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Competing orders and unconventional criticality in the Su-Schrieffer-Heeger model
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The phase diagram of the one-dimensional Su-Schrieffer-Heeger model of spinless fermions coupled to
quantum phonons is determined by quantum Monte Carlo simulations and differs significantly from previous
work. In addition to Luttinger liquid and bond-order-wave (BOW) phases, we find an extended charge-density-
wave (CDW) phase. Because of different broken symmetries, BOW and CDW phases are connected by a
retardation-driven phase transition. Our results are consistent with the theory of the frustrated XXZ chain,
including unconventional power-law exponents at criticality, and with an interpretation in terms of deconfined
quantum criticality via proliferation of solitons.
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I. INTRODUCTION

The rich phase diagrams of, e.g., dichalcogenides [1] or
cuprates [2], motivate fundamental investigations of com-
peting orders in strongly correlated quantum systems. Mo-
tivated by the significant complexity of real materials and
justified by the concept of universality, most theoretical work
is based on minimal and hence tractable models. Dirac sys-
tems are a recent focus [3–9]. The existence of two or
more ordered phases also provides a route to study non-
Landau deconfined quantum critical points (DQCPs), for
which topological excitations of the order parameters play
a central role [10]. For recent progress, see Refs. [9,11–
18]. Different orders can arise either from different interac-
tions or from local and nonlocal components of the same
Coulomb interaction [19]. The intricacy of such problems is
reflected, e.g., in the debates surrounding the complex phase
diagrams of extended Hubbard models on one-dimensional
(1D) chains and 2D honeycomb lattices; see Refs. [20,21]
for reviews.

Retardation effects, which are negligible for Coulomb
interactions, play a fundamental role in the context of
electron-phonon coupling. As is known from the theory of
superconductivity [22], phonon-mediated interactions have
attractive and repulsive components. However, for a commen-
surate band filling, the different electron-phonon couplings
are commonly associated with only a single type of order
each. A charge-density-wave (CDW) state with a modulated
electron site density follows from a Holstein coupling and
is observed in molecular crystals [23]. A bond-order-wave
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(BOW) state with a dimerized kinetic energy emerges from a
Su-Schrieffer-Heeger (SSH) coupling and is realized in conju-
gated polymers [23]. Both orders are illustrated in Fig. 1 for a
1D chain.

The SSH model [24] describes electrons coupled to quan-
tum phonons. Originally introduced to study topological soli-
tons in conjugated polymers [24], SSH models also have close
relations with field theories of Dirac fermions [25]. The mean-
field SSH model provides an important platform to explore in-
teraction and nonequilibrium effects on 1D topological phases
[26–32]. Novel experimental realizations include cold atoms
[33] and resistor networks [34].

Despite the fundamental role of the SSH model, the re-
tarded nature and momentum dependence of the phonon-
mediated electron-electron interaction have so far prohibited
a detailed understanding. Compared to simpler models of
spins or fermions, theoretical and numerical approaches to
electron-phonon problems face significant challenges [20].
Motivated by this situation, we explore the full phase di-
agram of the 1D spinless SSH model by quantum Monte
Carlo (QMC) simulations, and we find important devia-
tions from existing work and rich, previously undiscovered
physics. We demonstrate the existence of not one [35] but
two dimerized phases upon variation of the phonon frequency
ω0: the familiar BOW Peierls phase with dimerized hop-
ping and an extended CDW phase. This raises the central
question of the nature of the BOW-CDW phase transition,
which is entirely beyond the usual adiabatic and antiadiabatic
approximations. Our findings, most notably unconventional
exponents at criticality, are consistent with a field theory
previously developed for frustrated spin chains [36]. They
also establish 1D DQCP physics [16] in an electron-phonon
model.

The paper is organized as follows. In Sec. II we define the
SSH model and discuss its exact limits, in Sec. III we present
our QMC results, in Sec. IV we discuss our results, and in
Sec. V we conclude. The Appendixes contain details on the
QMC method and additional data.
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FIG. 1. Phase diagram of the SSH model (1) as a function of
inverse phonon frequency and electron-phonon coupling from QMC
simulations. Insets illustrate CDW/BOW order, A/B sublattices, and
inversion around the central bond.

