry, which is a signature for a mixed
anomaly. The result of gauging the ZNc 1-form symmetry of
the pure SU(Nc) gauge theory is an SU(Nc)/ZNc gauge theory
[28]. While the θ angle is still π , it has a different periodicity

10Since the theory has two diverging length scales, hyperscaling
relations are not expected to hold here.

11Note that the exponents of Ising transition in 3+1D is essentially
results from mean field theory. However, since the theory is at its
upper critical dimension—the ϕ4 coupling is a marginally irrelevant
parameter, there are logarithmic corrections to the correlation func-
tions [31]. Similar logarithmic corrections for correlation functions
will also appear in our DQCP as the gauge coupling is also a
marginally irrelevant parameter.

in the gauged theory, namely 2πNc [19,28]. Therefore the
time reversal symmetry T (as well as CT ) is explicitly broken,
since −π and π are not equivalent θ -angles in the gauged
theory.

This mixed anomaly is an indication that the system cannot
have a gapped featureless ground state. Consider any com-
pletely gapped ground state which is also confining. Then
the ZNc 1-form symmetry is unbroken. The mixed anomaly
then suggests that T is broken. The alternate possibility that
the theory saturates the mixed anomaly in a gapped state
by developing topological order (i.e., through a topological
quantum field theory) is forbidden [38]: A theory with this
mixed anomaly is “symmetry-enforced gapless” in the sense
discussed for ordinary 0-form symmetries in Ref. [39]. The
conclusion therefore is that a gapped ground state that is also
confined necessarily breaks T symmetry for SU(Nc) gauge
theory for any even Nc at θ = π . Alternately, the anomaly
may also be saturated by a gapless state that preserves both
the 1-form and T symmetries.12

For pure Sp(Nc) gauge theories, there is a Z2 1-form
symmetry for any Nc associated with the Z2 center of the
gauge group. At θ = 0, π , the theory is T symmetric. Again
at θ = π there is a mixed anomaly between the Z2 1-form
symmetry and T so long as Nc �= 0 mod 4 (see Appendix B
for a brief review and references). For these values of Nc

(which we will restrict to) the rest of the discussion is identical
to that in the previous paragraph.

Although the anomaly argument cannot completely tell us
the IR dynamics of these pure gauge theories, a time reversal
broken confined phase is the simplest possible outcome which
is consistent with all the constraints. If we wish to be really
safe, we can restrict to large-Nc gauge theories, in which the
statement of T breaking in the θ = π vacuum is controlled.

IV. LARGE-Nc GENERALIZATION

A. Sp(Nc) generalization

It is easy to generalize the parton theory to different gauge
groups without changing the global symmetry of the system.
We use the construction from Ref. [8]. Formally, we consider
the same Lagrangian in Eq. (1) with Sp(Nc) gauge fields
and fermions in the Sp(Nc) fundamental representation. The
global symmetry of this theory is exactly the same as the
SU(2) theory, which can be thought of as a special case of
Nc = 1 in this series. We always consider Nf large enough
that, at the massless point, the theory is infrared free. For finite
Nc we also restrict to Nc �= 0, mod 4 for reasons explained
in the previous section. Then with the further assumption
(which is surely correct for large enough Nc) that the pure
gauge theory at θ = π breaks T symmetry but is otherwise
trivial, the phase diagram of this series of parton theories
are the same as the scenario discussed above for the SU(2)
case. Therefore these theories in the large-Nc limit serve as
an exactly soluble limit where this phase diagram can be
established with confidence.

The crossover exponent y discussed in the Sec. II C will
depend on Nc and Nf in a manner easily computable from the

12A proposal for such a gapless symmetric state is still lacking.
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known RG flows of these theories. The remaining part of that
discussion will be unchanged.

B. SU(Nc) generalization

We can also generalize to the case where the gauge group
is SU(Nc), with Nc > 3. For all even Nc, in the same sense as
in previous sections, this theory again describes a UV system
of bosons. The global internal symmetry of the theory is G =
[U(Nf )/ZNc ] � ZC

2 , where the quotient by ZNc comes from
the action of the gauge group.13 When Nf is odd, integrating
out the fermions at m > 0 again produces theta terms at
θ = π for the SU(Nc) gauge fields and for the U(Nf )/ZNc

background fields, if they are present (again, we regularize
so that the topological response is trivial for m < 0).

As mentioned above, one expects that the SU(Nc) gauge
theory at θ = π spontaneously breaks T , at least at large Nc.
The differences with respect to the SU(2) theory come up
when one addresses the question of whether or not the m > 0
and m < 0 phases can differ by an SPT of the U(Nf )/ZNc

symmetry. Again, after time reversal is broken, the only
possible SPT that could remain would be one with a discrete
topological response, which cannot be re-expressed in terms
of a continuous theta term. While the details depend on the
exact choices of Nc and Nf , we show in Appendix B that
when gcd(Nc, Nf ) = 1 (this includes the cases of interest,
namely odd Nf and possibly large Nc), no discrete topological
responses for the U(Nf )/ZNc symmetry exist. Therefore we
again have an example of an exotic phase transition between
a trivial gapped phase and a phase with trivially broken T
symmetry.14

V. ALTERNATE SCENARIOS FOR SU(2) GAUGE THEORY

We now return to the SU(2) gauge theory and consider
the possibility that the pure gauge theory at θ = π is in a
phase distinct from the simple T and P broken phase assumed
so far. As specific examples we consider two distinct and
interesting possibilities that are consistent with the mixed
anomalies. In the full gauge theory (i.e., including the matter
fields) these will be interpreted as quantum spin liquid phases
of the underlying bosons. In both these cases we show that the

13The essential difference between the SU(2) and the SU(Nc > 2)
cases is that the fundamental representation of SU(2) is pseudoreal
(isomorphic to its complex conjugate), while for Nc > 2 it is com-
plex. Hence a distinct action of charge conjugation may be defined
when Nc > 2, while for Nc = 2 its action is “absorbed” into the flavor
symmetry, enlarging it to Sp(Nf ).

14Technically, we should also examine the possibility of SPT
phases protected by the unbroken C symmetry. However, no such
SPT phase exists. C is a Z2 unitary symmetry, and it is known that
there is no SPT for bosons in 3 + 1-D protected purely by such a
symmetry. This only leaves the possibility that there may be an SPT
protected by the combination of U(Nf )/ZNc and C. However, the
existence of such an SPT would require a discrete theta term that
couples a background Z2 gauge field for C to a field coming from the
U(Nf )/ZNc bundle. Such a term does not exist when gcd(Nf , Nc ) =
1, since then the U(Nf )/ZNc bundle has no discrete classes which the
C gauge field can couple to.

massless point describes an extremely novel phase transition
between these spin liquids and a trivial gapped phase.

