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Finite-length effects on cylindrical Langmuir probes

Sigvald Marholm 1,* and Richard Marchand 2,†

1Department of Physics, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo, Norway
2Department of Physics, University of Alberta, Edmonton AB, Canada T6G 2E1

(Received 8 July 2019; accepted 8 January 2020; published 8 April 2020)

Kinetic simulations are used to compute current characteristics of finite-length cylindrical probes, with
particular attention to end effects. Currents collected per unit lengths, as a function of distance to the ends, are
calculated and fitted to empirical analytic functions. These fits, in turn, can be interpolated and used to predict
probe characteristics; that is, collected current as a function of applied voltage, for a broad range of physical
parameters of relevance to laboratory and space plasma.
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I. INTRODUCTION

Langmuir probes are amongst the most widely used in-
struments in laboratory and space plasma experiments. They
work by exposing an electric conductor at a certain voltage to
a plasma, from which they then collect current. The current-
voltage characteristics of the probe depends on many physical
parameters, such as the electron density and temperature, the
ion composition and temperature(s), the plasma flow velocity,
the strength and direction of a magnetic flux density, exposure
to solar radiation, and the proximity to other objects. Other
parameters being known, and making use of a sufficiently
accurate theoretical or computational model, it is possible to
infer, for example, the plasma temperature and density, from
probe characteristics [1–7].

Langmuir probes come in a variety of shapes, accompanied
by analytical or empirical expressions for their characteristics,
and they are used in different operational modes depending
on what they are to measure. Of particular interest to us are
thin cylindrical Langmuir probes (needle probes). A current-
voltage characteristic for idealized infinite probes can be
derived analytically from orbital motionlimited (OML) the-
ory, which suggests these probes are particularly well suited
for electron density measurements [1,8,9]. Such probes are
already employed in numerous space missions, of which can
be mentioned the ICI [9] and ECOMA [10] sounding rockets,
the NorSat-1 satellite [11], as well as CubeSats in the QB50
network of small satellites [12].

OML theory makes several assumptions, amongst them
that the probe should be very thin, and very long compared to
the Debye length. Finite-radius effects were studied numer-
ically by Laframboise, and it is observed that the attracted-
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species current is virtually unaffected by these effects for
cylinders of radius up to one Debye length (see Table 6c
in [2]).

Finite-length effects, on the other hand, are a different
matter. Cylindrical Langmuir probes are often equipped with
a guard at one end, as illustrated in Fig. 1, which itself is at-
tached to a supporting body such as a spacecraft bus [3,5,12].
The guard is ideally an extension of the cylindrical probe,
having the same voltage as the probe, but being electrically
insulated from it such that the current collected by the guard
can be disregarded in the measurement. Edge effects due
to the mounting point are then supposed to only affect the
guard. Nevertheless, many practical probes still exhibit finite-
length effects, which degrades the accuracy of the inferred
plasma density, when based on the theory developed for an
infinitely long cylindrical probe. Increasing the probe length
will of course help, although there is an upper limit to what
is practical. Besides, the literature reports different results on
how long probes must be to overcome these effects, ranging
from about 10 to more than 50 Debye lengths [8,13–16].
Some of these references also attempt to find expressions for
the characteristics of the probes. However, present studies
on finite-length effects are limited to very specific ranges of

FIG. 1. Illustration of a Langmuir probe with guard mounted to
a carrier object, with possible current collected per unit length i(z)
along the probe and guard.
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probe lengths, plasma parameters and/or experimental setup,
which may explain the discrepancy between these studies;
one laboratory experiment is performed using a conducting
guard [13], the other with an insulating one [14]. Numerical
experiments and analytical results often disregard the guard
altogether, focusing on an idealized cylinder, possibly with
some discussion on the expected changes due to the guard
[8,15,16]. Clearly, there is a need for a more fundamental
understanding of finite-length effects in cylindrical Langmuir
probes.

In this paper, in order to better understand edge effects,
we investigate the attracted-species current per unit length,
i(z), as a function of the position z along a thin, cylindrical
probe with both ends free. This approach is widely applicable:
edge effects are clearly visible on i(z), which can be used
to evaluate how long a guard must be in order to mitigate
edge effects. Moreover, by integrating i(z) along the probe,
a current-voltage characteristic can be obtained, and used to
assess the applicability of the OML theory. If the probe has
a guard, edge effects can be removed from one end of the
function i(z). A natural next step, which is not pursued here,
would be to use the new characteristic to more accurately infer
plasma parameters, for new as well as existing missions with
available data. Through theoretical derivations and particle-
in-cell (PIC) simulations, we characterize the function i(z)
for thin, cylindrical probes of virtually arbitrary lengths, for
normalized voltages up to 100 . The plasma is assumed to be
collisionless, nonmagnetized, and nondrifting Maxwellian.

A possible application where the above conditions are
well satisfied is to Langmuir probes on-board satellites and
rockets at hundreds of kilometers altitude. In particular, we
are interested in multineedle Langmuir probes (m-NLPs) [9].
The geometrical extent of these probes, including the sheath,
is small enough compared to both the mean free path and
the gyroradius of both electrons and ions that the plasma can
be approximated as both collisionless and nonmagnetized,
at least to first approximation [9,13]. Moreover, the m-NLP
is operated exclusively at positive voltages with respect to
the background plasma, such that electrons are always the
attracted species and ions the repelled species. The plasma
is typically streaming towards a satellite at roughly the orbital
velocity of vd ≈ 8 km/s. However, this drift velocity is orders
of magnitude smaller than the thermal speed of the electrons,
which have a temperature in the order of 1000 K, and can
therefore be neglected. While space plasmas are usually not
in thermodynamic equilibrium, at mid latitudes, ionospheric
electrons are generally well described by Maxwellian velocity
distributions [17,18].