II. MODEL AND EXACT LIMITS

The Hamiltonian of the SSH model [24,37],

Ĥ = −t
∑

b

B̂b + g
∑

b

B̂bQ̂b + Ĥph, (1)

with B̂b = ĉ†i(b)ĉ j(b) + ĉ†j(b)ĉi(b) acting on bond b between

sites i and j = i + 1 and Ĥph = ∑
b ( 1

2M P̂2
b + K

2 Q̂2
b), describes

spinless fermions coupled to optical bond phonons with mo-
mentum P̂b, displacement Q̂b, and frequency ω0 = √

K/M.
For the present case of a half-filled band (〈n̂i〉 = 〈ĉ†i ĉi 〉 =
0.5), numerics [38,39] and field theory [35] suggest the same
physics for optical phonons—which preclude a QMC sign
problem—and the original acoustic phonons [24]. After in-
tegrating out the phonons, the partition function contains the
retarded interaction

Sret = −λt

2

∫∫ β

0
dτ dτ ′ ∑

b

Bb(τ )P(τ − τ ′)Bb(τ ′). (2)

The free phonon propagator P(τ ) is local in space, but its
decay in imaginary time τ (here, β = 1/T ) is determined by
ω0, with P(τ ) ∼ e−ω0τ . The associated retardation effects are
crucial for the phase diagram in Fig. 1. We use the coupling
λ = g2/Kt and set h̄ = kB = 1.

For ω0 = 0, corresponding to classical phonons, mean-
field theory is exact at T = 0. Replacing Q̂b with 〈Q̂b〉 =
(−1)b�/g in Eq. (1) yields the fermionic hopping term Ĥ0 =
−∑

b[t + (−1)b�]B̂b. The Peierls argument [40] implies that
the bond dimerization � is nonzero for any λ > 0 and opens
a gap at the Fermi level. Quantum lattice fluctuations can
destroy long-range order at sufficiently weak coupling and
thereby allow for a Luttinger liquid (LL) to BOW quantum
phase transition (QPT) at a finite λc(ω0) [35,38,41]. An exact
solution (by the Bethe ansatz) is also possible in the opposite,
antiadiabatic limit. For ω0 → ∞, the interaction (2) becomes
instantaneous and Eq. (1) maps to the t-V model Ĥ∞ =
−t

∑
b B̂b + V

∑
i n̂in̂i+1 with V = λ [35] and an LL-CDW

QPT at Vc/t = λc = 2 [42].
BOW and CDW states, illustrated in Fig. 1, spontaneously

break translation symmetry and are described by Ising
order parameters that reflect the two possible BOW (CDW)
dimerization patterns related by a shift by one lattice constant.
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FIG. 2. Real-space charge (α = ρ) and bond (α = b) correlation
functions. Here, L = 322, βt = 2L, and x = L sin (πr/L).

The discrete Ising symmetry permits long-range order at T =
0. CDW and BOW states can be distinguished by point group
symmetries. CDW order breaks bond inversion symmetry
but preserves invariance under site inversion; see Fig. 1. The
opposite is true for the BOW phase. Given the different broken
symmetries, a phase transition is expected between ω0 = 0
and ω0 = ∞. In contrast, the influential Ref. [35] suggests a
single dimerized phase mainly based on a continuum theory,
details and extensions of which are discussed below. Similar
conclusions were reached by (functional) RG calculations
[41,43] and for related spin-phonon models [41,44–46].
A nonadiabatic mean-field approach yields BOW and
CDW phases even for large ω0 [47]. These findings differ
significantly from our results. Finally, the choice of spinless
fermions is motivated by the absence of a LL phase [20] and
only one symmetry-broken (BOW) phase in the spinful case;
at small t/ω0, critical spin correlations are expected.

III. RESULTS

Our simulations were made possible by using a state-of-
the-art QMC method based on the stochastic series expan-
sion [48] and directed-loop updates [49]. The performance
gain from extending the latter to retarded interactions [50]
is essential to explore the phase diagram of the SSH model.
The method has only statistical errors, and relevant technical
details are summarized in Appendix A. Results were obtained
for periodic chains of L sites, and for inverse temperatures
βt = 2L representative of T = 0.

A. Identification of the different phases

The three distinct regimes in Fig. 1 are revealed by the real-
space correlation functions. Figure 2 shows the charge (ρ) and
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FIG. 3. Charge stiffness Dρ along a continuous path through the
phase diagram in Fig. 1 which captures (a) the LL-CDW transition
at t/ω0 = 1/10, (b) the CDW-BOW transition at λ = 6, and (c) the
BOW-LL transition at t/ω0 = 1/3. Dρ (L) is nonzero for L → ∞ in
the metallic LL phase and at the CDW-BOW transition point.

bond (b) correlators

Cρ (r) = 〈(n̂r − 〈n̂r〉)(n̂0 − 〈n0〉)〉,
Cb(r) = 〈(B̂r − 〈B̂r〉)(B̂0 − 〈B̂0〉)〉. (3)