A. Confinement transition of a U(1) spin liquid

First consider the possibility that the infrared fate of the
SU(2) gauge theory with θ = π is a deconfined U(1) spin
liquid with unbroken T symmetry. Such a phase breaks the
global Z2 1-form symmetry spontaneously. The properties
of such a phase can be readily accessed by modifying the
gauge theory by including a coupling to a Higgs field in the
adjoint (i.e., spin-1) representation of the SU(2) gauge group.
Introducing such a Higgs field retains both the Z2 1-form
symmetry and T , as well as their mixed anomaly. Condensing
this Higgs field then leaves behind a residual unbroken U(1)
gauge group and therefore leads to a deconfined U(1) gauge
theory.

Assuming this is the fate of the pure gauge theory at θ = π ,
let us now describe the physics of the full system that includes
the massive fermionic matter fields. The fermions are charged
under the unbroken U(1) gauge group. In addition there will
be gapped magnetic monopoles whose properties we describe
below. In terms of the UV bosons, the resulting state is a
U(1) quantum spin liquid enriched by the global PSp(Nf ) × T
symmetry.

Due to the θ = Nf π in the original SU(2) gauge theory,
this U(1) gauge theory inherits a θ angle at θU(1) = 2Nf π . The
Lagrangian for the U(1) spin liquid state can be written as the
following:

LU (1) =
Nf∑
i=1

∑
σ=↑,↓

iψ̄i,σ (γμ(∂μ − (−)σ iaμ) − m)ψi,σ

+ 1

4e2
f 2 + 2Nf π

8π2
f ∧ f , (12)

where we make a gauge choice for the residual U(1) gauge
field to be the Sz component of the SU(2) gauge field from
the UV. At low energies (below both the fermion mass and
the monopole mass), the physics is that of free Maxwell
theory which has both an electric and magnetic U(1) one-
form symmetry (which are both spontaneously broken). The
SU(2) gauge theory in Eq. (1) has an emergent Z2 1-form
symmetry at energy much lower than the fermion mass which
maps—at low energy—to the Z2 subgroup of the emergent
(but spontaneously broken) electric 1-form symmetry in the
U(1) gauge theory.

Let us consider the global symmetry properties of the U(1)
spin liquid state. As a warm-up we first consider the case
of Nf = 1 where the global symmetry is G = PSp(1) × T =
SO(3) × T . We can do a particle-hole transformation on
the ψ↓ fermions by defining ( f↑, f↓) = (ψ↑,−ψ

†
↓ ). The f

fermions carry the same charge under the U(1) gauge field.
The action of the SO(3) symmetry is then manifest, with
the vector ( f↑, f↓)T transforming projectively under the left
action of SO(3) as a spinor. The f fermions are the electric
charge excitations of the U(1) gauge theory, and their time
reversal transformation is the same as in Eq. (2). Thus in our
convention the electric charge is time reversal odd in this U(1)
gauge theory (and correspondingly the magnetic charge will
be time reversal even).
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Next, we consider the properties of the magnetic
monopoles in this U(1) theory. Due to the nonzero θ angle,
the monopole can carry nontrivial quantum numbers under the
global symmetry. Let us put the system on a large sphere. The
surface of Eq. (12) hosts two massless Dirac fermions coupled
to the dynamical U(1) gauge field. Consider a configuration
of 2π magnetic flux of the U(1) gauge field coming out of
the bulk. This monopole configuration will trap two fermion
zero modes, which we label as η↑ and η↓. There are in
total four states, labeled by M†|0〉, η

†
↑M†|0〉, η

†
↓M†|0〉, and

η
†
↑η

†
↓M†|0〉. Two of the four states, {η†

↑M†|0〉, η†
↓M†|0〉},

are gauge neutral, and transform as a spin 1/2 under the
global SO(3) symmetry. Notice that the T symmetry flips
the gauge charge. Therefore the monopole configuration is
time reversal invariant. The two states {η†

↑M†|0〉, η†
↓M†|0〉}

form a Kramers doublet under time reversal symmetry. To
summarize, the U(1) spin liquid has electric charge that is a
spin-1/2 fermion and magnetic monopole that is a spin-1/2
Kramers doublet boson. We denote this phase as E f 1

2
M 1

2 T .
We can now generalize the analysis to all odd Nf > 1.

Then the electric charges of the U(1) spin liquid are fermions
that carry the projective representation of the global PSp(Nf )
symmetry. The magnetic monopoles also carry the projective
representation of the PSp(Nf ) and transform under time re-
versal with T 2 = −1. We can see this from the following:
first, consider the same monopole configuration as above. In
this case, it will trap 2Nf fermion zero modes, labeled by ηi,
i = 1, 2, . . . , 2Nf . To construct the gauge neutral monopole,
we need to consider states that half fill the zero modes, namely
Nf out of the 2Nf zero modes. These states can be labeled
by |T{i1,i2,...,iN f }〉 = η

†
i1
η
†
i2

. . . η
†
iN f
M†|0〉, where i1, . . . , iNf =

1, 2, . . . , 2Nf . The Z2 center of Sp(Nf ) group acts on the ηi

modes as ηi �→ −ηi. Since Nf is odd, the |T{i}〉 states are odd
under the center symmetry as well. Therefore, they transform
in a projective representation of the PSp(Nf ) symmetry. In ad-
dition, the pairs of states |T{i}〉 and |T{ j}〉 with nonoverlapping
sets {i} and { j} form Kramers doublets under the T symmetry.
In terms of the symmetry realization on the E and M particles
this U(1) spin liquid can thus also be denoted15 as E f 1

2
M 1

2 T .
The U(1) spin liquid state we described above is not

anomalous [41]. Within the assumption made in this subsec-
tion, it admits a direct continuous phase transition, described
by the massless SU(2) gauge theory, to a trivial gapped
confined phase. Such a second order confinement transition
is hard to describe in any simple way in terms of the ob-
vious excitations of the U(1) spin liquid phase. The naive
route of condensing the bosonic M particle will not lead to
a symmetric confined phase due to its nontrivial symmetry
properties (and besides, at weak coupling, a theory of M-
condensation is believed to be first order so long as Nf is
not too large). The SU(2) gauge theory provides an extremely
novel new path for the evolution from the U(1) spin liquid to a
trivial confined phase with all the global symmetry preserved.

