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Quantum and classical phase-space dynamics of a free-electron laser
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In a quantum mechanical description of the free-electron laser (FEL), the electrons jump on discrete
momentum ladders, while they follow continuous trajectories according to the classical description. In order
to observe the transition from quantum to classical dynamics, it is not sufficient that many momentum levels
are involved. Only if additionally the initial momentum spread of the electron beam is larger than the quantum
mechanical recoil, caused by the emission and absorption of photons, the quantum dynamics in phase space
resembles the classical one. Beyond these criteria, quantum signatures of averaged quantities like the FEL gain
might be washed out.
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I. INTRODUCTION

Usually, an FEL is considered as a device that can be fully
described within classical physics. However, there exists a
“quantum regime” [1–3] where quantum mechanics is indeed
mandatory for an accurate description of the FEL dynamics.

In this article, we analyze the transition from quantum to
classical in a low-gain FEL by contrasting the dynamics of
an electron in phase space with the corresponding classical
description. We find that the occurrence of quantum effects
depends on the quantum mechanical recoil, caused by the
absorption and emission of photons: A small recoil energy,
compared to the coupling to the fields, and a small recoil
momentum, compared to the initial momentum spread, are
necessary to observe a classical evolution of the Wigner
function. Furthermore, we study quantum corrections to the
FEL gain.

A. Historical overview

In his ground-breaking article [4] in 1971, John Madey had
already formulated a quantum theory for the FEL even before
the first classical theories emerged [5,6]. His approach relies
on a perturbative solution for the electron wave function and
was lateron refined for example in Refs. [7–10].

On first sight, this model perfectly describes the transition
between the quantum and the classical regime of the FEL:
in the former one the resonances for photon emission and
absorption are well separated; by taking the limit h̄ → 0,
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however, these resonances overlap and the difference of pho-
ton emission and absorption turns into a derivative. Since
in this case all terms with Planck’s constant h̄ drop out, the
expression for the FEL gain is purely classical [11].

Nevertheless, it was soon realized [12] that the correct
description of this transition is more subtle. An electron in
the FEL emits many photons during the interaction. The first-
order perturbation theory in Madey’s work, however, includes
only single-photon processes. Although Madey derived the
correct result for the FEL gain, we strictly speaking cannot
employ his method.

This puzzling result has led to a variety of different ap-
proaches towards a quantum theory for the FEL [10,12–18].
For example, in Ref. [14], it was argued that the higher-order
contributions due to multiphoton transitions cancel similar to
the elementary model of a classical and fixed electron current
that is coupled to a quantized radiation field [19].

In Ref. [10], however, the problem was considered from
a more practical point of view. Although the perturbative
expansion of the quantum state does not converge, the corre-
sponding expansion for the observable of interest nevertheless
may converge. Hence, in such a situation, the results from
standard perturbation theory can be used to calculate the
corresponding expectation value, regardless of the underlying
physical mechanism.

B. Wigner function

A new facet to these topics was added by formulating a
quantum theory of the FEL in terms of the Wigner func-
tion [20–22]. Indeed, the Wigner function is a perfect choice
to study the transition from classical to quantum: On one hand
it contains all information of the quantum state [23]. One the
other hand, this description of quantum mechanics [24–28] is
as close as one can get to classical phase space [28].
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The dynamics of an electron in the FEL can be interpreted
as one-dimensional motion of a particle with mass m in a
periodic potential [6]. For convenience we choose the dimen-
sionless representations θ ≡ 2kz + const. and ℘ ≡ p/

√
U0m

for the position z along the wiggler axis and its conjugate
momentum p, respectively, see Appendix A. Here, k denotes
the wave number of the laser field as well as of the wiggler
field in the Bambini-Renieri frame [29], while U0 is the height
of the periodic potential and includes the amplitudes of both
fields.

The quantum state of a single electron in Wigner repre-
sentationW =W(θ,℘; τ ) evolves according to the quantum
Liouville equation [25,27](

∂

∂τ
+℘

∂

∂θ

)
W = L(1)W (1)

from Eq. (B1), where τ ≡ 2kt
√

U0/m denotes a dimension-
less version of the time t . The left-hand side of this partial
differential equation describes the free time evolution while

L(1) ≡ −ε(τ ) sin θ

∞∑
m=0

1

(2m + 1)!

1

(4α)m

∂2m+1

∂℘2m+1
(2)

corresponds to the periodic potential. For a derivation see
Appendices A and B.

Here we have introduced the parameter α ≡ U0/(2h̄ωr ) as
the ratio of potential height and recoil energy h̄ωr. The recoil
frequency ωr ≡ (2h̄k)2/(2mh̄) is associated with the recoil
2h̄k the electron experiences when scattered from a laser and
a wiggler photon. While the recoil itself is the origin of gain
in the FEL [14], its discrete nature is responsible for the
emergence of quantum effects [2]. Finally, the dynamics of
the normalized amplitude ε = ε(τ ) of the laser field follows
from Maxwell’s equations resulting in a semiclassical model
for the FEL dynamics.

C. Quantum versus classical

In Ref. [2], we have identified α as the quantum parameter
that governs the transition from the classical limit α � 1 to
the quantum regime α � 1 of the FEL. For large values of α,
the quantum Liouville equation at first sight reduces [20] to
the Boltzmann equation [5](

∂

∂τ
+℘

∂

∂θ

)
fcl = L(1)

cl fcl ≡ −ε(τ ) sin θ
∂ fcl

∂℘
(3)

for a classical phase-space distribution function fcl =
fcl(θ,℘; τ ). While the free part is the same as in the quantum
model, the potential term L(1)

cl contains only one derivative
with respect to ℘ instead of an infinite sum. Thus we appar-
ently obtain L(1) → L(1)

cl in the limit α → ∞.
However, the situation is more involved: only increasing α

does not necessarily lead to the classical regime. In Eq. (2),
we cannot simply truncate the series if we do not take the
magnitude of the derivatives ofW into account [28,30].

Let the Wigner function be characterized by the width
	℘ ≡ 	p/

√
U0m in momentum space. Due to the derivatives,

powers of 	p will appear in the denominator when L(1) acts

onW. We thus infer the scaling

1

(4α)m

∂2m+1W
∂℘2m+1

∼
(

h̄k

	p

)2mW
	℘

for the mth term of the series after recalling the definition of
α. Indeed, if 	p is of the order of the recoil h̄k (that is 	℘ ∼
α−1/2), all higher contributions of the series are of the same
order as the “classical” contributionW/	℘ (for m = 0) and
we must not neglect them. Hence, to obtain the classical limit
it is not sufficient that the quantum mechanical recoil is small
compared to the height of the potential. In addition, it has to
be small compared to the momentum spread of the electron
beam.

For a pure state, for example a Gaussian wave packet
[31,32], decreasing the momentum uncertainty is inevitably
connected to an increase in position uncertainty. In a true
classical limit, however, momentum and position uncertainties
can be chosen independently of each other [28]. This feature
only emerges if the quantum state of an electron is described
by a statistical mixture rather than by a pure state. In other
words, the classical uncertainties for momentum and position
are larger than the intrinsic quantum ones from the uncertainty
principle.