As for the ions, they also have a temperature in the order
of 1000 K, which leads to a thermal speed that is much less
than the drift velocity. However, it is easily demonstrated
that the ions contribute negligibly towards the total collected
current: a rough estimate of the ion current can be computed
as the flux of ions streaming through the perpendicular cross
section of the probe, Ii � 2rlqinivd , where r and l are the
radius and length of the probe, respectively, and qi and ni are
the charge and density of ions. The ions are singly charged
oxygen of the same density as the electrons. The “less than”
sign accounts for drift velocities not perpendicular to the
probe as well as ion repulsion leading to a smaller effective

cross section. For estimating the electron-to-ion current ratio
Ii/Ie, the electron current Ie may be approximated using OML
theory, which should at least be accurate enough for the sake
of this argument (in reality Ie will be somewhat larger than
predicted by OML theory). Ii/Ie is then in the order of 1%
for a probe voltage of 1 V. The ion current can therefore be
neglected, and the remaining electron current should be well
described by the attracted-species current under the assump-
tions used in this paper. It is also worth noting that while other
accurate instruments exists, the m-NLP offers exceptional
spatial resolution while on board high-speed vehicles due to
its high sampling frequency [9]. For satellites, the resolution
is in the order of 10 m. Efforts towards a better understanding
of such probes are therefore most relevant.

The remainder of the paper is organized as follows. Fol-
lowing a review of some background equations in Sec. II, the
theory is presented in Sec. III and the simulations characteriz-
ing i(z), in Sec. IV. Several applications are briefly discussed
in Sec. V, and finally the conclusion is given in Sec. VI.

II. BACKGROUND

It will be useful to briefly revisit OML theory [1]. Let
us assume a collisionless, nonmagnetized, and nondrifting
Maxwellian plasma with a species with charge q, mass m,
density n, and temperature T . For a probe situated in this
plasma with a voltage V with respect to the background, we
can define a normalized voltage

η = −qV

kT
, (1)

where k is Boltzmann’s constant. According to OML theory,
an infinite cylindrical probe would collect the following cur-
rent from an attracted species, i.e., when qV < 0 or η > 0 [1]:

IOML(η) = Ith

(
2√
π

√
η + exp(η) erfc(

√
η)

)
(2)

≈ Ith
2√
π

(1 + η)
1
2 , (3)

where the approximation on the second line is usually consid-
ered accurate for η � 2, and

Ith = qnvth√
2π

S (4)

is the current that would pass through the surface of the
probe due to random thermal particle motion if it were at
the same potential as the background plasma. vth = √

kT/m
is the thermal speed of the species, and S = 2πrl is the surface
area of the probe, with r and l being the probe radius and
length, respectively. For repelled species, i.e., when qV > 0
or η < 0, the current collected is given by [1]

Iret(η) = Ith exp(η). (5)

It is remarkable that this latter equation is in fact true regard-
less of the shape of the probe (given the correct surface area
S), including finite-length cylinders, and that the collected
current is distributed evenly on the probe’s surface [1]. We
shall therefore limit our study on finite-length cylinders to
the attracted-species current. For multiple species, the current
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TABLE I. Dimensions of relevant quantities. For example, the
current per length i is given in A1 m−1.

i V z l r q m n kT ε0

m −1 2 1 1 1 −3 2 −3
kg 1 1 1 −1
s 3 1 −2 4
A 1 1 1 2

collected according to OML theory is the sum of the currents
due to the different species.

III. THEORY

In the following, we are interested in determining the
attracted-species current i(z) per unit length along a cylin-
drical Langmuir probe of radius r and voltage V with re-
spect to the background plasma. z is the position along the
probe, which stretches from z = 0 to z = l . We assume an
attracted species to be collisionless, nonmagnetized, nondrift-
ing Maxwellian and uniform in the background. The species
is then fully described by its charge q, mass m, background
density n and thermal energy kT , where k is Boltzmann’s
constant and T the temperature. Moreover, since this is an
electrostatic problem, it is also reasonable to expect the vac-
uum permittivity ε0 to enter the equations. We also assume, as
in OML theory, that the current contributions due to different
species can simply be superposed linearly. This means that
the density and temperature of other species do not enter the
equations of our attracted-species current (other species may
well have different densities and temperatures). The attracted-
species current i per unit length can then be described through
a relation between all mentioned quantities:

F (i,V, z, l, r, q, m, n, kT, ε0) = 0. (6)

The physical dimensions of the variables in this relation is
given in Table I. Since this forms a 4 × 10 matrix of rank 4,
according to Buckingham’s π theorem [19], [20, pp. 22–26],
the above relation can be written as a relation between
10 − 4 = 6 dimensionless variables, which can be chosen
freely as long as they are independent. We choose the nor-
malized lengths

z

λD
,

l

λD
,

r

λD
,

where λD =
√

ε0kT/q2n is the attracted-species Debye
length, the normalized voltage and current,

qV

kT
,

i

ith
,

where ith = Ith/l = qnr
√

2πkT/m, and finally, the plasma
parameter,

nλ3
D.