15There is however one further subtlety in fully characterizing it this
way: there may be an additional SPT phase protected by the global
symmetry. See Refs. [40,41].

As the fermionic charge in the U(1) spin liquid becomes
light, the U(1) gauge theory gets enlarged to an SU(2) gauge
theory. The critical point is the SU(2) gauge theory with
massless fermions. We notice a remarkable feature of the
theory is that the mass gap for the monopole excitations of the
U(1) spin liquid also becomes light, mM ∼ my

E , as the mass
of fermionic charge mE is reduced, which is potentially the
reason for the transition to evade conventional expectations.
After the fermion mass becomes negative, the SU(2) gauge
theory confines to a trivial state.

B. Confinement transition of a Z2 spin liquid

Now we consider yet another possibility: that the infrared
fate of the SU(2) gauge theory with θ = π is a deconfined
Z2 spin liquid with unbroken T symmetry. This phase also
breaks the global Z2 1-form symmetry but is gapped, unlike
the U(1) spin liquid considered above. Let us directly consider
the implications of this assumption for the full theory that
includes the gapped fermionic matter field.

To infer the properties of such a Z2 spin liquid it is
convenient to imagine reaching it from the U(1) spin liq-
uid of the previous subsection by condensing pairs of the
fermionic E particles: clearly such a pair of fermions can be
a PSp(Nf ) singlet boson that also transforms trivially under
T ; condensing these then leads to a symmetry preserving
Z2 spin liquid. There are gapped fermionic (“Bogoliubov”)
quasiparticles that carry the Z2 gauge charge and transform
projectively under PSp(Nf ). In addition there are, as usual,
tensionful Z2 flux lines around which the Z2 charges braid
with π phases.

If this is what happens for m > 0 in the SU(2) gauge theory,
then the massless point again represents a highly nontrivial
quantum critical confinement transition to a trivial symmetric
phase from such a Z2 spin liquid. We are not aware of
any previous description of a continuous T = 0 confinement
transition from a Z2 spin liquid with a fermionic Z2 gauge
charge.

In conclusion we see that with any of the three scenarios—
T broken but otherwise trivial, the U(1) quantum spin liquid,
or the Z2 quantum spin liquid—the massless SU(2) gauge the-
ory describes highly nontrivial quantum critical phenomena.

VI. CONTRAST WITH OTHER CRITICAL PHENOMENA

It is interesting to contrast the behavior we have found for
the Landau ordering transitions with other critical phenomena
that, at first sight, might seem similar.

It is of course well known that even within the standard
LGWF paradigm the predictions of Landau mean field theory
are modified by fluctuations. Of interest to us however are
situations where the LGWF paradigm itself is challenged at
a Landau ordering transition. Here we discuss two examples.
The first is the three-state Potts model in D = 2 space-time
dimensions. Here Landau mean field theory predicts a first
order transition; however it is known that the transition can
be second order with nontrivial critical exponents given by
a CFT. The second example (which is closer to the ones
in this paper) is the Abelian Higgs model with N complex
scalars in 2 + 1 dimensions. When N is sufficiently large this
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model is known to have a second order transition described by
the noncompact CPN−1 universality class.16 This is a Landau
ordering phase transition between a trivial gapped phase and
a phase with broken global symmetry but which is otherwise
trivial. The gauge invariant order parameter for the phase
transition is a Hermitian matrix

Qab = z†azb − δab

N
z†z (13)

(here za, a = 1, . . . ., N are the complex scalar fields). An
expansion of the free energy in terms of the matrix Q admits
a cubic term (for any N > 2) and hence, in Landau mean
field, the transition is first order. Nevertheless the transition
is allowed to be second order.

From the Landau mean field point of view, it may be
surprising that both the three-state Potts in 2D and the 3D
large-N Abelian Higgs model may still fit in within the
LGWF paradigm. To see this concretely consider the LGWF
Lagrangian for the fluctuations of the order parameter Q for
the 3D Abelian Higgs model:

LQ = Tr ((∂Q)2) + r Tr (Q2)

+ v Tr (Q3) + u Tr (Q4) + w Tr (Q2)2. (14)

The transition is accessed by tuning one parameter, for in-
stance r. The critical theory is strongly coupled in the IR
as (v, u,w) are all strongly relevant at the Gaussian critical
fixed point at (r, v, u,w) = (0, 0, 0, 0). Such a description has
previously been considered in Ref. [42] which contains much
useful discussion. Presumably for some range of (v, u,w)
within the critical manifold this theory flows to the critical
fixed point easily accessed in the gauge theory description
through the Lagrangian

Lz = |(∂ − ia)z|2 + r̃|z|2 + ũ|z|4 + · · · (15)

[The ellipses denote other allowed local terms, e.g., a Maxwell
term for the U(1) gauge field a].

While we do not know for sure that such an RG flow
exists, it does not seem to violate any principle we are aware
of. We thus conjecture that such a flow is indeed possible.
Indeed a lattice version of Eq. (14) can be solved explicitly in
the large-N limit [43], and yields criticality described by the
universality class of Eq. (15). Thus it is not unreasonable to
expect that the continuum Eq. (14) (defined by perturbing the
free theory by (r, v, u,w)) can also flow to the noncompact
CPN−1 fixed point. Accepting this we see that the critical
fixed point of Eq. (15) can indeed be described—as a matter
of principle—by the LGWF theory of Eq. (14), albeit in a
cumbersome and inconvenient manner.

The exact same comments also apply to models studied
in Ref. [44] which involved Higgs transitions in SU(2) gauge
theories to describe Landau ordering transitions in 2 + 1-D.
Within naive Landau mean field this transition is first order,
but the gauge theory gives a possible route to a second order
transition through a deconfined critical point. The correspond-
ing fixed point can presumably again be reached through an
RG flow of the standard LGWF action.

16This means that monopole operators in the U(1) gauge field are
all irrelevant at the IR fixed point for sufficiently large N .

In contrast in the examples described in this paper with
G × T symmetry, the LGWF formulation will be a theory
solely in terms of the Ising order parameter field φ which is
singlet under G. Thus within this formulation operators that
transform under G will not be scaling fields, and will have
exponential correlations. However at the critical fixed points
we have described, such operators are scaling fields and have
power-law correlations. Thus even as a matter of principle, the
LGWF description cannot capture these critical fixed points.