It is convenient to assume that the initial Wigner function
for the electron beam is given by the product

W(θ,℘; 0) = 1

2π
ρ(℘) (4)

of an arbitrary momentum distribution ρ = ρ(℘) and a uni-
form distribution in θ direction. This choice in position space
is in accordance with classical FEL theory [5,33,34] since we
cannot control the exact positions of each one of the electrons
that are distributed over several wiggler wavelengths [33,35].
In contrast to a pure state, we can choose the width of ρ

without affecting the distribution for θ [28].
However, the evolution of a “classical state” does not

ensure that we are in the classical regime for all times [28,36].
Local modulations of the Wigner function on the scale of
h̄k may emerge so that quantum effects reappear. We there-
fore expect that ultimately other effects enforce classicality,
namely sources of decoherence [37], for example induced
by space charge or spontaneous emission [38]. Alternatively,
one can argue that a “classical observer” is unable to resolve
these fine quantum signatures and is therefore limited to an
averaged measurement result [39].

We emphasize that the use of a statistical mixture does not
imply a many-particle theory. In the low-gain regime [33], the
motions of all electrons decouple from each other and every
electron interacts separately with the fields. Each electron in
a bunch is a copy of itself, initially distributed according to
W(θ,℘; 0), and we interpret the N single-particle interactions
as N repetitions of the same experiment. At the end we
calculate the observable quantities, like the FEL gain, by
averaging over all possible outcomes weighted by the time-
evolved Wigner functionW(θ,℘; τ ).

For example, we derive in Appendix A the semiclassical
equation of motion

dε(τ )

dτ
= −χ

∫
dθ

∫
d℘W(θ,℘; τ ) sin θ (5)
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for the dimensionless electric field ε with the constant χ

that includes the initial electron density ne and the initial
strengths of wiggler and laser fields. The dynamics of ε

follows from Maxwell’s equations with the electron current
being determined by the Wigner function.

From Eq. (5), it is evident why it is difficult to observe
quantum effects in the FEL radiation: even if the Wigner
function shows distinct quantum signatures, these features
might be washed out when we average over position and
momentum.

D. Outline

The remainder of this article is structured in the following
way. In Sec. II, we compare the time evolution in phase space
obtained from a quantum and a classical theory for the same
initial state. We first employ a perturbative expansion valid for
the small signal-limit before we resort to numerics in order
to treat also longer interaction times. Next, we consider in
Sec. III the gain of the FEL. Again, we cover the small-signal
limit as well as the evolution for longer times. Finally, we
discuss our results in Sec. IV.

For completeness we derive in Appendix A the semiclas-
sical model of the FEL used throughout this article. Further,
we have moved the perturbative calculation for the Wigner
function to Appendix B. In Appendix C, we introduce energy
eigenstates in terms of Mathieu functions and employ them to
derive a formal expression for the Wigner function used for
the numerical computations.

II. EVOLUTION OF WIGNER FUNCTION

The quantum Liouville equation constitutes a partial dif-
ferential equation to which we cannot find an exact, analytic
solution in general since it contains infinitely many derivatives
with respect to ℘. However, before we turn to a numerical
approach, we asymptotically solve Eq. (1) for small times.
This short-time limit corresponds to the small-signal regime
of an FEL.

A. Small-signal limit

In Appendix B, we perform the asymptotic expansion

W ∼=W(0) +W(1) +W(2) + · · ·
of W and solve Eq. (1) order by order. This perturbative
approach resembles the procedure in Ref. [5] for the Boltz-
mann equation and thus differs from the usual perturbative
solution of the Schrödinger equation [4,7–9], which is re-
stricted to single-photon processes. While the former proce-
dure is allowed as long as τ � 1, the latter one is only valid
for

√
ατ � 1 and thus breaks down quickly in the classical

regime due to α � 1.
We choose the initial state from Eq. (4) and assume that the

initial momentum distribution ρ is Gaussian with mean value
℘̄ and standard deviation 	℘. In Appendix B, we derive the
expression

W(1)(θ,℘; τ ) ≡ f (1)
cl (θ,℘; τ )

[
1 + Q

(
℘ − ℘̄√

2	℘

)]

FIG. 1. Small-signal contributionW(1), Eq. (B6), to the Wigner
function of an electron in the FEL for the fixed phase θ = π and as
a function of the relative and normalized momentum (℘ − ℘̄)/	℘.
We compare the results for three different values of the quantum
parameter α, that is α = 16 (solid yellow line), 100 (red dashed line),
and 400 (blue dotted line), to the classical distribution function f (1)

cl ,
Eq. (B7) (blue line) [40]. In all cases, we have chosen the values
ε = 1, τ = 0.01, ℘̄ = π , and 	℘ = 0.1 for the normalized field
amplitude, the dimensionless time, the mean initial momentum, and
the initial momentum spread, respectively. Although α = 16 � 1
indicates that we are close to the classical regime the corresponding
curve for W(1) significantly differs from the classical result. Only
after increasing α to α = 400, we observe an agreement between
the quantum and the classical theory. As apparent from Eq. (6) the
important parameter that governs this transition is not α but rather
the ratio h̄k/	p of recoil h̄k and momentum spread 	p. Indeed, for
α = 16 this parameter is with h̄k/	p = 1.25 of the order of unity
and we cannot neglect quantum corrections while α = 400 leads to
the decreased value h̄k/	p = 0.25 � 1.

for the first-order contribution to the unperturbed Wigner
function, where f (1)

cl from Eq. (B7) denotes the corresponding
solution for the classical Boltzmann equation (3).

The quantum corrections Q = Q(ξ ) are given by the series

Q(ξ ) =
∞∑

m=1

1

(2m + 1)!

(
h̄k√
2	p

)2m H2m+1(ξ )

H1(ξ )
(6)

of Hermite polynomials which depend only on the relative
momentum ξ ≡ (℘ − ℘̄)/(

√
2	℘), but not on position or

time. The analysis of Eq. (6) reveals the importance of the
ratio of recoil and momentum spread: The terms of the series
scale with powers of h̄k/	p and only if this parameter is
small, each term of the series decreases and the Wigner
function W(1) approaches the classical distribution function
f (1)
cl .

In Fig. 1, we plot W(1) as a function of the relative
momentum for different values of the quantum parameter but
for a fixed momentum spread and compare it to the classical
result f (1)

cl . Although α = 16 indicates that we are close to the
classical regime,W(1) does not agree with the classical curve.
Following the discussion above, the important parameter is
not α but rather h̄k/	p = 1/

(
2
√

α	℘
)

which is in this case
of the order of unity, that is h̄k/	p = 1.25. Indeed, increasing
the quantum parameter to α = 400 leads to h̄k/	p = 0.25
and thus to negligible quantum corrections in Fig. 1.
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In conclusion, the phrase “small recoil” in the present con-
text means: small compared to the initial momentum spread.
Only in this limit we can neglect the quantum corrections to
the Wigner function.