Only positive values are visible in the logarithmic represen-
tation. Using the conformal distance x = L sin (πr/L) mini-
mizes the effects of the periodic boundaries. For t/ω0 = 1/3
and λ = 2 [Fig. 2(a)], both exhibit a power-law decay of
q = 2kF correlations described by the LL expressions for 1D
metals [51],

Cρ (r) = − Kρ

2π2r2
+ Aρ

r2Kρ
cos(2kFr),

Cb(r) = Ab

r2Kρ
cos(2kFr), (4)

with Kρ ≈ 0.61. At λ = 4, corresponding to the BOW phase
in Fig. 1, the saturation of Cb(x) at large x and the exponential
decay of Cρ (x) are consistent with long-range bond order.
In the nonadiabatic regime [t/ω0 = 1/10, Fig. 2(b)], we find
behavior consistent with a LL at λ = 2 and long-range CDW
order at λ = 5.

A general diagnostic to distinguish metallic and insulating
1D phases is the charge stiffness

Dρ = L
∂2E (φ)

∂φ2

∣∣∣∣
φ=0

, (5)

which measures the response of the system—via the ground-
state energy E—to a magnetic flux φ [52]. In our simula-
tions, it can be obtained from the estimator of the superfluid
stiffness at low enough temperatures; see Appendix B. For
L → ∞, the charge stiffness is nonzero (zero) in metallic
(insulating) phases [53,54]. To illustrate the topology of the
phase diagram, we show in Fig. 3 the stiffness Dρ (L) along
a continuous path in parameter space: (a) we first increase
λ from 1 to 6 at fixed t/ω0 = 1/10, (b) then we tune t/ω0

from 1/10 to 1/3 at fixed λ = 6, and (c) finally we decrease
λ again from 6 to 1 at fixed t/ω0 = 1/3. In accordance
with Fig. 1, Dρ (L) remains nonzero for λ < 3 (LL phase)
and clearly vanishes for L → ∞ for λ � 4 (CDW phase)
at fixed t/ω0 = 1/10; see Fig. 3(a). The determination of
critical values and the finite-size scaling at and near λc (λc ≈ 3
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FIG. 4. (a) Finite-size scaling of the charge stiffness for the case
of t/ω0 = 1/10. (b)–(e) Reduced χ 2 for fits of Dρ (L) to Eq. (6) for
different values of t/ω0. As explained in the text, the minima provide
estimates for critical values.

according to Fig. 1) will be discussed in detail below [see
also Fig. 4(a)]. Similar behavior is observed in Fig. 3(c) for
the LL-BOW transition at t/ω0 = 1/3. Remarkably, at fixed
λ = 6, the stiffness converges to a nonzero value only at
intermediate t/ω0; see Fig. 3(b). It is shown in Appendix
C 1 that the peak in Dρ (L) narrows with increasing λ but its
maximum value remains finite. Naively, one would assume
that the insulating BOW and CDW phases are separated by
an extended metallic region. However, numerical results and
field-theory arguments discussed below provide evidence for
a metallic line separating the ordered phases, as suggested by
Fig. 1.

B. Finite-size scaling of the charge stiffness

To obtain the LL-BOW and LL-CDW critical values in
Fig. 1, we analyzed the finite-size scaling of Dρ (L); see
Fig. 4(a). For 1D metal-insulator transitions, a renormali-
zation-group (RG) analysis of umklapp interactions predicts
numerically challenging Berezinskii-Kosterlitz-Thouless
(BKT) scaling with a critical value Kρ = 1/2 [51]. This
scenario has been explicitly confirmed for t/ω0 = 0 [42].
Interestingly, a functional RG study of the SSH model
[41] reported unconventional BKT physics with Kρ < 1/2.
Large-scale simulations of classical frustrated 2D XY
models [55,56]—relevant due to the usual quantum-classical
mapping and a connection between retardation and frustration
explained below—indicate a standard BKT transition [55,57]
(see, however, Ref. [58]), albeit with challenging crossover
phenomena.

The RG calculations predict a characteristic logarithmic
scaling exactly at a critical point due to marginally relevant
operators. To first order [59],

Dρ (L)

Dρ (∞)
= 1 + g

2 ln L + C
. (6)
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FIG. 5. Results for the BOW-CDW transition at λ = 6. The
saturation with system size of (a) the charge stiffness and (b) the LL
parameter indicates metallic behavior near t/ω0 = 1/6. The latter
is reflected in the power-law decay of real-space charge and bond
correlations with the same exponent η = 2Kρ ≈ 0.79 (solid black
lines) in (c),(e) observed at fixed L = 322. The exponent η also
describes the scaling of the staggered charge/bond susceptibilities
χρ/b(π )/L ∼ L1−η in (d),(f). Here, keys apply left and right. Data for
L = 322 are absent in (a) because converged results for Dρ are more
challenging to obtain than for Kρ .