A different phenomenon is the role that the unbroken
global symmetry G plays in protecting the new universality
class. A familiar example of a related phenomenon happens at
the superfluid-insulator transition of bosons on a clean lattice
[1]. Depending on whether the transition is tuned by interac-
tions at fixed commensurate density or by chemical potential
there are different universality classes. From the point of
view of the low energy LGWF theory the former universality
class is protected by the presence of a particle-hole symmetry
at the critical fixed point. Note however that the relevant
operator that is forbidden by C symmetry is −μ j0 where j0 is
the boson density. This operator has power-law correlations
through out the superfluid phase. This is a difference with
the examples in this paper where operators that transform
(or generate) the G symmetry have exponentially decaying
correlations everywhere except at the critical point.

Recently a 1d generalization of the deconfined quan-
tum critical points has been discussed in Refs. [22–24,45].
Consider a 1d spin-1/2 chain with Zx

2 × Zz
2 spin rotation

symmetry as well as translation symmetry. The low energy
theory can be most conveniently presented in the language
of a O(4) nonlinear σ -model with a Wess-Zumino-Witten
term and anisotropies. The components of the O(4) vector
n parametrize the four leading ordering tendencies (x-FM,
y-AFM, z-FM, VBS) in the model. The 1d DQCP describes a
continuous phase transition between a z-ferromagnetic state
and a VBS ordered state, which break Zx

2 and translation,
respectively. Similar to our LBL example, the Zz

2 symmetry,
which flips the x-FM and y-AFM order, is not broken in either
phase or at the phase transition. Nonetheless the presence
of the Zz

2 symmetry is important. If one allows explicit Zz
2

breaking, one can add an additional relevant perturbation,
namely hSx, that can destroy the critical point and lead the
system to a spin polarized phase.

Finally, in Appendix D we discuss a 1 + 1-dimensional
model of Nf fermions coupled to a U(1) gauge field (known as
the Schwinger model). We show how, despite some superficial
similarities, the phase transition in this model exhibits a differ-
ent, less surprising phenomenon, from the one studied in this
paper. Specifically this 1 + 1-D model contains a nontrivial
second-order phase transition between a trivial gapped phase
and a P-broken phase which both preserve a continuous
global symmetry of the model. However, the symmetry bro-
ken ground states also differ from the trivial state by having
a nontrivial SPT response to background gauge fields for the
unbroken symmetry.

VII. DISCUSSION

The examples discussed in this paper concretely show
how order parameter fluctuations might distract from the true
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critical behavior at some Landau ordering transitions even,
in the “standard” case where there is no other topological
or other exotic order in either phase, and the transition is
Landau-allowed. In these examples the essential transition is
actually a topological phase transition of emergent fermions
which, however, disappear from view at the longest scales in
either phase due to confinement.

It is natural to wonder if in 3 + 1-D there are continuous
Landau-forbidden quantum phase transitions between phases
that themselves are Landau allowed. Such Landau forbidden
transitions are well known in 2 + 1-D but there are no exam-
ples in 3 + 1-D that are known to us. In Appendix E, we show
that a bosonic version of the theories discussed above gives
a natural construction of deconfined critical fixed points for
such Landau-forbidden transitions in 3 + 1-D, subject to the
caveat that we work with a (sometimes rather fancifully) high
number of bosons.

While the specific models in which we have been able
to demonstrate these phenomena may seem esoteric from a
condensed matter point of view, they are concrete and hence
settle matter of principle questions. We hope that future work
finds similar phenomena in simpler models. Perhaps more
importantly the examples discussed here lend some moral
support to phenomenological ideas in heavy fermion and
other experimental systems that invoke physics beyond order
parameter fluctuations (in a metallic environment).

Note added. Recently, we notice Ref. [46] appeared, which
had partial overlap with our work and focused more on the
discussion of scenario involving U(1) spin liquid.
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APPENDIX A: GLOBAL SYMMETRIES

In this Appendix, we discuss the global symmetries present
in the SU(2) gauge theory. As in Ref. [8], it is helpful to
start from a theory of 4Nf Majorana fermions. In the free
theory with just Majoranas, the internal symmetry group of
the theory is O(4Nf ). We will choose (−,+,+,+) signature
with γ matrices γ0 = −iμy ⊗ σ x, γ1 = μy ⊗ σ y, γ2 = μx ⊗
1, γ3 = μz ⊗ 1, and γ5 = μy ⊗ σ z, where μi and σ i are Pauli
matrices. This choice is particularly convenient since all the
γμ matrices are real, and so the fields manifestly transform in
a real representation of the global symmetry group.

To study the SU(2) gauge theory, we repackage the
fermions by defining the fields

Xv = 1√
2

(
χ↑vσ

0 + iη↓vσ
x + iχ↓vσ

y + iη↑vσ
z
)
. (A1)

Here the flavor index is v ∈ {1, . . . , Nf }, and the notation is
such that the Majoranas are grouped into complex fermions
of SU(2) spin σ and flavor v via ψσv = χσv + iησv . In this
notation, the free kinetic term is i

∑
v Tr [X̄v /∂Xv].

We then gauge the right SU(2) action on X . Af-
ter gauging, the internal global symmetry that remains
is NO(4Nf )(SU(2))/SU(2), where the normalizer group
NO(4Nf )(SU(2)) contains all those elements R ∈ O(4Nf ) such
that for any V ∈ SU (2), we have R−1V R ∈ SU(2). Naively,
this leaves a U(2Nf ) symmetry acting on X on the left, since
the left action commutes with the SU(2) action by construc-
tion. However, not all matrices in U(2Nf ) are allowed: the
reality condition of the Majoranas means that in fact the matri-
ces acting on the left must be in Sp(Nf ). This can be shown by
requiring that the map X �→ (1Nf ⊗ J )−1XJ with J ≡ −iσ y

is equivalent to complex conjugation on the Dirac fields ψσv

both before and after the left action: any unitary U acting on X
on the left must satisfy U T (1Nf ⊗ J )U = (1Nf ⊗ J ), implying
U ∈ Sp(Nf ). Since the element −1 ∈ Sp(Nf ) acts on the fields
in the same way as the element −1 ∈ SU(2), we actually only
get a PSp(Nf ) ≡ Sp(Nf )/Z2 global symmetry, and one can
show that PSp(Nf ) is in fact the entire remaining internal
symmetry group. 17

Now we discuss the discrete symmetries of time reversal
and parity. We will take T to be an anti-linear operator which
includes an action of complex conjugation on the dynamical
fields (our definition of T corresponds to what is often called
CT in the literature). One can check that the transformation