B. Longer times

The small-signal regime allows for a perturbative treat-
ment, which is not possible for longer times. Hence, we
have to determine the time evolution of the Wigner function
numerically. In contrast, the solution of the classical equation
of motion can be given in a closed form [41]. In Fig. 2, we
compare our results for the Wigner function to the classical
distribution function for different initial momentum widths
	℘ and for different values of the quantum parameter α.

The relevant—classical and quantum mechanical—phase-
space dynamics takes place inside the classical separatrix,
which separates open and closed trajectories, because here the
largest changes of momentum appear. The classical evolution
of a phase-space distribution is a rotation inside the separa-
trix. Since we consider an anharmonic oscillator, the angular
velocity depends on position and momentum and decreases
going from the center to the separatrix. As a consequence,
the phase-space distribution is stretched during the evolution,
since the inner parts move faster than the outer ones, see the
right column of Fig. 2.

The time evolution of a Wigner function that is initially
uniform in space can be expressed as

W(θ,℘; τ ) =
√

α

π

∞∑
s=−∞

ws(θ,℘; τ )ρ

(
℘ + s/2√

α

)
, (7)

for details see Appendix C 2. This expression can be under-
stood in the following way: The momentum of the electrons
changes by integer multiples s of the discrete recoil 2h̄k.
The counter-intuitive occurrence of half-integer multiples s/2
of 2h̄k in Eq. (7) comes from the interference between two
adjacent momentum levels [42]. Note that the momentum
changes of s2h̄k correspond to the emission and absorption
of |s| photons each. Therefore multiple scattering events are
included in our low-gain model.

We interpret the prefactors ws as scattering amplitudes for
the shifted parts of the Wigner function. They depend not only
on time and position but also on the momentum itself. As a
consequence of this momentum dependence, only a fraction
of the distribution is selected to participate in the interaction.
This effect is also known as “velocity selectivity” in atomic
Bragg diffraction [43].

In the quantum regime [2], that is, α � 1 and 	p/2h̄k �
1, the summation in Eq. (7) breaks down to a few terms,
as only few momentum levels are involved. In this extreme
limit, single-photon processes dominate the dynamics. Since
the initial momentum spread is sufficiently small, the shifted
distributions do not overlap and hence appear as discrete lines
in phase space.

In Fig. 2(b), where the time-evolved Wigner function for
α = 1/3 and 	℘ = 0.1 is shown, we indeed observe only
three momentum levels, that is the initial momentum p =
0 and the levels p = 2h̄k and p = −2h̄k, as well as two
interference patterns between these levels. From the marginal

distribution in Fig. 2(a), we recognize that these intermediate
momenta do not contribute to the momentum distribution. As
expected from the value h̄k/	p = 8.66, there is no agreement
with the classical distribution in Fig. 2(d).

With increasing α, more and more momentum levels inter-
sect with the separatrix and therefore contribute to the sum in
Eq. (7), that is, multiphoton processes occur. The phase-space
structure starts to resemble the classical dynamics but with an
additional fine structure due to the interference between many
levels, see Fig. 2(c). Here we have h̄k/	p = 1.58, which is
still outside the range for a classical evolution. From the mo-
mentum distribution in Fig. 2(a), we recognize several single
peaks corresponding to the distinct momentum levels, while
the classical distribution is spread out rather homogeneously
over the area enclosed by the separatrix.

We infer from these plots that a large α by itself is not
sufficient to obtain a classical time evolution, which under-
lines the results from the preceding section. A broad initial
momentum distribution is also not enough, as we can see
in Fig. 2(f) (h̄k/	p = 0.87) and (m) (h̄k/	p = 0.43) for
α = 1/3. Here the discreteness of the few momentum levels is
washed out due to the overlap of the shifted contributions [2].
The shape of each distribution is however quite different from
the classical counterpart in Figs. 2(h) and 2(l), respectively,
since only few momentum levels are involved.

The combination of a broad initial distribution and the
inclusion of many momentum levels, that is a large 	℘ and
a large α, eventually leads to a Wigner function which seems
to resemble the classical distribution function. By compar-
ing Fig. 2(l) with Fig. 2(k), where the value h̄k/	p = 0.08
matches the condition for a classical evolution, we can hardly
recognize any difference between these two distribution func-
tions. The momentum distributions agree even better, see
Fig. 2(i).

At first sight, Fig. 2 completely confirms our expectations:
For a small value of h̄k/	p the Wigner function resem-
bles its classical counterpart. However, if we go beyond
this purely visual comparison, we indeed observe significant
differences. For this purpose, we consider the numerical de-
viationW(θ,℘, τ ) − fcl(θ,℘, τ ) of both distributions. From
Fig. 3, we notice that the differences increase in the course
of time, even if the conditions for a classical evolution are
satisfied, that is α = 10 and 	℘ = 2 leading to h̄k/	p =
0.08.

For short times, the deviations have a low amplitude,
see the color bar of Fig. 3(a). The structure in momentum
direction can be identified as the Hermite polynomials of the
approximated analytical solution from Eq. (6). For longer
times, the anharmonic dynamics leading to dispersion of
the distribution in proximity to the separatrix becomes more
prominent. At the points in phase space where the distribution
is narrow, the deviation increases by orders of magnitude, see
Figs. 3(b) and 3(c). This observation can be explained in the
following way: Where the distribution is narrow, it has large
higher-order derivatives. Those in turn lead to a significant dif-
ference between the potential term of the classical Boltzmann
equation and the one of the quantum Liouville equation. Only
if the terms involving the higher-order derivatives are sup-
pressed, both equations are approximately the same. A small
value of h̄k/	p compensates the increasing contributions of
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FIG. 2. Comparison of Wigner function W and classical phase-space distribution fcl both as functions of dimensionless position and
momentum, θ and ℘, respectively, for different values of the quantum parameter α and of the initial momentum spread 	℘. In all cases, we
have chosen the time τ = π , which classically corresponds to half of a rotation near to the center of the potential. Each row corresponds to a
different initial momentum width, that is 	℘ = 0.1, 1.0, and 2.0. The marginals on the left show the initial momentum distribution (dotted)
and the evolved ones for α = 1/3 and 10 as well as the corresponding classical result (solid lines). The second and third column show the
evolved Wigner functions for α = 1/3 and α = 10, the rightmost column displays the classical phase-space distribution. In the case of small
α and 	℘ the discrete structure in momentum is visible in (b), where we have h̄k/	p = 8.66. With an increased α more levels are involved
in (c) and the shape of the corresponding classical distribution in (d) starts to appear, even though there are a lot of interference structures.
This behavior is consistent with the value of h̄k/	p = 1.58, which is of the order of unity. A broader initial momentum distribution washes
out the discrete levels, but still the Wigner functions for α = 1/3 in (f) with h̄k/	p = 0.87, and in (j) with h̄k/	p = 0.43 are quite different
from their classical counterparts in (h) and in (l), respectively. For large α = 10 and 	℘ = 1, that is, h̄k/	p = 0.16, there are only a few
interference fringes left in (g). An even wider initial distribution with 	℘ = 2, corresponding to h̄k/	p = 0.08, makes them nearly invisible
such that Wigner function in (k) and classical distribution in (l) resemble each other.

the higher-order derivatives only for some time. Consequently,
every initial distribution that evolves coherently sooner or
later becomes nonclassical. Decoherence effects like sponta-
neous emission or space charge may impede or even remove

the appearance of the quantum features in the distribution and
hence might lead to a classical evolution [37].