Equation (6) can thus be reduced to

G
(

i

ith
,

qV

kT
,

z

λD
,

l

λD
,

r

λD
, nλ3

D

)
= 0. (7)

We shall limit the discussion to thin probes, r/λD → 0, and
weakly coupled plasmas, nλ3

D → ∞, and can therefore dis-
regard the latter two variables. According to Laframboise [2]
the first assumption is well justified for infinitely long probes
when r/λD < 1. It is reasonable to assume that the same holds
for finite-length probes. Equation (7) can then be inverted with
respect to the first argument to yield

i(z) = ithG

(
z

λD
;

l

λD
,−qV

kT

)
, (8)

where G is a hitherto unknown function. Alternatively, one
can extract a factor from G, allowing the expression to be
rewritten as a modification to the OML theory,

i(z) = iOML g

(
z

λD
;

l

λD
,−qV

kT

)
, (9)

where iOML = IOML/l , and IOML is given by Eq. (2). We refer
to G and g as normalized current profile functions or just
profile functions, and while either can be used, we use g for
easier comparison with OML theory. Note that the use of g
do not rely on the correctness of OML theory, since the OML
current merely appear as a normalization. For convenience,
we introduce the following dimensionless variables:

ζ = z

λD
, λ = l

λD
, η = −qV

kT
. (10)

Given Eq. (9), the problem has been reduced from finding a
relation between all quantities in Eq. (6) to characterizing the
function g(ζ ; λ, η).

Before characterizing the profile function, we shall make
a few theoretical predictions on its shape. First, due to the
geometrical symmetry of the problem, it must be left-right
symmetric about the center of the probe, g(λ − ζ ) = g(ζ ).
Second, suppose the probe is lengthened until a section
emerges in the middle, from which the edges cannot be “seen.”
In this region g will necessarily be flat, and equal to the
value of an infinitely long probe. We can define this value
rigorously as

C(η) = lim
λ→∞

g(λ/2; λ, η). (11)

For our model to comply with OML theory, C should equal 1.
However, we do not enforce compliance with OML theory, but
instead treat C as a coefficient to be determined. This allows
the degree of compliance to be measured as the deviation of
C from 1. Third, when the flat region of g emerges, the edge
effects no longer overlap. That is, any point on g close enough
to either end to experience edge effects do not “see” the other
end, and as such is independent of the distance to it. As a
consequence, the shape of the edge effects near either end
remains the same as the probe is further extended to arbitrary
lengths.

IV. SIMULATIONS

The characterization of g(ζ ; λ, η) is constructed from sim-
ulation results obtained with PTETRA [21,22], an electrostatic
PIC code in which space is discretized with unstructured
tetrahedral cells. PTETRA records the current density through
the probe surface by counting the number of particles passing
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FIG. 2. (Bottom) Surface current density for a probe with λ =
5.63 and η = 25. The current through each facet is averaged with
a relaxation time of 1 μs. (Top) Data points (ζi, gi ) obtained from
the facet currents (gray dots), as well as a nonparametric local
regression (orange) and a parametric global regression through these
data points (blue). The barely visible yellow band shows a pointwise
99% confidence interval on the local regression.

each boundary facet every time step. An example of this
simulated surface current density can be seen in the lower
part of Fig. 2, which is for a probe with λ = 5.63 and η = 25.
This can then be used to infer g(ζ ; λ, η), as represented by a
curve fit, for these particular values of λ and η. In order to
fully characterize g, we have to do a sweep of simulations
for different values of λ and η. Interpolation of the fitting
coefficients is used to obtain g between the simulated values
of λ and η.

A. Simulation setup

We simulate a plasma consisting of two species, electrons
and singly charged ions. Both species are nonmagnetized,
nondrifting Maxwellian and have a density of 3.5 × 1011 m−3

and a temperature of 0.08 eV for all simulations, yielding an
electron Debye length of approximately 3.55 mm. Recall that
this arbitrary choice is by no means limiting, since g does not
depend upon density and temperature independently, but only
on its arguments ζ , λ and η.

Simulations have been run for probes of length (l) 2, 5, 10,
20, 30, 40, 80, 200, 400, 1000, 2000 mm and in each case,
for voltages (V ) 0.16, 0.48, 0.8, 1.36, 2, 2.56, 4, 6, 8 V, in
total 99 simulations. The lengths and voltages were chosen
heuristically to cover realistic probes, span a wide parameter
range, and have a finer representation in regions where the
fitting coefficients of g change more rapidly. Notice also that
for these voltages, the electron current is the attracted-species
current.

Since Laframboise [2] found finite-radius effects to be
negligible for radii up to the Debye length for infinite-length
cylinders, we have chosen a probe radius of 1 mm, well below
the Debye length. The cylindrical probe is centered inside a

cylindrical simulation domain of radius 40 mm and a length
extending 40 mm beyond the probe in the ±z directions. It
is important that the outer boundary be sufficiently far away
from the probe, since the potential is set to 0 V there (Dirichlet
boundary conditions). The mesh is generated using Gmsh
[23], with a resolution of 6 mm on the outer boundary and
0.2 mm on the probe surface. Extensive experiments were
carried out with different domain sizes and resolutions prior
to settling at these values, to ensure the results are as accurate
as practically possible.