T : X (t, x) �→ γ0γ5X ∗(−t, x)

= γ0γ5
(
1Nf ⊗ J

)−1
X (−t, x)J, (A2)

leaves the action invariant provided that the SU(2) gauge field
transforms as

T : aI
0(t, x) �→ −aI

0(−t, x),

aI
i (t, x) �→ aI

i (−t, x), (A3)

so that the gauge coupling
∑

v Tr [X̄v/aI Xvσ
I/2] is left invari-

ant, with I = 1, 2, and 3 the gauge index. The reason why
we choose to call this transformation T instead of CT is
because it only acts on the Lorentz indices of the fields in the
theory—if we had not included the complex conjugation of
the fermion fields, T would be required to act on the internal
gauge indices of the fields as well.18 The T action commutes
with the PSp(Nf ) global symmetry, since if U ∈ PSp(Nf ) then

17Indeed, PSp(Nf ) × SU(2) is a maximal subgroup of SO(4Nf ),
meaning that it is not a subgroup of any proper subgroup. Since the
normalizer of a subgroup is itself a subgroup, the normalizer cannot
possibly be any bigger than PSp(Nf ) × SU(2), and so in fact must be
equal to it—quotienting by SU(2), we indeed obtain PSp(Nf ) as the
full internal symmetry group.

18Indeed, define an antilinear operation CT : X (t, x) �→
γ0γ5X (−t, x) on the fermion fields by taking the action of T ,
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(1Nf ⊗ J )U = U ∗(1Nf ⊗ J ), and therefore the 1Nf ⊗ J and the
complex conjugation involved in the T action cancel when
acting on the PSp(Nf ) matrices.

In addition to T we have parity, which is comparably
simpler. We may take the action on the fermions to be

P : X (t, x) �→ γ0X (t,−x), (A4)

so that P2 = (−1)F . The transformation of aI
μ is dictated by

that of ∂μ, viz.

P : aI
0(t, x) �→ aI

0(t,−x)

aI
i (t, x) �→ −aI

i (t,−x). (A5)

Finally, we come to charge conjugation C. Charge con-
jugation is often elevated to the same status as T and P ,
but in fact, there is no universal definition of a distinct C
symmetry that applies in all theories.19 Indeed, in the SU(2)
gauge theory under consideration there is actually no notion
of a charge conjugation symmetry which is distinct from the
other symmetries already discussed. We will use the symbol C
to denote the unitary map which acts on the complex fermions
as C : ψσv �→ ψ∗

σv; on the matrix field X this action is C :
X �→ (1Nf ⊗ J )−1XJ . This can be checked to be a symmetry
of the action provided that C : aμ �→ J−1aμJ . The reason why
this does not give us an independent symmetry is that it is
already contained in the action of PSp(Nf ) × SU(2), and so
T and CT are related through the internal symmetry group.
Therefore what we call T and what we might call CT are
not distinct symmetries after the PSp(Nf ) × SU(2) has been
properly accounted for, and we can restrict ourselves to just
dealing with T without any loss of generality.

Recapitulating, we have a PSp(Nf ) global flavor symmetry
and discrete T and P symmetries, which act on the dynamical
fields as

PSp(Nf ) : X �→ UX, aI
μ �→ aI

μ,

T : X (t, x) �→ γ0γ5X ∗(−t, x),

aI
0(t, x) �→ −aI

0(−t, x),

aI
i (t, x) �→ aI

i (−t, x),

P : X (t, x) �→ γ0X (t,−x),

aI
0(t, x) �→ aI

0(t,−x),

aI
i (t, x) �→ −aI

i (t,−x). (A6)

but omitting the complex conjugation on X . CT invariance of
the gauge coupling is achieved provided that the SU(2) gauge
field transforms as CT : aμ(t, x) �→ (−1)δμ,0 J−1aμ(−t, x)J , which
indeed acts on the gauge indices.

19At a formal level, it is usually only defined when one has a sym-
metry group that admits a nontrivial Z2 outer automorphism [an outer
automorphism of a group G is a homomorphism from G to itself
whose action cannot be written as conjugation by elements in G;
complex conjugation for the group U(1) is an example]. For example,
Out(SO(4Nf )) = Z2, and so the un-gauged theory has a charge con-
jugation symmetry, viz. the reflection extending SO(4Nf ) to O(4Nf ).
Likewise, Out(SU(N )) = Z2 for N > 3, with charge conjugation
acting by exchanging the SU(N ) fundamental and anti-fundamental
representations. However, Out(SU(2)) = Out(PSp(Nf )) is trivial,
which precludes the existence of an independent notion of charge
conjugation in the gauge theory under consideration.

With these definitions, the Dirac mass m Tr [iX̄X ] is even
under both T and P , while the chiral mass m Tr [X̄γ5X ] is
odd under both T and P .

APPENDIX B: DISCRETE TOPOLOGICAL TERMS AND
FRACTIONAL INSTANTON NUMBERS

In this Appendix we discuss discrete theta terms in four
dimensions and their relation to instanton numbers, which is
important for analyzing the possible presence of SPTs that
survive T symmetry breaking in the theories discussed in the
main text.

A general framework for thinking about topological terms
in gauge theories is that of obstruction theory. Given a gauge
theory with gauge group G, we ask whether or not it is
possible to have G bundles over a given space-time that cannot
be trivialized, i.e., which do not admit a global section. If there
is an obstruction to trivializing a given G-bundle E , then we
can have nontrivial topological terms in the theory.

To determine whether a G-bundle can be trivialized over
a given space-time manifold M, it is helpful to imagine
triangulating M. We first choose a trivialization (a choice
of local section) at each of the vertices of the triangulation;
this is always possible to do in a globally consistent way.
On orientable manifolds, it is further always possible to
extend this trivialization from the vertices onto the links.
During the next step of extending the trivialization smoothly
into the faces we may run into trouble, however. Indeed,
suppose that π1(G) �= 0 and that around a given face, the triv-
ialization on the links around the face determines a nontrivial
element of π1(G). In this case, the trivializaton cannot be
smoothly extended into this face, and we have an obstruction.

At the next level up, we ask whether the trivialization can
be extended into the 3-cells. All Lie groups have π2(G) = 0,
and so such an extension is always possible. At the final level,
we ask whether we can extend the trivialization into the 4-
cells. All simple compact Lie groups have π3(G) = Z, and so
we always run into an obstruction at this stage—this is the
obstruction responsible for the usual instanton number.