Even though all existing x-ray FELs operate in the high-
gain regime, we rely on their parameters for an estimation of
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FIG. 3. Deviation W− fcl of the Wigner function from the classical distribution function depending on dimensionless position and
momentum, θ and ℘, respectively, at three different times. In all plots, we have chosen the values α = 10 and 	℘ = 2, which are the
configurations of Figs. 2(k) and 2(l). For a small time τ = π/12, the interference fringes have a width proportional to the initial distribution,
but a low amplitude. In the course of time, the amplitude grows (note the different scaling of the colormap for each plot) due to the increasing
magnitude of the higher-order derivatives of the Wigner function. Those, in turn, are a consequence of the narrow width in momentum
space that appears first in the proximity to the separatrix due to dispersion. The appearing interference fringes are also narrow, leading to a
self-reinforcing effect. However, the amplitude of the deviation remains in the depicted case about one order of magnitude smaller than the
maximal values ofW in Fig. 2(k).

the decoherence timescales, since they are to date the only
FEL devices with large recoils that approach the quantum
regime. We emphasize that the high-gain regime is strictly
speaking not covered by our single-electron model.

For the European XFEL [44], we obtain h̄k/	p = 0.014,
a value that is still much smaller than unity but at least cor-
rections in the Wigner function due to the discrete momentum
steps might become conceivable. The interference pattern in
Fig. 3(c) emerges at τ ∼= π , that is the typical time for which
the FEL gain saturates [45]. For the European XFEL the
saturation length amounts to Lsat = 133 m corresponding to
a saturation time Tsat = 440 ns.

The corresponding timescales of possible decoherence
mechanisms [38] are calculated [46] to Tse = 0.7 ns (corre-
sponding to the length Lse = 0.2 m) for spontaneous emission
and Tp = 1μs (corresponding to the length Lp = 300 m) for
space charge, respectively. The comparison of these three
timescales reveals that, while we can neglect space charge
effects, spontaneous emission occurs long before an inter-
ference pattern can emerge. Hence, we expect interference
effects to be suppressed in state-of-the-art machines.

In order to quantify the deviation of quantum and classical
phase-space evolution we introduce the quantity

dcl(τ ) =
{ ∫ ∞

−∞ d℘
∫ 2π

0 dθ
[
W(θ,℘; τ ) − fcl(θ,℘; τ )

]2∫ ∞
−∞ d℘

∫ 2π

0 dθ
[
W(θ,℘; τ )2 + fcl(θ,℘; τ )2

]
} 1

2

,

(8)

which defines a Hilbert-Schmidt-like distance [47] of the
Wigner function to the classical distribution, normalized to

values between zero and unity. The smaller the value of dcl, the
closer is the Wigner function to the classical distribution. Due
to the integration over the whole phase space, dcl constitutes
a global measure in contrast to the local modulations that we
observe in Fig. 3.

The introduction of dcl gives us a convenient tool to study
the influence of the different parameters on the similarity of
quantum and classical evolution. In Fig. 4(a), we plot the time
evolution dcl = dcl(τ ) for different values of α and 	℘ used
in Fig. 2. We observe that the distance dcl increases rapidly
for larger values of h̄k/	p, which matches the results from
the perturbative treatment. Moreover, we notice that for small
values of h̄k/	p, the distance is very small for short times,
see the curves corresponding to 	℘ = 2. This behavior fulfills
our expectations of a nearly classical dynamics. However,
after some time the quantum features in the Wigner function
become more prominent and the distance suddenly increases
before it saturates. The saturation value is still about an order
of magnitude below the possible maximum.

In Figs. 4(b) and 4(c), we plot dcl as a function of α and
	℘ for two different times τ . In both panels we observe the
behavior that small values of α and 	℘, see the lower left
corner, lead to a large distance while it decreases when these
parameters are increased, corresponding to a more classical
evolution in phase space. The contour lines approximately
correspond to hyperbolae of constant h̄k/	p.

At the earlier time τ = π/2, shown in Fig. 4(b), the dis-
tance quickly falls off when approaching the upper right cor-
ner. For the later time τ = π depicted in Fig. 4(c) the distance
from a classical evolution declines much slower, since the
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FIG. 4. Distance dcl, Eq. (8), between Wigner and classical phase-space distribution. A large distance (close to unity) means that the
distributions are very different, while a small value (close to zero) indicates that they are similar. (a) Distance dcl as a function of the
dimensionless time τ for the values α = 0.3 (dotted lines) and 10 (solid lines) of the quantum parameter as well as for small (blue) and
large (red) initial momentum spread 	℘. Note that these are the same configurations as for the first and third row of Fig. 2. The distance
increases with increasing values of h̄k/	p = 1/

(
2
√

α	℘
)
. For large values of this parameter, the distance rises quickly, while it remains

small at short times for small values of h̄k/	p. After a longer time, the distance suddenly increases even for small h̄k/	p but saturates
afterwards. In (b) and (c), we draw dcl as a function of the initial momentum width 	℘ and of the quantum parameter α at times τ = π/2
and τ = π , respectively, corresponding to the grey vertical lines in plot (a). For small values of α and 	℘, that is the lower left corner, dcl is
maximized and close to unity, while it decreases for large values of α and 	℘ towards the upper right corner, that is, the evolution becomes
more classical. At the earlier time τ = π/2, the decrease is steep, while it is more gradual at the later time τ = π . Even if the distance is very
small at an earlier time, this does not mean that it will be small also for later times.

Wigner function and the classical distribution function differ
after some time, as seen in Fig. 4(a).

III. FEL GAIN

So far, we have only discussed the motion of the electron.
However, in an experiment we are mainly interested in the
dynamics of the laser field, which is why we investigate in the
following quantum effects of the FEL gain.

A. Small-signal limit

Inserting the expression from Eq. (B5) for W(1) into the
equation of motion (5) for the laser field, and averaging over
the phase θ yields a linear differential equation for ε which
can be straightforwardly solved. This solution reads [48]

ε(τ ) = exp [G(τ )] ∼= 1 + G(τ ) , (9)

where we have introduced the gain

G(τ ) ≡ −χτ 2

4

∞∑
m=0

(4α)−m

(2m + 1)!

∫
d℘ sinc2

(
℘τ

2

)
∂2m+1ρ(℘)

∂℘2m+1

(10)
of the laser field in the small-signal limit.

To derive analytical expressions we restrict ourselves to the
extreme cases of a cold and a warm electron beam [45] defined
by the limits 	℘τ � 1 and 	℘τ � 1, respectively. Making
the approximation ρ(℘) ∼= δ(℘ − ℘̄) leads us from Eq. (10) to
the FEL gain

Gcold(τ ) ∼= −χτ 3

4

∞∑
m=0

(ωrt )2m

(2m + 1)!