As demonstrated before for 2D classical XY models [59,60]
and 1D quantum models [61,62], critical values can be
extracted by fitting the stiffness data to Eq. (6), treating the
jump Dρ (∞) [63] as well as g and C as parameters. Because
the form (6) only holds at critical points, the latter can be
identified as the minima in standard goodness-of-fit measures,
such as the reduced chi-squared χ2

ν = χ2/ν for ν degrees of
freedom used here. Technical details of the stiffness fits are
discussed in Appendix D. The universal stiffness jump at the
critical point of the 2D XY model [63] translates to Dρ (∞) =
t/2 for the t-V model (the SSH model with t/ω0 = 0) [42].
For t/ω0 > 0, we instead find nonuniversal stiffness jumps,
with Dρ (L) < t/2 even for small L in, e.g., Fig. 5(a). Possible
origins are discussed in Appendix E.

For t/ω0 = 0 (the t-V model), such fits indeed yield a min-
imum of χ2

ν at the exact critical value λc = 2 in Fig. 4(b). For
t/ω0 = 1/10, we estimate λc = 3.0(3) from Fig. 4(c). Finite-
size effects are larger for a smaller ω0 (longer interaction
range in τ ), as visible in Fig. 4(d) for t/ω0 = 1/3 in terms of
a larger minimal χ2

ν ; the critical value is determined as λc =

3.1(3). At fixed λ = 4 [Fig. 4(d)], the stiffness fits exhibit two
separate minima at t/ω0,c1 = 0.15(3) and t/ω0,c2 = 0.24(2),
respectively, consistent with two critical points. For λ = 6
and 8, due to restrictions in system size, we estimated a
single critical value from the peaks in Dρ (L) and Kρ (L) (see
Fig. 5 and Appendix C) as t/ω0,c = 0.16(2) and 0.145(15),
respectively. These critical values appear consistent with the
finite-size behavior of other observables, as discussed in
Appendix C.

C. CDW-BOW transition

Results for the retardation-driven CDW-BOW transition,
a key feature of the SSH model, are presented in Fig. 5 for
λ = 6. The convergence of Dρ (L) in Fig. 5(a) and Kρ (L) =
2πCρ (q1)/q1 (with q1 = 2π/L) in Fig. 5(b) to a nonzero
value around t/ω0,c ≈ 1/6 indicates a metallic state. However,
Kρ (L) falls below the typical lower bound 1/2 for a LL [51].
The dotted line in Fig. 5(b) is Kρ = η/2, with η = 0.79 the
exponent of the real-space charge and bond correlations at
t/ω0 = 1/6 in Figs. 5(c) and 5(e). Combining the LL form of
Cα (r), α ∈ {ρ, b}, given by Eq. (4) with conformal invariance
implies χα (π )/L ∼ L1−η [64] for the staggered charge/bond
susceptibility

χα (π ) =
∑

r

(−1)r
∫ β

0
dτ Cα (r, τ ). (7)

That this relation holds at t/ω0 = 1/6 [Figs. 5(d) and 5(f)] is
evidence for a gapless state described by a conformal field
theory. In particular, charge and bond susceptibilities have
the same power-law exponent (within the available accuracy)
and do not show any visible finite-size corrections even down
to the smallest system sizes considered. Away from t/ω0 =
1/6, Figs. 5(c)–5(f) suggest either BOW or CDW order with
one of the orders instantly becoming dominant and the other
being suppressed. Our findings provide evidence for a direct
quantum phase transition between CDW and BOW order with
an intermediate metallic point instead of a narrow region. This
interpretation is further supported by theoretical arguments
given in Sec. IV. Additional data on the CDW-BOW transition
for different values of λ can be found in Appendix C.

IV. DISCUSSION

The retardation effects that drive the BOW-CDW transi-
tion are generally difficult to capture analytically [39,41,65].
However, we find our numerical results to be fully consistent
with a field theory previously derived for the antiferromag-
netic J1-J2 XXZ chain with Hamiltonian ĤJ1−J2 = J1ĤXXZ +
J2

∑
i SiSi+2 and ĤXXZ = ∑

i(Ŝ
x
i Ŝx

i+1 + Ŝy
i Ŝy

i+1 + �zŜ
z
i Ŝz

i+1)
[36]. Its bosonized continuum description takes the usual
Tomonaga-Luttinger form [16,36]

H = v

2

[
1

η
(∂xθ )2 + η(∂xφ)2 + λφ cos(

√
8πφ)

]
. (8)

Here, v is the renormalized velocity, η = 1/η = 1/(2Kρ )
determines the exponent of correlation functions, and the
cosine term encodes umklapp scattering. The phase diagram
of ĤJ1−J2 has the same topology as Fig. 1 [36]; the Néel
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and dimer phases correspond to CDW and BOW phases,
respectively.