Topological terms are functions which take information
about the obstructions defined above and output a phase in the
path integral, and they do so in such a way that the phase is
invariant under retriangulations of M. Terms in the topological
part of the action come in two types: continuous θ terms which
can appear with a continuously-variable coefficient in the
action, and discrete terms, which are integrals of Zn-valued
terms and have quantized coefficients.

If there is an obstruction to extending the trivialization
over the k-cells which comes from a factor of Z in πk−1(G),
such as the instanton number when k = 4, then a theta term
associated with this obstruction may have a continuous co-
efficient, essentially because the representations of U(1) are
integers. However, if the obstruction comes from a finite group
Zm, then the theta term must be discrete and come with a
quantized coefficient, since it must assign a trivial phase to
a certain number of copies of the gauge bundle E . Therefore
discrete theta terms can only arise when there is torsion in the
homotopy groups πk<D(G), with D the space-time dimension.
Since π3(G) = Z is always torsion-free and π2(G) always
vanishes, the only place where discrete terms can possibly
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enter the game is at the level of the obstructions at the
2-cells.20 If π1(G) contains a single Zm factor (this will be
true for all the groups we consider) then the resulting discrete
θ term is constructed using a “second Stiefel-Whitney class”
w2, which is a Zm-valued degree-2 characteristic class that
measures the torsion part of the obstruction at the level of
the faces of the triangulation [47]. The only way to get a
four-dimensional topological term using just w2 is to write

Stop ⊃ 2πk

2m

∫
P(w2), (B1)

where P(w2) is the Pontryagin square, which for us is a
4-cochain valued in Z2m. P(w2) is the appropriate way of
adapting the wedge product to discrete forms defined on a
lattice, in that P(w2) measures the self-intersection number
of the surface defined by w2. The Pontryagin square of a sum
factors in the way that we expect of a squaring operation
[27], namely P(a + b) = P(a) + P(b) + 2a ∪ b. Since w2 is
a Zm class, we need Stop to be invariant under the shift w2 �→
w2 + mc, where c has integer periods. This requirement
forces km ∈ 2Z [19,48]. Therefore, for the groups considered
in this paper, the most general response we can consider is
one parametrized by an angle θ and an integer k:

Stop[θ, k] = θ l + 2πk

2m

∫
P(w2), (B2)

where the instanton number is l = ∫
1

8π2 Tr [F ∧ F ] = ∫
ch2,

with ch2 the second Chern character of the bundle in question.
We will always normalize the instanton number such that

if G̃ is the simply connected universal cover of the gauge
group G, then the minimal instanton for a G bundle which
lifts to a G̃ bundle has l = 1. This means that if π1(G) �= 0
so that G̃ �= G, the instanton number in G may be fractional,
and consequently, the θ angle may have a periodicity greater
than 2π .

For the groups we are interested in, the fractional part of the
instanton number will be a function of

∫
P(w2). Depending on

what this function is, it may be possible that the discrete P(w2)
term in Stop can be incorporated to the θ l term, a question
which is addressed in detail in Refs. [28,48]. For example,
suppose the fractional part of the instanton number can be
written as 2πq

2m

∫
P(w2), and for simplicity take m ∈ 2Z so

that the distinct values of q are given by q ∈ Z2m (
∫

P(w2)
can then generically take any value in Z2m on a general
nonspin manifold). If gcd(q, 2m) = 1, then we see that any
potential discrete theta term in Stop[θ, k] can be absorbed into
the instanton term, via

Stop[θ, k] = Stop[θ + 2πr, 0], (B3)

where r = kq−1, with the inverse taken in Z2m. If this happens
then we may write Stop entirely in terms of a term with a
coefficient θ that may be continuously tuned, and hence upon
breaking T , the topological response is not protected by any
symmetry, and may be continuously tuned away. On the other
hand if gcd(q, m) > 1, then there are some discrete terms

20We are grateful to helpful correspondence with Yuji Tachikawa
on these issues.

which cannot be re-expressed as a continuous theta term, and a
protected topological response remains even after breaking T .

To examine when this can happen, we must then compute
the fractional part of the instanton number as a function of
P(w2). In what follows we will be rather didactic and show in
detail how this can be done for the case of PSp(n) by following
the approach in following the method of Refs. [48,49], which
interested readers can see for further examples.

In order to get a fractional instanton number, we need
to consider a PSp(n) bundle E which does not lift to an
Sp(n) bundle. This will be the case if the transition functions
between patches in E fail the cocycle condition by −12n ∈
Z (Sp(n)) along a collection of triple patch overlaps that de-
fines a homologically nontrivial 2-manifold, whose Poincare
dual is the Z2-valued class w2.

To construct such a bundle, consider the bundle ESO(3) =
L1/2 ⊕ L−1/2, which is an SO(3) bundle that does not lift to an
SU(2) bundle. Here, L is a line bundle whose first Chern class
reduces mod 2 to the class w2, so that L1/2 is a line bundle with
fractional flux, whose transitions fail the cocycle condition by
−1’s in a way determined by w2 [the opposite powers ±1/2
appearing in ESO(3) are needed so that ESO(3) has zero first
Chern character, as required of any SO(3) bundle].

In order to make a PSp(n) bundle, we then use the diagonal
embedding SU(2) → Sp(n) to form the bundle

EPSp(n) = E⊕n
SO(3) = (L1/2 ⊕ L−1/2)⊕n. (B4)

Because of the direct sum, the transition functions in EPSp(n)

fail the cocycle condition by −12n in a way controlled by the
class w2, which is what we want.21

The instanton number l of E is the integral of the second
Chern character ch2(E ). This can be computed using the
relation ch2(A ⊕ B) = ch2(A) + ch2(B), so that

ch2(EPSp(n) ) = n(ch2(L1/2) + ch2(L−1/2)). (B5)

Now since L±1/2 is a line bundle, ch2(L±1/2) = 1
2 ch1(L±1/2) ∧

ch1(L±1/2). The first Chern character of L±1/2 has an integer
part and a fractional part, with (by definition) the fractional
part given by ±w2/2. Accounting for the fact that the correct
way of taking the wedge product when discrete terms are
involved is to use the Pontryagin square so as to properly
capture the intersections of the surfaces Poincare dual to w2,
we find that in general

l =
∫

ch2(EPSp(n) ) = n

4

∫
P(w2) + . . . , (B6)

where the . . . represent integer-valued terms coming from the
“small” instantons which are also present for Sp(n) bundles.
The consequence of this is that when n ∈ 2Z + 1, we may
have fractional instantons on any manifold. Since P(w2)/2
is always an integer class on a spin manifold, if n ∈ 2Z we
may have fractional instantons on nonspin manifolds only,
while if n ∈ 4Z, fractional instantons never appear. From this