∂2m+1

∂x2m+1
sinc2

(
x

2

)∣∣∣∣
x=℘̄τ

(11)

for a cold beam, while the assumption sinc2(℘τ/2) ∼=
2πδ(℘)/τ yields the corresponding quantity

Gwarm(τ ) ∼= πχτρ(0)

2
√

2	℘

∞∑
m=0

(
h̄k√
2	p

)2m

(2m + 1)!
H2m+1

(
℘̄√
2	℘

)
(12)

in the warm-beam limit.
In contrast to the Wigner function and the warm-beam

case, the quantum corrections for a cold beam do not scale
with powers of h̄k/	p but instead with even powers of the
recoil parameter, defined as ωrt = τ/

√
4α. We note that the

relation

h̄k

	p
= 1

	℘τ
ωrt (13)

connects the three relevant parameters.
For a cold beam with 	℘τ � 1, the recoil parameter ωrt is

always smaller than the ratio of recoil and momentum spread,
that is ωrt � h̄k/	p. Hence, quantum effects apparent in
the Wigner function are washed out due to the averaging
for the FEL gain. In the opposing limit of a warm beam,
Eq. (13) predicts that h̄k/	p in turn is smaller than the
recoil parameter ωrt dominating the cold-beam limit, that is
h̄k/	p � ωrt due to 	℘τ � 1.

In Fig. 5, we compare the classical gain function to the one
including quantum corrections for a cold and a warm electron
beam, respectively. We observe the same qualitative behavior
in both cases, that is a slight shift of the positions for maxi-
mum and minimum gain and a decrease of its magnitude for
increasing values of the recoil parameter ωrt . However, while
moderate quantum corrections in the cold-beam case emerge
already for ωrt = 1, it is not until ωrt = 3 that they appear
for a warm beam and they remain small even for ωrt = 7.
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FIG. 5. Quantum corrections to the FEL gain: we have drawn the
small-signal gain for a cold (above), Eq. (11), and a warm electron
beam (below), Eq. (12), as functions of ℘̄τ = 2k p̄t/m and ℘̄/	℘ =
p̄/	p, respectively. In the cold-beam case, 	℘τ � 1 we compare
the classical gain (black line) to gain curves including the lowest-
order quantum corrections [m = 1 in Eq. (11)] for the values ωrt = 1
(blue, dotted line) and ωrt = 2 (red, dashed line), respectively, of
the recoil parameter ωrt . We observe that for increasing values of
ωrt the positions of minimum and maximum are slightly shifted
to the left and to the right, respectively, while their magnitude is
decreased. The behavior in the warm beam case with 	℘τ � 1, is
qualitatively similar. However, for our—already moderate—choice
of 	℘τ = 10 visible quantum effects [again in lowest order, that is
m = 1 in Eq. (12)] occur not until ωrt = 3 (blue, dotted line) and
are still quite small for ωrt = 7 (red, dashed line). Hence, quantum
corrections in the warm beam case are small in comparison to a cold
beam in accordance to Eq. (13). We conclude that a large momentum
spread suppresses quantum effects in the FEL gain.

Hence, quantum effects are suppressed for a warm beam in
comparison to a cold beam in accordance with Eq. (13).

We conclude that the averaging over all momenta as well as
a large momentum spread prevents the appearance of quantum
effects in the FEL gain, at least in the small-signal limit.

The expression in Eq. (11) is not a new result. It is in
principle the same formula derived by Madey and many
others [4–10]. For m = 0, we indeed recover from Eq. (11) the
classical result—Madey’s famous gain formula. In contrast to
these earlier works, our approach is not restricted to single-
photon processes but instead generalizes the procedure [5] for
the classical Boltzmann equation (3).

B. Longer times

It is possible to relate the gain of the laser field to the
change of the mean momentum of the electrons. Inserting the

quantum Liouville equation (1) into the time derivative of the
expectation value of the electron momentum and making use
of Eq. (5), we find

d〈℘̂〉
dτ

=
∫

dθ

∫
d℘ ℘

∂

∂τ
W(θ,℘; τ ) = − 1

χ

dε(τ )

dτ
,

after assuming ε(τ ) ∼= 1. Identifying the gain as the relative
change of the field in accordance with Eq. (9), we arrive at the
expression

G(τ ) = −χ〈℘̂(τ ) − ℘̂(0)〉. (14)

Having already calculated the Wigner function, this expres-
sion for the gain can easily be evaluated. The classical gain
can also be inferred from Eq. (14) with the help of the classical
distribution function fcl.

In Fig. 6, we plot the time evolution of the FEL gain,
obtained from Eq. (14) and the numerical solution of the
Wigner function. Because the gain vanishes for ℘̄ = 0, we
chose a nonzero initial mean momentum (℘̄ = 1.6 in the
plots).

For longer times, the gain does not increase monotonically,
but exhibits oscillations in a saturation regime. The classical
time evolution of the phase-space distribution yields a rotation
inside the separatrix, leading to an oscillating change of the
mean momentum and consequently also to the oscillations
of the gain. This behavior was for example discussed in
Ref. [45].

In Fig. 6, we do not present the case α � 1, since here the
gain shows a behavior completely different from the classical
description [49]. With increasing α the frequency of oscilla-
tion approaches the classical one such that the quantitative
differences between quantum and classical evolution become
less prominent and only appear at relatively large times, such
that both theories lead to a similar behavior of the gain.
This convergence becomes apparent in Figs. 6(a) and 6(b). A
larger 	℘ further reduces the difference between the two gain
curves.

In contrast to the phase-space distance dcl, which increases
rapidly in the beginning for an initially small momentum
spread, the classical and quantum gain resemble each other
very well for short times. We have seen this behavior al-
ready in the section above, where the quantum corrections
to the gain scaled asymptotically with ωrt = τ/

√
4α. The

good agreement between quantum and classical theory arises
from the fact that the gain depends on the change of mean
momentum, that is a quantity where the differences between
classical and Wigner distribution are averaged out, even if
they are as substantial as in Fig. 2(c), while the distance
takes all deviations into account. Further, we observe that the
quantum corrections become smaller for decreasing values of
1/(2

√
α	℘) = h̄k/	p.