PTETRA automatically computes a suitable time step that
resolves the plasma period, as well as being small enough
that a typical particle trajectory does not cross more than
one Voronoi cell in any given time step. The time step also
accounts for possible increases in particle energies and speeds
near objects biased to various potentials.

Whereas the profile function g—representing the attracted-
species current—should be independent of the mass of the
repelled species (ions), PTETRA does not discriminate species
when recording surface currents. It is therefore important that
we reduce the ion current in the simulations to an acceptably
low level by having sufficiently massive ions. We have chosen
to use an ion mass of 1 atomic mass units (hydrogen ions)
for η < 10, and a reduced mass of 1/16 atomic mass units
for η � 10, where the ions are more strongly repelled. Using
artificially low mass ions in the simulations has the advantage
of reducing the time needed to reach steady state, while
having a negligible effect on the collected currents. Indeed,
using OML theory as an order-of-magnitude estimate (see
Sec. II), the resulting repelled-species current should be less
than roughly 0.2% of the attracted-species currents. Whereas
we run the η < 10 simulations to 40 μs to reach a steady
state, the higher voltage simulations only need to run 10 μs
due to the lower ion mass, which is convenient, since these
simulations have a smaller time step to account for more
energetic electrons near the probe.

As is a standard practice in PIC simulations, we employ
simulation particles that correspond to multiple physical par-
ticles in order to reduce the cost of the simulations. In each
simulation, we prefill the domain uniformly with 50 million
simulation particles of each species, meaning that each sim-
ulation particle corresponds to between 2.9 and 73 physical
particles depending on the size of the domain (which depends
on the probe length). Experiments were also carried out with
different amounts of simulation particles to verify that these
values were indeed sufficient. It is also worth noting that the
current density through the probe is averaged with a relaxation
time of 1 μs according to the relaxation scheme in [21].

B. Selected results

An example from one of our simulations is shown in Fig. 2.
The lower part shows the probe surface, with the current
density through each facet. The current density at each facet
is then multiplied by 2πr to get current per unit length, and
then divided by iOML to get data points for the profile function
as indicated in the scatter plot. Currents from the circular
faces at the ends of the probe are excluded. Clearly, there is
a significant amount of particle noise which is not part of the
underlying profile function. From the dimensional argument
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FIG. 3. Local (orange) and global (blue) regressions for selected simulations. The yellow band is the pointwise 99% confidence interval of
the local regression. The vertical dashed lines indicate the position of the test-particle simulations.

in Sec. III, the profile function cannot vary on spatial scales
much smaller than the Debye length. To smooth out this noise
without making any assumption on the form of the profile
function (to perform a nonparametric regression), we use a
local quadratic regression with a Gaussian weighting window
[24, pp. 191–199]. The window has a standard deviation of
0.1 Debye lengths in order not to suppress actual variations in
the profile function. Local polynomial regression is superior
compared to for instance a moving average in that it does not
underestimate the slope near the edges. Note that we do not
employ the popular method for enhanced robustness described
in Ref. [25], since in our case this mostly treats higher-valued
datapoints as outliers, leading to a small negative bias in the
obtained profile function. The global regression also seen in
Fig. 2 will be explained in Sec. IV C

The barely visible yellow band in Fig. 2 is a pointwise 99%
confidence interval of the regression, created by performing
local regression on 2000 bootstrap datasets [24, pp. 249–250]
and taking the middle 99% as the confidence interval. Bear
in mind that this is only an estimate of the distribution of
data points mapped through the local regression operation.
It neither accounts for errors due to an incorrectly applied
window nor errors in the underlying PIC simulation.

Figure 3 shows the profile function for a selection of
probe lengths and voltages. The profile functions feature a
characteristic peak near each end of the probe, and the peaks’
magnitudes increases with increasing voltage (mind the axes).
For shorter probes, the peaks merge into one another, whereas
for longer probes, there is a flat mid-section which approaches
the value predicted by OML theory for an infinitely long
probe. The simulations with η = 2 exhibit more noise than
the other simulations, even after the local regression. This is

reasonable, given that a probe with a lower potential attracts
fewer electrons, i.e., collects less current, and that the signal-
to-shot noise ratio is proportional to the square root of the
current [26], [27, pp. 475–476].

VTK files with surface current densities are made publicly
available for all 99 probe simulations [28], as is the computer
program LOCALREG [29] used to perform local regressions.

The characteristic profile of g(ζ ) can be understood from
the velocity distribution of particles at selected points along
the cylinder. This is illustrated in Fig. 4 where cross sections
of the particle velocity distribution function f at the probe
surface (x = 0, y = 1 mm), are plotted at ζ = 0.56 and 11.25;
the former corresponding to the left peak in Fig. 3 (η =
2, λ = 22.51), and the latter, to the middle of the probe. These
positions are identified with two vertical lines in the third
panel from the left, in the third row in Fig. 3. The cross
sections, corresponding to the vx = 0 plane, was chosen so
as to illustrate the left-right asymmetry near the left end of the
probe. Distributions were calculated using Liouville’s theo-
rem for the one-particle distribution function in a collisionless
plasma, and particle backtracking [30]. The figure shows the
distribution function multiplied by the thermal speed to the
third power, f × v3

th, while the velocity coordinates vy and vz

are normalized to the thermal speed.
The peak in the collected current density at ζ = 0.56 is

consistent with the larger extent of the distribution function
for vz > 0, which in turn corresponds to particles coming from
the left and, for an infinite probe, would have been collected
farther to the left. Indeed, in that case, particles approaching
from the left with a velocity nearly parallel to the probe axis
would be collected to the left of ζ = 0. Moreover, particles
grazing the end of the probe from below can be deflected by
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(a)