21If we had not used the diagonal embedding of SU(2) we would
have produced a bundle whose transition functions failed the cocycle
condition in a way not proportional to the identity matrix, which is
not allowed.
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expression, we also see that when n is odd, the discrete term
2πk/4

∫
P(w2) in Stop[θ, k] can always be absorbed into a

shift of the continuous θ term, while for n even it cannot be.
Now we briefly address the possibility of having fractional

instantons in the SU(Nc > 2) gauge theory case, where the
global flavor symmetry is U(Nf )/ZNc . As discussed above, in
order to determine what discrete theta terms are are possible,
we need to determine the fundamental group π1[U(Nf )/ZNc ].
One can do this by examining the long exact sequence in ho-
motopy groups stemming from the short exact sequence 1 →
ZNc → U(Nf ) → U(Nf )/ZNc → 1. Since π1[U(Nf )] = Z
for all Nf , the relevant part of the homotopy group sequence is

1 → Z
π−→ π1

[
U(Nf )/ZNc

] → ZNc → 1. (B7)

The map π can be determined by examining how the minimal
noncontractible loop in U(Nf ) maps to U(Nf )/ZNc . Doing
this fixes the central term of the sequence to be

π1
[
U(Nf )/ZNc

] = Z × Zgcd(Nf ,Nc ), (B8)

which means in particular that π1[U(Nf )/ZNc ] = Z is
torsion-free when Nc and Nf are relatively prime. Intuitively,
this is because in this case, the quotient cannot hit the SU(Nf )
factor in U(Nf ), which is the only place torsion can come
from, on account of π1[SU(n)/Zm] = Zm for m dividing n.

Hence when gcd(Nf , Nc) = 1 [which includes the situa-
tions we are interested in, viz. odd Nf and (perhaps large) Nc],
no discrete topological response is possible. More generally,
one can use the methods described in this Appendix (namely
constructing bundles with fractional instanton numbers out
of direct sums of fractional line bundles) to show that no
indpendent discrete response is possible provided that

gcd

(
Nf (Nf − 1)

g
, 2g

)
=

{
1 g ∈ 2Z
2 g ∈ 2Z + 1 , (B9)

with g ≡ gcd(Nf , Nc).

APPENDIX C: A LATTICE MODEL FOR THE PARTON
THEORY

Here we present an explicit UV regularization for the
SU(2) gauge theory with massless Dirac fermions on the
lattice. We start with a lattice model of a single low energy
Dirac fermion. Let us consider a 3d cubic lattice with 4
orbitals on each site. The Hamiltonian in momentum space
is given as the following:

H =
∑

k

c†k

⎛
⎝ ∑

i=x,y,z

μz ⊗ σ i sin ki

⎞
⎠ck (C1)

+
∑

k

c†k

⎛
⎝m0μ

x + m1μ
x

∑
i=x,y,z

cos ki

⎞
⎠ck, (C2)

where μ’s and σ ’s are pauli matrices acting on the orbital
basis. For the lattice model, we can define the C, T and P
symmetries which act as

C : ck → μy ⊗ σ yc†−k, (C3)

T : ck → iσ yc−k, i → −i, (C4)

P : ck → μxc−k. (C5)

At m0 = −3m1, this model has a single Dirac fermion at
k = (0, 0, 0). The effective Hamiltonian for this fermion is
simply

HDirac =
∫

k
ψ

†
k

⎛
⎝ ∑

i=x,y,z

μz ⊗ σ iki

⎞
⎠ψk. (C6)

The lattice C, T , and P symmetries precisely map to the
continuum C, T , and P symmetries for the low energy Dirac
fermion without additional complication. The fermion mass
term ψ†μxψ is the only allowed fermion bilinear term that
preserves these discrete symmetries.

We can add additional flavor indices to the above model.
In particular, we may take 2Nf flavors of this model and then
couple it to lattice SU(2) gauge fields in the standard fashion.
This serves as a UV regularization for the parton field theory
in Eq. (1). The combination CT is mapped to the T symmetry
we defined in the parton theory (1). The C symmetry becomes
part of the continuous PSp(Nf ) symmetry in the parton theory.

APPENDIX D: COUNTEREXAMPLE: 1d
SCHWINGER MODEL

In this Appendix, we discuss the Schwinger model, which
is 1+1-D QED with Nf ∈ 2Z + 1 Dirac fermions:

L1d = i
Nf∑
i=1

(ψ̄iγμ(∂μ − iaμ)ψi − mψ̄iψi ) + 1

4e2
f 2 + · · ·

(D1)
At first sight, the physics of this model parallels that of the 3 +
1-D theories encountered in the main text: this 1 + 1-D theory
is also intrinsically bosonic, and the system will go through a
spontaneous P breaking transition as the mass is tuned from
negative to positive. However, we will show that the symmetry
breaking states in the end are topologically distinct from the
trivial state, which is different from the 3 + 1-D examples in
the main text.

Let us consider Nf = 3 for simplicity. The important part
of the global symmetry of the theory is PSU(3) × ZP

2 , where
P is the discrete parity symmetry. These symmetries are
enough to prevent other fermion bilinear terms.22 At the
m = 0 point, the IR physics of the model is described by
the SU(3)1 WZW conformal field theory. By turning on the
fermion mass, we can get two massive phases. On the m < 0
side, we choose the regularization such that the U(1) gauge
theory has θ = 0. This phase has a gapped nondegenerate
ground state that does not break any symmetry. On the m >

0 side the θ angle is θ = 3π . The states of 1 + 1-D U(1)
gauge theory with a theta term have energies determined
by the Hamiltonian Heff ∼ E2 = (n − θ

2π
)2 with n ∈ Z. For

θ = 3π , the theory has two-fold degenerate ground states,
namely E = ± 1

2 , which spontaneously break P on account

22In the real basis γ0 = −iσ y, γ1 = σ x , we take P : ψ �→ γ0ψ

and T : ψ �→ ψ̄σ z, with P2 = (−1)F and T 2 = 1. Both P and T
preserve the Dirac mass imψ̄iψi, while the chiral mass ψ̄iγ5ψi is odd
under both P and T . We also have the unitary operator C, which in
our basis just does C : ψ �→ ψ∗.
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FIG. 5. 1d SU(3) spin chain with fundamental spin at each
site. The nearest neighbor spins interact with each other through
a Heisenberg Hamiltonian with interaction strength labeled in the
figure. For δ �= 0, one unit cell contains three spins. For δ = 0 the
system has enlarged translational symmetry. The Hamiltonian has a
site-centered parity symmetry.