IV. CONCLUSIONS

By comparing the time evolution of the Wigner function
and of the classical phase-space distribution in the low-
gain regime, we have analyzed the effects of the initial
momentum width 	℘ and the quantum parameter α. The
asymptotic treatment valid for the small-signal regime, that
is short times, allowed us to identify the critical quantity
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FIG. 6. Comparison of the FEL gain G as a function of the
dimensionless time τ computed with initial mean momentum ℘̄ =
1.6 and for different values of the quantum parameter α as well
as for narrow (	℘ = 0.1) and broad (	℘ = 2) initial momentum
distributions. The solid lines correspond to the result obtained from
the Wigner function, while the dotted ones are calculated from
the classical distribution function with the same initial state. The
latter curves feature oscillations around a saturation value with a
frequency based on the rotation period of the bounded trajectories
and are independent of α. For α = 1, as shown in (a), the results
from both theories are similar for short times, especially for the
wide momentum spread with h̄k/	p = 0.25, in contrast the narrow
momentum spread with h̄k/	p = 5.00. For α = 10, as shown in
(b), the quantum and classical behavior of the gain is qualitatively
very similar and agrees very well at least until the first maximum
is reached. Note the large value of h̄k/	p = 1.58 for 	℘ = 0.1 in
contrast to h̄k/	p = 0.08 for 	℘ = 2. The good agreement comes
from the fact that even substantial quantum features of the Wigner
function, see for instance Fig. 2(c), average out in the gain, since it is
obtained from the change of mean momentum. Further, we observe
that the point in time where the curves diverge appears later, when α

is increased.

h̄k/	p = 1/
(
2
√

α	℘
)

governing the transition from quan-
tum to classical. The numerical solution for longer interaction
times confirmed that neither the variation of 	℘ nor α by
themselves are sufficient to obtain matching dynamics of
the Wigner function and the classical distribution function,
but only the combination of both. Furthermore, we observe
always that, after sufficient time, both distributions differ due
to nonlinear effects imposed by the anharmonic potential.

For the FEL gain, the quantum effects are much less
prominent and hence hard to observe in comparison to the
Wigner function. At the highly relativistic electron energies of
an FEL, we cannot determine the Wigner function sufficiently
precisely from experiment. However, our theory is not limited
to this specific energy range and can also be applied to
electrons at lower energies. Other experimental situations, for

example Kapitza-Dirac [50], provide a more favorable basis
for the obvervation of the quantum to classical transition,
since here the momentum level structure and the oscillations
between the levels are experimentally resolvable [51–53].
There is even the possibility to reconstruct the Wigner func-
tion from measurement data [54].

To extend our model to the high-gain regime [55], a
many-electron description including a varying laser field be-
comes necessary. However, the quantum limit of the high-gain
regime also reduces to a system of two momenta for each
electron, such that the process is dominated by single-photon
transitions. The classical regime, for low- as well as for high-
gain FELs, differs from the quantum limit by the emission of
multiple photons per electron. In the high-gain regime, many
electrons simultaneously interact with the light fields, and thus
they may become entangled [3]. However, if we neglect these
quantum correlations between the individual electrons, the
high-gain regime mainly differs through an rapidly increasing
laser field from the low-gain limit. Hence, we expect that the
parameter h̄k/	p plays a similar role in both regimes.
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APPENDIX A: DERIVATION OF MODEL

In this Appendix, we derive our model for the FEL dynam-
ics in terms of the Wigner function. While we describe the
motion of the electron quantum mechanically, the laser field
is treated as a classical quantity in analogy to semiclassical
laser theory [56].

1. Pendulum Hamiltonian

The one-dimensional motion of an electron with mass m
and charge e in the FEL is dictated by the Hamiltonian [35]

Ĥ = p̂2

2m
+ e2

m
AL(ẑ, t ) AW(ẑ, t ) (A1)

with ẑ and p̂ being the position and the momentum operators
along the wiggler axis.

We assume that the vector potentials AL = ALex and AW =
AWex of the laser and the wiggler field, respectively, are lin-
early polarized perpendicular to the longitudinal axis. More-
over, we model their amplitudes as plane waves [33]

AL(z, t ) = EL(t )

ω
sin (ωt + φL(t ) − kz) and (A2)

AW(z, t ) = B0

k
cos (ωt + kz) , (A3)

where ω and k = ω/c denote the frequency and wave num-
ber, respectively, of the two counterpropagating fields, while
c gives the velocity of light. We consider the reference
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frame [29] where the frequencies of the two modes coincide
and thus the electron interacts with a standing light field.
For resonant interaction the electron motion in this frame
is always nonrelativistic [2] justifying the Hamiltonian in
Eq. (A1).

The amplitude and phase corresponding to the electric field
of the laser mode, EL = EL(t ) and φL = φL(t ), respectively,
are slowly varying with time. In contrast, we assume that the
corresponding quantities for the strong magnetic field of the
wiggler, B0 and φW ≡ 0, are constant.

By inserting the fields from Eqs. (A2) and (A3) into
Eq. (A1) and neglecting rapid oscillations with 2ω in a
rotating-wave-like approximation [45], we arrive at the pen-
dulum Hamiltonian [6,29]

Ĥ = p̂2

2m
+ U0 ε(t ) sin [2kẑ − φL(t )] (A4)

for the electron dynamics in the FEL. Here we have intro-
duced the amplitude

U0 ≡ e2E0B0

mck2

of the potential as well as the dimensionless electric field
ε(t ) ≡ EL(t )/E0 normalized with respect to the initial field
amplitude E0 ≡ EL(0) before the electrons enter the wiggler.
In the low-gain regime of FEL operation the value of ε is
always close to unity.

2. Laser field couples to electron current

In contrast to the quantized electron, we describe the
laser field as a classical quantity that evolves according to
Maxwell’s equations. Hereby we strongly follow the lines
of semiclassical laser theory [56]. The classical wave equa-
tion [57] (

∂2

∂z2
− 1

c2

∂2

∂t2

)
AL(z, t ) = μ0 jel(z, t ) (A5)

couples AL to the x component jel of the electron current with
μ0 denoting the vacuum permeability.

Inserting Eq. (A2) into Eq. (A5), projecting on the laser
mode, performing the slowly-varying phase and amplitude
approximation [35,56], and taking the imaginary part leads to
the equation of motion

d

dt
EL(t ) = − 1

2ε0
ReJL(t ) (A6)

for the laser amplitude that includes the vacuum permit-
tivity ε0 = 1/(c2μ0). We observe that only the Fourier
component

JL(t ) = ei[ωt+φL(t )] 2

Lz

∫ Lz

0
dz jel(z, t )e−ikz (A7)

of the current that corresponds to the laser mode appears
in the equation of motion, with Lz denoting the longitudi-
nal extend of the quantization volume. In the course of the
slowly-varying phase and amplitude approximation we have

neglected terms with ËL, φ̈L, φ̇LĖL, φ̇2
L, φ̇LJL, and J̇L in

accordance with Ref. [56].
Since the gradient of the electron wave function ψ =

ψ (z, t ) in x direction vanishes, we deduce that

jel(z, t ) ∼= − e2N

mLxLy
AW(z, t )|ψ (z, t )|2 (A8)

is the x component of a current that satisfies a continuity equa-
tion following from the Schrödinger equation of a charged
particle in the electromagnetic field. Here, N gives the number
of electrons in the bunch while Lx and Ly describe normaliza-
tion lengths. We note that we have neglected a contribution
with AL � AW.

By inserting Eq. (A8) into Eq. (A7) and neglecting a
rapidly oscillating term, we finally arrive from Eq. (A6) at the
equation of motion

d

dt
EL(t ) = e2B0nel

2ε0mk
〈cos [2kẑ − φL(t )]〉 (A9)

for the field amplitude coupling to the expectation value of
cos 2kẑ. Here we have introduced the initial density nel ≡
N/V of the electrons after identifying the quantization volume
V ≡ LxLyLz with the volume of the electron bunch.