(b)

FIG. 4. Velocity distribution for particles at the surface of the
probe (x = 0, y = 1 mm) for two positions along the z axis. The
top panel (ζ = 0.56) shows the distribution at the left maximum in
g, while the bottom panel (ζ = 11.25) shows the distribution in the
middle of the probe.

the attractive sheath electric field, and be collected at y = 1
mm near the edge, while with an infinite probe, they would
have been collected below the probe and to the left of ζ = 0.
The energization of particles collected at the probe is clearly
seen in Fig. 4. The background nondrifting Maxwellian elec-
tron distribution function assumed in the simulations has its
maximum at v = 0, and it is spherically symmetric in velocity
space. At the probe, all particles must have an energy of at
least ηkT = 0.16 eV, corresponding to a normalized speed
of 2. In particular, the maximum of the distribution function,
corresponding to particles at rest away from the probe, is
exactly at normalized speed of 2 in both figures, and it marks
the boundary between where f vanishes identically (v/vth <

2), and where it has nonzero values (v/vth � 2). In the upper
panel of Fig. 4, the extension to the right in the circle arc
boundary is due to particles coming from the left, that would
have been collected elsewhere in an infinitely long cylinder,
as explained above. In the lower panel, the boundary in f is
nearly straight at vy/vth = −2, but a close look reveals a small
upward curvature due to finite-length effects. In this case, with
the value of λ and η considered, it is possible for particles with
the right energy and grazing incidence coming from below on

either side, to be deflected by the sheath, and be collected at
the probe center. It should also be noted that the boundary
between f = 0 and f > 0 in the figure is not perfectly smooth
as one might expect analytically. This is due in part to the
discretization of f on a finite grid, and the discretization of
the cylinder in terms of triangular facets.

C. Curve fits

As mentioned in Sec. IV A, many more simulations (99 in
total) were made than illustrated in Sec. IV B. In all cases,
similar basic profiles were found as illustrated in Fig. 3.
With shorter probes, with small values of λ, there is strong
overlap between end effects, g(ζ ) has a single maximum at the
probe center, and a monotonic decrease toward the ends. As λ

increases, the characteristic central hump progressively splits,
leading to two humps that will remain near each end. It turns
out that the profile function, as indicated by the nonparametric
local regression in Fig. 3, can be parametrized rather well with
the following analytic expression:

g̃(ζ ) = C(1 + h̃(ζ ) + h̃(λ − ζ )), (12)

where

h̃(ζ ) = A(ζ − δ + α−1) exp(−αζ ). (13)

g̃(ζ ) is constructed so as to be left-right symmetric about the
probe center. In addition, each h̃ function describes the edge
effects due to one end, approaching zero far away from its
respective end. For long probes, δ is the distance from either
end to the peak in g̃ (this interpretation is the reason for
including the α−1 term). Further on, α relates to how fast the
edge effects decay when moving inwards from the peak and
A relates to the amplitude of the peaks, the amplitude being
Aα−1 exp(αδ). Due to the normalizations, all coefficients are
expected to be of order unity. The fitting coefficients C, A, α,
and δ are determined using a weighted nonlinear least squares
method, i.e., by minimizing the sum of weighted squared
residuals,

N∑
i=1

wi[gi − g̃(ζi )]
2, (14)

where (ζi, gi ) are the data points in the scatter plot, wi the
weight assigned to each data point and N the number of data
points/facets. As the probe lengthens, a decreasing fraction of
the data points will be within the peak region near the edges,
and if equal weights were used, the algorithm would fail to
capture the peaks near the edges for long probes with small
voltages. To correct this, at least half of the total weight is
spent on the Ne data points within 5 Debye lengths of either
edge. More precisely, if we is the weight of the Ne data points
within 5 Debye lengths of either edge, and wm is the weight of
the Nm remaining data points in the mid-section, the weights
satisfy the following equations:

N∑
i=1

wi = Nmwm + Newe = 1,

Newe = max

(
Ne

N
, 0.5

)
. (15)
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FIG. 5. Fitting coefficients of the expression Eq. (12) to the 99 probe simulations. Coefficients for λ < 3 are considered less reliable.

The max operator prevents we < wm for λ < 20 by making
the scheme reduce to a nonweighted least squares method.

The fitting coefficients are illustrated graphically in Fig. 5.
For λ > 3, the coefficients form more or less smooth surfaces,
which can then be used to do interpolation. For the three
shortest lengths, i.e., λ < 3, the coefficients are less well-
behaved. In addition, it was necessary to manually bound
some of the coefficients for these simulations, since there are
several minima in the sum of squared residuals. Coefficients
for λ < 3 should therefore be regarded as less reliable, and
used with caution.