of P : E �→ −E . The relative topology we claimed above
between two states and the trivial state can be understood in
the following way. We can start from a system with θ = 0 and
adiabatically tune up θ to 3π . Correspondingly, the electric
field strength E will adiabatically increase to 3/2. To get to
the E = +1/2 state, a pair of ±1 charges must be nucleated
and sent to the boundaries of the system, while a pair of ±2
charges is required to get to the E = −1/2 state. Since the
only charge ±1,±2 objects of the system carry projective
representation of the PSU(3) symmetry, the E = ±1/2 states
differ from trivial state by an SPT state protected by PSU(3).
The E = 1/2 and E = −1/2 states themselves also differ by
a PSU(3) SPT, for the same reason.

The above argument can be made precise by an explicit
lattice model. Consider an SU(3) spin chain with fundamental
representation on each site. The Hamiltonian is written as
(also see Fig. 5)

Hspin = (J − δ)
∑

i

(Si,A · Si,B + Si,B · Si,C )

+ (J + δ)
∑
〈i, j〉

Si,C · S j,A, (D2)

FIG. 6. A schematic phase diagram for the continuous Landau-
forbidden transition in 3 + 1d .

where Si · S j is a short hand notation for Sβ
α (i)Sα

β ( j). The spin
model at δ = 0 realizes the SU(3)1 conformal field theory,
which is exactly the theory in Eq. (D1) at m = 0. Eq. (D1)
can be viewed as a parton mean field theory of the spin chain
[45,50,51]. One can show that the δ term in the spin chain
precisely maps to the fermion mass term in the parton theory,
namely, δ ∼ m. For δ < 0, the spin chain has a unique ground
state which is a tensor product of trimers formed between
spins on ABC sublattices within a unit cell. This corresponds
to the m < 0 phase in the parton theory. For δ > 0, there
are two degenerate trimerization patterns as shown in Fig. 5,
which corresponds to the two-fold ground states in the m > 0
phase of Eq. (D1). The two patterns, as shown in Fig. 5, leave
some boundary spins unpaired, similar to the boundary state
of AKLT chain. Therefore they are topologically distinct from
the δ < 0 state, and hence the critical theory does not describe
a conventional Landau ordering transition.

APPENDIX E: CONTINUOUS LANDAU-FORBIDDEN
TRANSITIONS IN 3 + 1 DIMENSIONS

Here we display a bosonic model that shows a continuous
phase transition with a deconfined critical point between two
Landau-allowed phases that break distinct symmetries. This
is thus a direct analog in 3 + 1-D of the phenomena discussed
previously [2–7] in 2 + 1-D. Consider SU(2) gauge theory at
θ = π coupled to Nb bosons in the fundamental representation
of the SU(2) gauge group:

L = 1

4g2
Tr f 2

μν + π

8π2
Tr ( f ∧ f )

+ ∣∣(∂μ − iaI
μσ I/2

)
φ
∣∣2 − r|φ|2 − λ

2
|φ|4. (E1)

(The I index runs from 1 to 3). Here time reversal symmetry
acts as

T : φ(t, x) �→ φ∗(−t, x),

aI
0(t, x) �→ −aI

0(−t, x),

aI
j (t, x) �→ aI

j (−t, x). (E2)

The θ term can be viewed as arising from a distinct set
of heavy “spectator” bosons φH [also in the fundamental of
SU(2)] that form a boson SPT phase of the SU(2) group before
it is gauged. We will take φH to transform in the same way as
φ under time reversal but to be a flavor singlet. The global
symmetries of this theory are almost identical to the theory
with fermionic matter discussed in the main text but with one
difference. The presence of the flavor singlet spectator boson
φH implies that there are gauge-invariant operators φ

†
Hφ that

transform in the fundamental representation of Sp(Nb). Thus
the continuous global symmetry is Sp(Nb) and not PSp(Nb).
From a formal point of view, in the presence of the spectator
bosons, the SU(2) gauge bundle and the background Sp(Nb)
bundle are independent of each other [the condition in Eq. (4)
does not hold]. We also assume that the spectator bosons do
not contribute a nontrivial SPT of the global symmetry.

Since a Dirac fermion behaves like four bosons for the
purposes of computing the flow of the gauge coupling, the
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1-loop beta functions23 for ḡ2 ≡ g2/(8π2) and λ̄ ≡ λ/(8π2)
at the massless point are

dḡ2

dl
=

(
22

3
− 1

6
Nb

)
ḡ4,

dλ̄

dl
= −(2Nb + 4)λ̄2 + 9

2
ḡ2λ̄ − 9

8
ḡ4, (E3)

which can be extracted from Refs. [29,30]. For Nb > 359,
and when the boson mass is tuned to zero, the gauge theory
becomes IR free, while for Nb < 359 the theory has an in-
stability towards λ̄ < 0, signaling a first-order transition. The
zero boson mass point, for Nb > 359 (which we will assume
in what follows), separates a Higgs phase where the bosons
condense to one in which the bosons are gapped.

23The perturbative RG is presumably not affected by the theta
term of the SU(2) gauge field, whose nonperturbative effects are are
exponentially suppressed at weak coupling.

When the bosons condense, the SU(2) gauge field is fully
Higgsed and there is no residual unbroken gauge structure.
The Sp(Nb) symmetry is broken to Sp(Nb − 1) while pre-
serving time reversal. This is a conventional Landau ordered
phase characterized by a gauge invariant order parameter
Tr(φφ†). On the side of the phase transition, the bosons are
gapped. Then the low energy physics is described by SU(2)
gauge theory at θ = π which possibly breaks time reversal but
preserves Sp(Nf ). The discussion in the main text about the
lack of any SPT order protected by the unbroken symmetry
generalizes to the present situation as well. Thus this phase is
also a conventional Landau ordered phase with an Ising order
parameter that captures the time reversal breaking.

As in the main text the theory can be generalized to
SU(Nc) or Sp(Nc) where the T breaking is known with more
confidence. The two phases then break distinct symmetries
but are both Landau allowed. A continuous phase transition
between these two phases is forbidden within Landauesque
thinking but is possible through the deconfined critical route
just described.
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