3. Formulation with Wigner function

With the pendulum Hamiltonian for the dynamics of the
electron and the equation of motion for the laser amplitude we
have obtained the two important relations of our semiclassical
theory for the FEL. In order to illuminate the transition to a
purely classical theory [5], we introduce the Wigner represen-
tation [27]

W (z, p; t ) ≡ 1

2π h̄

∫
dζ 〈p − ζ/2|ρ̂(t )|p + ζ/2〉eiζ z/h̄

(A10)

for the density operator ρ̂ of an electron. This function de-
pends on the position z and its conjugate momentum p which
together form the Wigner phase space.

It is convenient to use the dimensionless variables

θ ≡ 2kz − φL(t ) − π

2
,

℘ ≡ p√
U0m

, and

τ ≡ 2k

√
U0

m
t,

which correspond to position, momentum, and time, respec-
tively. Accordingly, we write the Wigner function W =
W(θ,℘; τ ) in its dimensionless form, which, for the correct
normalization, includes the factor

√
U0m/(2k) in comparison

to W , that isW = √
U0m W/(2k).

With the help of the von Neumann equation

ih̄
d

dt
ρ̂(t ) = [Ĥ , ρ̂(t )]
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and the Hamiltonian from Eq. (A4) we derive the equation of
motion [20](

∂

∂τ
+℘

∂

∂θ

)
W(θ,℘; τ ) = −ε(τ )

√
α sin θ

×
[
W

(
θ,℘ + 1

2
√

α
; τ

)
−W

(
θ,℘ − 1

2
√

α
; τ

)]
(A11)

for the Wigner function also known as quantum Liouville
equation [27]. While the left-hand side of this equation corre-
sponds to the free motion of the electron, the right-hand side
emerges due to the periodic potential.

In the Wigner description of quantum mechanics, the ex-
pectation value of an observable is formed by weighting the
Weyl representation of the corresponding operator with the
Wigner function and integrating over phase space [27,28]. For
the expectation value in Eq. (A9) this procedure yields the
relation

d

dτ
ε(τ ) = −χ

∫
dθ

∫
d℘W(θ,℘; τ ) sin θ

for the dynamics of the dimensionless field amplitude ε with

χ ≡ nel

4kε0

√
cB0

E3/2
0

characterizing the coupling between field and electrons.

APPENDIX B: PERTURBATION THEORY

This Appendix is devoted to the solution of the quantum
Liouville equation by means of perturbation theory [25] which
is valid in the small-signal limit of FEL operation.

1. Structure of equation

We first cast Eq. (A11) into the form

L(0)W = L(1)W , (B1)

where we have defined the operators

L(0) ≡ ∂

∂τ
+℘

∂

∂θ
and

L(1) ≡ −ε(τ ) sin θ

∞∑
m=0

1

(2m + 1)!

1

(4α)m

∂2m+1

∂℘2m+1

for the free motion and the potential, respectively. By per-
forming a Taylor expansion of the shifted Wigner functions
in Eq. (A11) in powers of 1/(2

√
α) we identify L(1) as

differential operator containing infinitely many derivatives
with respect to momentum.

We interpret the right-hand side of Eq. (B1) as a perturba-
tion to the free motion and make the asymptotic expansion

W ∼=W(0) +W(1) +W(2) + · · ·
in analogy to Ref. [25]. By inserting this expansion into
Eq. (B1) we obtain the equations

L(0)W(0) = 0

and L(0)W(n) = L(1)W(n−1) (B2)

for zeroth and higher orders (n > 0), respectively, which we
solve iteratively.

2. Zeroth order

The equation in lowest order corresponds to a free particle
and is solved by

W(0)(θ,℘; τ ) =W(θ −℘τ,℘; 0) =W(θ,℘; 0) . (B3)

In our case, the lowest-order contribution of the asymptotic
expansion equals the initial distribution because it is indepen-
dent of θ according to Eq. (4).

3. First order

We now turn to the first-order calculations. The formal
solution of Eq. (B2) for n = 1 reads

W(1)(θ,℘; τ ) =
∫ τ

0
dτ ′

∫
dθ ′ G(θ, τ |θ ′, τ ′)L(1)W(0)(θ ′,℘; τ ′),

(B4)

where we have recalled from Ref. [25] the Green’s function

G(θ, τ |θ ′, τ ′) ≡ δ
[
θ − θ ′ −℘(τ − τ ′)

]
for the unperturbed quantum Liouville equation.

Inserting the lowest-order solutionW(0) from Eq. (B3) into
Eq. (B4) and evaluating the operators and integrals yields the
result

W(1)(θ,℘; τ ) =−ε(τ ) τ
cos (θ −℘τ ) − cos θ

℘τ

×
∞∑

m=0

1

(2m + 1)!

1

(4α)m

1

2π

∂2m+1ρ(℘)

∂℘2m+1

(B5)

for the first-order term W(1), which still contains infinitely
many derivatives of ρ. We note that we have treated the
relative field change ε as a constant in this procedure, that is
ε(τ ′) ∼= ε(τ ), in accordance with our low-gain approach.

The assumption that the initial momentum distribution ρ is
Gaussian with mean value ℘̄ and standard deviation 	℘ leads
to a series of Hermite polynomials of odd order. From this
series, we finally arrive at the closed expression

W(1)(θ,℘; τ ) = − ε(τ ) τ
cos (θ −℘τ ) − cos θ

℘τ

× 2
√

αe− 1
2

(
h̄k
	p

)2

sinh

(
h̄k

	p

℘ − ℘̄

	℘

)
1

2π
ρ(℘)

(B6)

forW(1) after using a generating function for Hermite poly-
nomials [58] as well as

(
4α 	℘2

)−1/2 = h̄k/	p.

4. Connection to classical theory

We briefly compare our results for the Wigner function to
classical FEL theory [5] in terms of the classical distribution
function fcl = fcl(θ,℘; τ ) in phase space. In the equation
of motion for fcl, we simply replace L(1) in the quantum
Liouville equation by L(1)

cl ≡ −ε(τ ) sin θ ∂
∂℘

and arrive at the
colissonless Boltzmann equation (3).
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Consequently, the procedure for finding a perturbative
solution of fcl is analogous to the approach for W in the
preceding section. For the same initial distribution, we thus
obtain the first-order contribution [59]

f (1)
cl (θ,℘; τ ) = −ε(τ ) τ

cos (θ −℘τ ) − cos θ

℘τ

H1(ξ )√
2	℘

ρ(℘)

2π

(B7)

for the classical distribution function with H1 denoting the
Hermite polynomial of first order evaluated at ξ ≡ (℘ − ℘̄)/(√

2	℘
)
.

By comparing Eqs. (B6) to (B7), we realize that the Wigner
function

W(1)(θ,℘; τ ) = f (1)
cl (θ,℘; τ )

[
1 + Q

(
℘ − ℘̄√

2	℘

)]

and the classical distribution just differ by a momentum-
dependent contribution Q. These “quantum corrections” are
given by the series

Q(ξ ) ≡
∞∑

m=1

1

(2m + 1)!

(
h̄k√
2	p

)2m H2m+1(ξ )

H1(ξ )

of Hermite polyniomials H2m+1 of odd order that arise from
the derivatives with respect to ℘ in Eq. (B5).