Since the coefficients are determined independently for
each simulation, they are in effect functions of λ and η as
independent variables. It is interesting to observe that as λ

increases, however, all the fitting coefficients asymptotically
approaches a value dependent only on η. This is not a coinci-
dence; since each h̃ function describes the edge effects due to
one end, its shape will necessarily become independent of λ

for sufficiently long probes, when edge effects do not overlap,
as described in Sec. III. This happens at λ ∼ 300. It follows
that the coefficients can be extrapolated to arbitrary lengths,
by using the right-most values as the asymptotic values. The
model can thus be applied to probes of arbitrary length, all the
way down to below the Debye length.

As for the probe potential, we have simulated the range
η ∈ [2, 100]. It further follows from the definition of g and the
thermal current ith that g(ζ ; λ, 0) = 1 everywhere. This can be
represented in terms of the parametrization Eq. (12) by setting
C = 1 and A = 0. α and δ are not uniquely defined, but we
choose them as for η = 2 to provide for smooth interpolation,

and add data-points such as to make the grid of coefficients
rectangular and structured. With this, the model covers the
range η ∈ [0, 100]. For η < 0, Eq. (5) can be used.

Numerical values of the coefficients are included in the
dataset along with the VTK files [28]. Moreover, current
profiles and integrated total currents can be programmatically
accessed through the Langmuir library [31], in which we have
implemented linear interpolation between the coefficients, as
used for the remainder of this paper. We have also made use
of [32,33].

While it is visually evident from Fig. 3 that the
parametrization is quite good, it is of interest to quantify
the errors of the fits. However, due to the large particle noise,
the sum of squared residuals [Eq. (14)] is a large number and
is not representative of the statistical errors in the fits. The
coefficient of determination (often referred to as R2) is also
not suitable, due to the nonlinearity of the fit. Instead, we
report two measures. The first is the error in the total current
collected by the probe. The total current collected by the probe
can be computed from the fitted expression g̃ as

I =
∫ l

0
i(z) dz = iOML λD

∫ λ

0
g̃(ζ ) dζ . (16)

This current agrees with the total current collected by all
facets of the probe (excluding the circular end faces) within
0.4% for all 99 simulations. The smallness of the error ac-
cording to this measure is certainly desirable. Nonetheless, it
does not say much about how well the shape of g̃ matches
the true g. The second measure is therefore a relative L2 error
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norm against the local regression ḡ, defined as follows:√√√√
∫ λ

0 (g̃ − ḡ)2 dζ∫ λ

0 ḡ2 dζ
. (17)

The integrals were evaluated numerically using the mid-point
rule [34, p. 286] with a step-size 	ζ = 0.02. For the shortest
probes (2 mm), this error is up to 0.05 and the fit visibly
deviates from the local regression. For all other probes, the
error is below 0.03, and there are small visible deviations. It
should be understood that this error is not all in g̃, but also
includes leftover noise in the local regression ḡ that is more
effectively filtered out by g̃. The fact that the fits are so good,
while there is still some irregularities in the coefficients in
Fig. 5, indicate that the fits are not very sensitive to the exact
values of the coefficients.

It is also of interest to see how the model compares to
OML theory. Since g → C as λ → ∞ and C is between
1.00 and 1.05 for all η for the largest value of λ, our model
is within 5% of OML theory. The error is in part due to
inaccuracy in the PIC simulations, and in part, to the fitted
expression g̃’s inability to exactly match the flat, middle part
of g, as witnessed in Fig. 3. These errors are believed to be
roughly equal contributors, and as such the error of the PIC
simulations is believed to be accurate within a few percent.
Considering δ, when λ is sufficiently large and the peaks do
not merge together, the peaks are always roughly 1 Debye
length from the edges; a little more for the higher voltages,
and a little less for lower ones.

V. APPLICATIONS AND DISCUSSION

In this section, we briefly describe possible applications of
the results presented above.

A. Finite-length probe characteristics

It can be seen from Eq. (2) that the current collected by an
infinitely long cylindrical probe can be written as a power law:

I ∝ Ithη
β, (18)

with β = 0.5 for η 	 1. It turns out that this expression also
holds true for spherical probes but with β = 1 [1]. For this
reason, it has several times been assumed that this expression
will also hold for thin, finite-length cylindrical probes, ap-
proaching 0.5 as the length increases and 1 as it decreases and
the probe approaches the shape of a small grain [13,15,16].

With our model, we can compute the characteristics for
a probe by evaluating Eq. (16) for a sweep of voltages η ∈
[10, 100]. Figure 6 shows the characteristics obtained for five
different probe lengths. We remark that the interpolation is
not linear in I but in the coefficients, and that this may lead
to irregular behavior for short probes where the coefficients
changes more rapidly. This is seen for the case λ = 1. An
alternative approach could be to compute I on the grid of
(λ, η) values for which simulations were carried out, and then
interpolate I .

We also made a least squares curve fit to Eq. (18) in order
to test the power-law hypothesis, as indicated by dotted lines.
The estimated β values are also shown in the figure. It is clear

FIG. 6. Characteristics for probes of varying lengths, and es-
timated β coefficient. Note that the characteristics are in effect
normalized by length since Ith includes the length [see Eq. (4)].

that the power law is indeed a very good approximation, and
moreover, that β behaves as expected. One should remember,
however, that for a practical probe β is not constant. As
the density and temperature vary, the probe length-to-Debye
length λ changes, and β is a function of λ. Recall also that
the current collected by the circular end faces is not included
in the integrated expression, and that this may change the
characteristics for the shortest probes somewhat.