A connection between the frustrated XXZ model ĤJ1−J2

and the SSH model (1) can be established via a mapping
of phonon-mediated retarded interactions at small t/ω0 to
frustrated spin interactions [46,66–68], but is expected to
contain additional terms not present in ĤJ1−J2 . Alternatively,
a Hamiltonian of the form (8) can in principle be obtained for
the SSH model via an RG treatment of the phonon-mediated
interaction. In either case, in contrast to the XXZ problem
[16,36], an explicit expression for λφ in terms of the SSH
model parameters is not known. Here, we focus on comparing
the predictions for Eq. (8) [16,36] to our numerical data.

The LL-BOW and LL-CDW transitions can be attributed
to the cosine umklapp term in Eq. (8) becoming relevant
for Kρ < 1/2. In contrast to approximate functional RG re-
sults [41], we do not find evidence for a violation of the
conventional Kρ = 1/2 at the critical point (see Appendix
C 2 for details). BOW and CDW phases are associated with
opposite signs of λφ and a pinning of the charge mode φ

at different minima [16,51]. The CDW phase is known in
the Gross-Neveu literature as an Aoki phase [69]. The line
of BOW-CDW transitions suggested by Fig. 1 for λ � 6
mirrors the line of continuous dimer-Néel transitions of the
frustrated XXZ chain, along which Kρ varies continuously
[16,36]. Within the theory (8), and given Kρ < 1/2 [see
Fig. 5(b)], a metallic state separating BOW and CDW phases
requires λφ = 0. Since λφ depends on the independent SSH
model parameters t/ω0 and λ, it will vanish at a single value
(t/ω0)c for a given λ. This scenario is fully supported by our
observation that for a given λ � 6, bond and charge correla-
tions show exactly the same power-law exponents at a single
(t/ω0)c in Figs. 5(c)–5(f). For other t/ω0, umklapp scattering
immediately gives rise to long-range order [Figs. 5(c)–5(f)],
Kρ → 0 [Fig. 5(b)], and insulating behavior [Fig. 5(a)]. The
clean power-law scaling observed on the BOW-CDW critical
line in Figs. 5(c)–5(f) is consistent with the predicted absence
of logarithmic corrections due to the vanishing of the umklapp
term [70]. Finally, the absence of a CDW phase in functional
RG results for the SSH model [41] may be the result of
using a linearized spectrum. This approximation amounts to
an infinite bandwidth W, whereas CDW order appears in Fig. 1
at ω0 � W = 4t .

An intuitive physical picture of how BOW and CDW
phases—breaking different symmetries—can be connected
via a generically continuous phase transition is the scenario
of a 1D DQCP [16]. It involves solitons in the CDW (BOW)
order parameter that can be added in pairs and interpolate
between the two degenerate CDW (BOW) configurations.
Parametrizing the phase of the order parameter by ϕ =
(cos ϕ, sin ϕ) [16], see the inset of Fig. 1, BOW (CDW)
patterns correspond to ϕ = 0, π (ϕ = ±π/2). For example,
a defect in the BOW order connecting ϕ = 0, π contains a re-
gion with CDW order or ϕ = π/2. Simultaneous proliferation
of BOW/CDW defects at (t/ω0)c provides a mechanism for a
continuous transition without fine-tuning.

Instead of the bosonized theory (8), the SSH model (1) can
also be described in terms of a Gross-Neveu field theory of
Dirac fermions [71]. Such a representation makes topologi-
cal and symmetry aspects more transparent. While a Gross-

Neveu theory was given in Ref. [35], our numerical results
can only be captured by the more general form with two
interactions [71],

L = ψ iγ μ∂μψ + gBOW(ψψ)2 + gCDW(ψ iγ5ψ)2, (9)

where ψ = (ψA, ψB) (A/B: sublattices; see Fig. 1). Similar
to the umklapp term in Eq. (8), the interactions account
for the lattice symmetries that distinguish BOW and CDW
order [72]. In contrast, a mean-field approximation of Eq. (9)
contains mass terms gBOWm1ψψ and gCDWm2ψ iγ5ψ [73]. It
can be shown [25] that these mass terms anticommute and
may be rotated into each other, establishing a chiral U(1)
symmetry absent beyond the mean-field level. Combining
the BOW and CDW masses into a vector m = (m1, m2),
the mean-field spectrum E (p) = ±