APPENDIX C: EXACT TIME EVOLUTION
OF THE WIGNER FUNCTION

Since the infinitely many derivatives in the quantum Liou-
ville equation (1) impede the solution in a closed form, we
resort to solving the Schrödinger equation. From the resulting
solutions, we can construct the time-evolution operator. We
then use this operator to obtain the time evolution of the
density operator from which the Wigner function is computed.

1. Schrödinger equation and Mathieu functions

At first, we determine the eigenfunctions and energy eigen-
values of the Hamiltonian (A4). They directly lead to the time
evolution of an arbitrary quantum state subject to the periodic
potential U0 cos θ .

We write the stationary Schrödinger equation in position
space with the dimensionless position θ and the quantum
parameter α and arrive at

− d2

dθ2
u(θ ) + 2α cos(θ )u(θ ) = Eu(θ ), (C1)

where we have introduced the dimensionless energy E scaled
in units of h̄ωr. This equation is known as Mathieu equa-
tion [60,61]. Due to the periodicity of the potential, we restrict
the range of θ to the interval [0, 2π ].

We use here only a subset of the solutions of Eq. (C1),
namely, the bounded Mathieu functions u(α, θ ) ≡ meν (α, θ ),
since the other solutions diverge for θ → ±∞ and hence do
not describe a physical quantum state. The functions meν are,
in general, not expressible in terms of standard functions and
are 2π/ν-pseudoperiodic. That is, they obey the relation

meν (α, θ + 2π ) = ei2πνmeν (α, θ ).

The parameter ν ∈ R is hence determined by the particular
choice of periodic boundary conditions [62]. Connected to
each solution is the characteristic value Eν (α), that is, the
eigenenergy of that state. By solving the time-dependent
Schrödinger equation, we find

uν (α, θ, τ ) = e−iEν (α)τ/(2
√

α)meν (α, θ ), (C2)

describing the time evolution of an energy eigenstate.
In order to attribute a physical meaning to the parameter

ν, we recall that the periodicity of a momentum eigenstate
is given by the De Brogli wavelength λDB = 2π h̄/p, which
translates in the dimensionless coordinates to 2π

√
α/℘ =

2π/ν. Hence, we identify the parameter ν of the Mathieu
functions as the initial momentum. Thus, the initial momen-
tum by itself determines the boundary conditions we have to
impose.

In order to explicitly find the solutions of Eq. (C1), we
exploit the periodicity of the potential with the help of Bloch
theory. Accordingly, the solutions can be represented in a
special form of Fourier series, given by

meν (α, θ ) = eiνθ

∞∑
r=−∞

cν
r (α)eirθ , (C3)

where the cν
r (α) denote the Fourier coefficients. Here the

series itself has the periodicity of the potential, while the
pseudoperiodicity is achieved only through the prefactor eiνθ .
For the sake of readability we will from now on suppress the
parameter α.

By inserting Eq. (C3) into the Schrödinger equation,
Eq. (C1), we obtain

[(ν + r)2 − Eν]cν
r + α

(
cν

r+1 + cν
r−1

) = 0, (C4)

which is an infinite set of coupled algebraic equations for the
coefficients cν

r . This representation is equivalent to an infinite-
dimensional matrix eigenvalue problem with the eigenvalues
Eν and eigenvectors cν . After truncation to finite dimension,
we solve the problem by numerical means [63]. Recursive
insertion of Eq. (C4) into itself leads to a continued fraction
expansion for the coefficients [60,64]. Not only can this be
used for the numerical computation, but it also is particularly
useful to derive asymptotic expressions for the limit α � 1.

Furthermore, the set {meν+r (α, θ )}∞r=−∞ forms a complete
basis of the Hilbert space. This allows us to introduce the
concise Dirac notation |rν〉, such that we have

〈θ |rν〉 = 1√
2π

meν+r (θ )

in position representation. It holds the orthonormality relation
〈rν |lν〉 = δrl , where δrl denotes the Kronecker delta, and the
completeness relation

∑∞
r=−∞ |rν〉〈rν | = 1. These properties

allow us to expand other functions in terms of Mathieu
functions.

In order to calculate the time evolution of a momen-
tum eigenstate, that is a plane wave with initial momentum
ν0 = ℘0/

√
α, we expand such a state in terms of the Math-

ieu functions. In this basis, we read off the time evolution
from Eq. (C2). A transformation back into the momentum
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representation yields

∣∣ψν0 (t )
〉 =

∞∑
s=−∞

Sν0
s (τ )|ν0 + s〉, (C5)

where we have introduced the scattering amplitude

Sν0
s (τ ) ≡

∞∑
n=−∞

cν0+n
−n cν0+n

s−n e−iEν0+nτ/(2
√

α). (C6)

This representation highlights that an initial momentum p0 =
2h̄kν0 is coupled only to other momenta p0 + s(2h̄k), which
are separated by multiples of the recoil momentum 2h̄k. In
the limit α � 1, most coefficients (except cν0

0 and cν0−n for
ν0 ≈ n

2 ∈ Z) vanish and the sums in Eqs. (C5) and (C6) can
be reduced to only a few terms. This procedure leads to Rabi
oscillations between momentum levels that dominate in the
quantum regime of the FEL [2].

In the next step we generalize Eq. (C5) by integrating over
all possible momenta as initial states. Thus we obtain the time-
evolution operator in momentum representation

Û (τ ) =
∫ ∞

−∞
dν

∞∑
s=−∞

Sν
s (τ )|ν + s〉〈ν|, (C7)

which can be applied to an arbitrary initial state.

2. Wigner function

We are now in the position to calculate the time evolution
of a quantum state in the Wigner representation. Here we

restrict ourselves to an initial state which is initially uniform
in space and hence fully determined by the initial momentum
distribution ρ(℘), see Eq. (4).

A similar approach to calculate the Wigner function has
been persued in Ref. [20], but not for mixed states. Other
attempts to use the Mathieu functions to obtain the Wigner
function of an electron in a periodic potential [65] do not
cover dynamics nor arbitrary momenta. In the context of the
FEL, Mathieu functions have been used to derive asymptotic
expressions for the FEL gain [13], but not in Wigner phase
space.

With the help of the time-evolution operator in Eq. (C7),
we obtain the time-evolved density operator

ρ̂(τ ) =
∫

d℘ ρ(℘) Û (τ )|℘〉〈℘|Û†(τ ).

By inserting this expression into the definition for the Wigner
representation of a density operator Eq. (A10), we find

W(θ,℘; τ ) =
√

α

π

∞∑
s=−∞

ws(θ,℘; τ ) ρ

(
℘ + s/2√

α

)

after performing all integrations. Here we absorbed one sum-
mation as well as the position dependence into the weighting
factors

ws(θ,℘; τ ) =
∞∑

s′=−∞
Sν

s′ (τ )
[
Sν

s−s′ (τ )
]∗

ei2θ (s′−s/2)
∣∣∣
ν=√

α℘+s/2
,

which we interpret as scattering amplitudes of the Wigner
function.
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