B. Guarded probes

Until now, we have mainly been concerned with probes
with both ends free. The current collected near the end will
certainly be altered in a nontrivial way when the probe is
attached to some other, arbitrary object. To get a more pre-
dictable behavior, it is customary to use a “guard” which
should ideally be an extension of the cylindrical probe, and
which often has the same potential as the probe but is not in
direct contact with it, such that the current collected by the
guard can be excluded from measurements [3,5,12]. This is
believed to eliminate end effects near the guard. In practice,
the guard usually has a slightly larger radius, and there is an
insulating transition in-between the guard and the probe, but
these differences are kept as small as possible such that they
can be ignored, at least to first approximation.

There are two ways of accounting for a guard with our
model. The first approach is to let λ = λg + λp where λg is the
length of the guard, and λp is the length of the actual probe.
The current collected by the probe can then be computed
similarly as in Eq. (16), except that the integration should start
at a lower limit λg. Figure 7 shows the current profile for a
probe with λp = 30 and η = 10 both without a guard (λg = 0)
and with a finite-length guard with λg = 5. The dotted lines
indicate the part excluded from the integration. Notice also
that the profile function g̃ (or even just the h̃ part of it) can be
used as a first approximation on how long the guard must be
in order to suppress edge effects to a certain level.
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FIG. 7. Current profiles for probes with and without guard, for
λp = 30 and η = 10.

We emphasize, however, that the dotted line for λg = 5
is not representative for the actual current profile throughout
the guard, since the leftmost end of the guard is not free but
instead attached to some other carrier object, probably with
another voltage, as indicated in Fig. 1. This alters the current
profile, possibly also extending the edge effects, especially
if the voltage difference is large between the probe and the
carrier. If significant edge effects from the carrier object
extends into the probe, the model presented herein may no
longer apply. It is therefore important to have a sufficiently
long guard, which leads us to the second method of accounting
for a guard.

If we define an ideal guard as one which lets no edge effects
extend into the probe whatsoever, the end effects may be
eliminated from the profile function by removing the second
term h̃(ζ ) from Eq. (12), and use the fitting coefficients for a
very long probe. This is, in fact, the same as letting λg → ∞,
and is also illustrated in Fig. 7. This approach will not include
trace edge effects for a nonideal guard, which in any case, may
not be representative.

As in Sec. V A, this has been evaluated for a sweep of
voltages η ∈ [10, 100], and used to estimate the β parameter,
as indicated in the figure. The guard is seen to lower β a bit
compared to a free probe, but not by much. β is similar for the
two approaches of including a guard, to within the accuracy
of the model. Our results support previous findings [14,16]
that cylindrical Langmuir probes must be much more than ten
Debye lengths in order to make end effects negligible, even
with an ideal guard. Too short a guard may have nontrivial
effects on the characteristics, and β in particular, and is not
covered by our model.

C. Inferring plasma parameters

Langmuir probes are used to infer plasma parameters
such as the electron density by inverting the current-voltage
characteristics for a set of measured currents at known bias
voltages with respect to for instance a spacecraft or a rocket
[1,2,9,13]. As an example, several recent space missions have
used the fixed-bias m-NLP instrument [9–12], where a few
cylindrical probes at different, positive voltages are used to
measure dI2/dV , and OML theory is used to make predictions
on the electron density. According to OML theory, dI2/dV is

proportional to the electron density, and independent of other
unknowns, such as ion density, electron and ion temperatures,
and the floating potential. However, if an inaccurate current-
voltage characteristic is assumed, for instance neglecting
finite-length effects, it will necessarily lead to errors in the
measurements. Using a more accurate, finite-length character-
istic should alleviate these errors. While this is left as a future
study, two ways of doing this are envisaged.

Consider a set of measured currents {Ip} collected by
probes p with known voltages {V0p} with respect to some
common ground, i.e., the unknown floating potential V0 of
a spacecraft. In addition to the voltage, the probe current
can be considered a function of plasma parameters such as
the electron density and temperature, I (V0 + V0p; n, T ). One
may then find the parameters (n, T,V0) by minimizing the
mean squared deviation between measured currents Ip and
model predictions I (V0 + V0p; n, T ) for all p. This requires the
problem to have a unique solution. In particular, the character-
istic must be sufficiently sensitive to all parameters involved.
Similar methods have been considered where an analytical
expression is available for I (V0 + V0p; n, T ) [13,16,35], but we
remark that the method may be feasible even without one. It is
sufficient for minimization algorithms to have a single callable
function, and this function may very well interpolate between
coefficients internally.

It may be difficult to arrive at a sufficiently robust and
efficient inference algorithm by means of minimization. A
promising alternative, avoiding the inversion problem alto-
gether, is to use the measured currents {Ip} as an input to a
machine learning network or multivariate kriging regression,
which is trained to predict plasma parameters such as the
density. Such an approach has already been investigated for
synthetic data [36]. For further studies along these lines, it
would be natural to do comparisons with existing analysis
techniques on real data.