√
p2 + |m|2 [74]. Together

with the chiral symmetry, this form reveals the possibility
of a continuous evolution between BOW and CDW order
during which m changes its direction from (m, 0) to (0, m)
while |m| = m (the mean-field gap) remains nonzero. The
absence of a CDW-BOW phase transition at the mean-field
level reflects the fact that the CDW and BOW order param-
eters (characterized by different broken symmetries on the
lattice; see Sec. II) become equivalent up to a chiral rotation
in the continuum. The different symmetries are correctly
captured by the bosonized theory (8) and also the Gross-
Neveu theory (9) [25,72]. In the absence of a chiral symmetry,
the CDW-BOW transition involves a gap closing, |m| → 0
at the critical point. This agrees with our numerical results
for the spinless SSH model (1), for which metallic behavior
entails a vanishing single-particle gap.

Finally, it is interesting to contrast the BOW-CDW transi-
tion considered here with recent work on interaction-driven
QPTs out of a topological band insulator [31,75,76] (see also
Ref. [20]). In the latter, a static BOW mass term arises from
a dimerized hopping (the mean-field SSH model). Soliton
excitations are therefore only possible for the CDW order
parameter, and the critical behavior is significantly different.
Instead of the deconfined scenario observed here, the BOW-
CDW transition exhibits Ising criticality [31].

V. CONCLUSIONS AND OUTLOOK

We used an exact QMC method for retarded interactions to
determine the phase diagram of the 1D SSH model with quan-
tum phonons. In addition to the well-known metallic LL and
the Peierls-ordered BOW phase, we found an extended CDW
phase at high phonon frequencies ω0 that has been absent in
previous studies [35,38,41,43]. We provided evidence that the
CDW and BOW ordered phases are connected by a direct,
continuous quantum phase transition with unconventional
power-law exponents Kρ < 1/2 at the metallic critical point.
Our findings are consistent with a bosonized field theory that
was originally introduced for the frustrated XXZ chain [36].
In analogy with frustrated spin systems [16], the CDW-BOW
transition can be interpreted in terms of a 1D DQCP and the
proliferation of solitons.

Our results demonstrate that competing orders can be
generated from a single retarded interaction that originates,
e.g., from an off-diagonal operator coupled to a phonon.
Instead of having different competing interactions in an
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equal-time Hamiltonian, here the interaction range in imag-
inary time determines whether BOW or CDW order dom-
inates. Competing phenomena, therefore, arise at a critical
interaction range determined by the phonon frequency ω0. The
study of retarded interactions might be a promising approach
to generate complex phase diagrams also in higher dimen-
sions. An interesting generalization of the work presented in
this paper is the spinful 2D SSH model, which supports a
phase transition between valence-bond and antiferromagnetic
phases [77]. Moreover, the relation between the spinless SSH
model and the still incompletely understood frustrated XY
model [55,57,58] should be explored.
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APPENDIX A: QUANTUM MONTE CARLO METHOD

We used the directed-loop QMC method for retarded in-
teractions in the path-integral representation [50]. It is based
on an interaction expansion of the partition function Z =∫
D(c̄, c) e−S0−S1 around S0 = ∫

dτ
∑

i c̄i(τ ) ∂τ ci(τ ). A gen-
eral interaction vertex S1 = −∑

ν wν hν can be written as a
sum over vertex variables ν, a weight wν , and the Grassmann
fields contained in hν . The perturbation expansion becomes

Z =
∞∑

n=0

1

n!

∑
Cn

wν1 · · · wνn

∫
D(c̄, c) e−S0 hν1 · · · hνn (A1)

with sums over the expansion order n and the ordered vertex
list Cn = {ν1, . . . , νn}. For each time-ordered configuration of
vertices, the expectation value over Grassmann fields can be
represented by world lines. The trivial choice of S0 ensures
that the imaginary-time evolution is entirely determined by the
interaction vertices. Therefore, Eq. (A1) is the path-integral
equivalent of the stochastic series expansion (SSE) representa-
tion where Z = Tr e−βH is expanded in the total Hamiltonian
[48,78]. Accordingly, many algorithmic features, including
the global directed-loop updates [49], directly transfer to the
path-integral representation [78].