It should also be remembered that a cylindrical probe
attached to a low Earth orbit satellite moving with velocity
vd through a geomagnetic flux density B would be affected by
an induced motional potential gradient vd × B, that would in
particular deteriorate measurements by long probes [5]. This
variation of potential would have a similar “energy smearing”
effect as probe contamination. For example, assuming an
orbital speed vd ≈ 7500 m/s, a magnetic flux density B ≈
35 μT, the motional potential gradient would be ∼0.26 V/m.
For a cylindrical probe of length 5 cm oriented perpendicu-
larly to B, however, this would amount to a potential smearing
on a given probe of approximately 13 mV, which is small
compared to typical probe bias voltages. On the other hand,
if multiple fixed bias and well separated probes are used on
a given satellite, depending on the distance between probes
and their relative orientations with respect to B, the motional
potential differerence between probes could be significant,
and would have to be accounted for in processing probe data.

VI. CONCLUSION

Collected current profiles along thin finite-length cylin-
drical probes have been studied with a particular attention
to end effects. Making use of Buckingham’s π theorem, the
current profile along a probe was shown to depend on only five
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independent dimensionless parameters. By limiting our atten-
tion to probes with a radius smaller than the attracted-species
Debye length λD, and assuming a large plasma parameter,
nλ3

D 	 1, the number of dimensionless parameters was re-
duced from five to three, consisting of the normalized position
along the cylinder ζ = z/λD, the normalized probe length λ =
l/λD, and the normalized probe potential η = −qV/kT with
respect to background plasma. Simulations have been made
to cover a broad range of parameters relevant to probes used
on many recent satellites deployed in ionospheric plasmas
[11,12]. Based on kinetic simulation results for the normalized
current collected per unit length g(ζ ), as a function of the nor-
malized axial position ζ , it was possible to construct accurate
empirical fits involving coefficients that can be interpolated in
parameter space, in order to predict magnitudes and profiles
of collected currents for arbitrary values ζ , λ, and η within
the range of parameters considered. The empirical formula
derived, along with the fitted parameters have also been found
to predict total collected currents with excellent accuracy.
Our main result is the quantification and parametrization of
the current collected from the attracted species along thin
finite-length cylindrical probes. The reported parametrization
can be interpolated and used to calculate current collected
by positive, fixed-bias multineedle Langmuir probes used on
several satellites. For short probes, the overlap between this
enhancement at the two ends, leads to a single maximum in
g(ζ ). As the normalized length of a probe increases however,
the two end effects separate, and g(ζ ) exhibits a distinctive
two-hump profile, with maxima approximately one Debye
length from either end. For long probes, sufficiently far from
these maxima, the collected current per unit length accurately
reproduces currents reported by Laframboise [2]. We show
that for sufficiently large voltages (η = −qV/kT > 10), the
current collected by a thin probe does scale approximately
as ηβ . For probes of practical lengths in ionospheric plasma
conditions however, we find that β is typically larger than
the 0.5 value predicted with OML theory, for an infinite
probe. This has implications, for example, in the proposed
use of fixed-bias needle probes on satellites to infer plasma
electron density independently of the temperature [9]. Indeed,
referring to Eq. (18), it can be seen that with 0.5 < β <

1, the derivative of I2 with respect to V is proportional to
n2V 2β−1/T 2β−1, and with β > 0.5, this derivative depends
on density, the temperature, as well as on the probe voltage.
The inference of the density based on the OML β = 0.5
must therefore lead to discrepancies at levels depending on
these three parameters. Extending our analysis to correct this
predicament is beyond the scope of the present study, but
we believe that the characterization of finite-length probe
characteristics presented here provides the needed tools to
better interpret fixed-bias multi-needle probe measurements
in terms of plasma density and temperature.

We note in closing that our analysis was based on several
simplifying assumptions, and that we recognize that it does

not answer all questions concerning current collection with
a cylindrical probe. It was assumed that finite-radius effects
were negligible for radii less than the Debye length, which
must according to Laframboise be the case in the middle of
long probes [2]. A secondary finite-radius effect may, how-
ever, still exist within a few radii of either end. Considering
space applications, the assumption of a Maxwellian back-
ground distribution for electrons is well justified by the fact
that mid latitude ionospheric plasma is sufficiently collisional
for the electron distribution to be near Maxwellian. The ne-
glect of a drift electron velocity is also justified by the fact that
the electron thermal speed is generally much larger than the
ram speed of low Earth orbit (LEO) satellites and ionospheric
winds. As for the zero magnetic flux density, with ionospheric
electron thermal Larmor radii of order of a few centimeters,
geomagnetic flux densities will likely affect current character-
istics and collected current profiles. In addition, as pointed out
by Brace [5], a cylindrical probe attached to a low Earth orbit
satellite moving through a geomagnetic flux density would be
affected by an induced motional potential gradient leading to
“energy smearing.” In future work our analysis analysis could
be repeated with a magnetic flux density included. It would
then become considerably more complex, as two nontrivial
parameters consisting of the magnitude of the magnetic flux
density, and angle with respect to the probe axis, would have
to be taken into account. Buckingham’s π theorem would then
lead to i(z) depending on five parameters, instead of the three
in Eq. (9). Kinetic simulations covering a broad range of rel-
evant parameter space would then be significantly more com-
puter intensive. This could be carried out for specific missions
operating in restricted space environment conditions. This
work should be considered in future studies. Additional com-
plexities could be considered, such at those associated with
the proximity of other satellite components and their detailed
geometry, but detailed analyses of such cases should be made
for specific missions, well ahead of deployment in space.
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