The retarded interaction of the SSH model includes two
bond operators acting at different imaginary times. Therefore,
a compatible interaction vertex must contain two subvertices
j ∈ {1, 2} with local variables {a j, b j, τ j} labeling the opera-
tor type, bond, and time of each operator. For the SSH model
with a coupling to optical bond phonons, we have b1 = b2 =
b. The interaction vertex of the SSH model becomes

S1 = −
∫∫ β

0
dτ1dτ2 P+(τ1 − τ2)

∑
a1,a2,b

ha1a2,b(τ1, τ2). (A2)

It is important to note that the symmetrized phonon propagator
P+(τ ) = ω0 cosh[ω0(β/2 − τ )]/[2 sinh(ω0β/2)] is included
in the global weight wν of the vertex. Whereas the bond-bond
interaction

h11,b(τ1, τ2) = λt

2
Bb(τ1) Bb(τ2) (A3)

is already nonlocal in time, the single hopping terms of
the kinetic energy are promoted to retarded interactions by
including unit operators with a second time variable, i.e.,

h10,b(τ1, τ2) = t

2
Bb(τ1) 1b(τ2),

h01,b(τ1, τ2) = t

2
1b(τ1) Bb(τ2). (A4)

This is possible because
∫ β

0 dτ2 P+(τ1 − τ2) = 1. As the ver-
tices (A3) and (A4) both contain off-diagonal hopping op-
erators, we have to include a purely diagonal term in the
interaction vertex. The simplest choice is a constant shift of
the action,

h00,b(τ1, τ2) = k 1b(τ1) 1b(τ2). (A5)

With our choice of interaction vertices, we can for-
mulate the diagonal and directed-loop updates similar to
the SSE representation [49]. For the diagonal updates, we
use the METROPOLIS algorithm to add and remove vertices
h00,b(τ1, τ2) that do not change the world-line configurations
but change the expansion order n. We propose time differences
τ1 − τ2 according to the phonon propagator using inverse-
transform sampling. Because P+(τ1 − τ2) appears as a global
weight in front of each vertex, it drops out of the directed-loop
equations. The latter can be solved for each vertex similarly
to the original approach; see the supplemental material of
Ref. [50]. The constant k in Eq. (A5) has to be chosen
such that every weight in the loop assignments is positive.
During the propagation of the directed loop, unit operators can
be transformed into bond operators and vice versa, leading
to local updates h00,b ↔ h10,b/h01,b ↔ h11,b. Note that the
vertices are constructed in such a way that each subvertex
can be changed individually while the other subvertex remains
unchanged. For details on the updating schemes, we refer to
Refs. [49,50].

The calculation of observables in the path-integral (inter-
action) representation is in many ways similar to the SSE
representation. Sandvik et al. [78] systematically compared
estimators for electronic correlation functions derived in the
two representations. Estimators that only include diagonal
operators, such as the charge structure factor Cρ (r) and the
charge susceptibility χρ (r), are simple to derive and given
in Ref. [78]. Estimators including off-diagonal operators can
often be recovered from the vertex distribution if there is a
vertex that only includes this operator. Measuring the static
or dynamic correlations functions of two bond operators at
arbitrary bonds b1 and b2 is only possible when considering
the hopping vertices h10,b/h01,b. It turns out that the bond
susceptibility χb(r) has a very simple estimator where only
the total number of hopping vertices at bonds b1 or b2 has
to be computed; see Ref. [78] for the exact estimator. How-
ever, calculating the equal-time bond structure factor Cb(r =
b1 − b2) = 〈Bb1 Bb2〉 in the interaction representation is more
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involved. While a general derivation is outlined in Ref. [78],
we only state the final estimator for the SSH model. For a
Monte Carlo configuration Cn, the bond structure factor can
be estimated from

Cb(b1, b2;Cn) = 1

βt2

∑
p

Ib1b2 (p − 1, p) K (p − 1, p). (A6)

In principle, the sum over p runs over the time-ordered list of
all subvertices contained in a world-line configuration. How-
ever, we can exclude the unit operators 1b as they were only
introduced to simplify the Monte Carlo sampling. Ib1b2 (p −
1, p) is zero unless bond operators Bb1 (τp−1) and Bb2 (τp)
originating from the hopping terms h10/h01 appear at adjacent
times; then Ib1b2 (p − 1, p) = 1. An integral expression for
K (p − 1, p) was derived in Ref. [78] and gives K (p − 1, p) =
2/(τp+1 − τp−2) when four or more subvertices are present in
a world-line configuration. The time difference τp+1 − τp−2 ∈
[0, β] is defined by the two subvertices that surround the
two bond operators under consideration. Note that K (p −
1, p) = 2/β for three subvertices, K (p − 1, p) = 1/β for two
subvertices, and K (p − 1, p) = 0 for zero or one subvertex.
For further details, see Ref. [78].

The Monte Carlo configurations do not give direct access to
observables containing phonon fields because the latter have
been integrated out to obtain a retarded fermionic interaction.
However, bosonic observables can be recovered from elec-
tronic correlation functions using generating functionals. In
particular, we derived efficient estimators for the total energy,
specific heat, fidelity susceptibility, and phonon propagator in
Refs. [79,80] that make use of the vertex distribution. In the
following section, we use the framework outlined in Ref. [79]
to show that the superfluid stiffness of an electron-phonon
model can still be calculated from the winding number.

APPENDIX B: ESTIMATOR FOR THE
SUPERFLUID STIFFNESS

Consider a ring of length L threaded by a magnetic flux φ.
At finite temperatures, the superfluid stiffness can be obtained
from the free energy via [53]

ρs = L
∂2F (φ)

∂φ2

∣∣∣∣
φ=0

. (B1)

Because we study a 1D system [81] and our simulations at
βt = 2L are essentially converged with respect to tempera-
ture, the measured values of ρs are representative of the charge
stiffness or Drude weight defined in Eq. (5).

Using F = − 1
β

ln Z , the stiffness is directly related to the
action of the SSH model. The magnetic flux can be incorpo-
rated by imposing twisted boundary conditions ĉL+1 = eiφ ĉ1.
The boundary term of the action reads

Sφ = SL eiφ + SR e−iφ + SLL e2iφ + SRR e−2iφ. (B2)

Here, SL/R is the action of the hopping term (A4) crossing
the boundary to the left/right, whereas SLL/RR corresponds to
the bond-bond interaction (A3) with both hopping operators
going to the left/right. The superfluid stiffness can then be

calculated as

ρs = L

β

[〈
∂Sφ

∂φ

〉2

+
〈
∂2Sφ

∂φ2

〉
−

〈(
∂Sφ

∂φ

)2〉]∣∣∣∣
φ=0

. (B3)

The first expectation value is given by〈
∂Sφ

∂φ

〉∣∣∣∣
φ=0

= i〈(SL − SR) + 2(SLL − SRR)〉

= −i〈(nL − nR) + 2(nLL − nRR)〉. (B4)

For each Monte Carlo configuration, expectation values of
terms Sa contained in the interaction vertex (A2) can be
obtained by counting the number of vertices na [79]. For the
Monte Carlo average, we then obtain 〈Sa〉 = −〈na〉. In the
same way, the second term in Eq. (B3) becomes〈

∂2Sφ

∂φ2

〉∣∣∣∣
φ=0

= −〈(SL + SR) + 4(SLL + SRR)〉

= 〈(nL + nR) + 4(nLL + nRR)〉 (B5)

and the third term is given by
〈(

∂Sφ

∂φ

)2〉∣∣∣∣
φ=0

= −〈[(SL − SR) + 2(SLL − SRR)]2〉

= −〈[(nL − nR) + 2(nLL − nRR)]2〉
+ 〈(nL + nR) + 4(nLL + nRR)〉, (B6)

where we used 〈SaSb〉 = 〈nanb〉 − δab〈na〉. We get an addi-
tional shift for a = b that cancels the contribution of (B5).
Our results are equivalent to calculating the winding number
W = nB

L − nB
R, where nB

L/R counts the number of subvertices
Bb(τ ) crossing the boundary to the left/right. Here, nLL/RR

contributes with a factor of 2 because each vertex contains two
bond operators, whereas mixed contributions nLR drop out.
Therefore, ρs can be calculated in the same way for retarded
interactions as for equal-time interactions [82], i.e.,

ρs = L

β
(〈W 2〉 − 〈W 〉2). (B7)

APPENDIX C: ADDITIONAL DATA

1. CDW-BOW transition

Figure 6 shows Dρ (L) and Kρ (L) as a function of t/ω0 for
λ = 4, 6, 8, 12. For all couplings, the data are consistent with
a metallic region at intermediate t/ω0. Whereas the apparent
narrowing of this region between λ = 4 and 6 matches the
phase boundaries in Fig. 1, the theory discussed in the main
text suggests that the BOW-CDW transition involves a gap
closing and hence metallic behavior only at a single point. At
this transition, the LL parameter Kρ < 1/2. Values Kρ < 1/2
can be reconciled with metallic behavior by assuming λφ = 0
in Eq. (5) at the BOW-CDW critical point [36,72]. Apart from
λ = 6, see Fig. 5(b), we also find evidence for Kρ < 1/2 at
criticality for λ = 4 [Fig. 6(e)], consistent with a location on
the BOW-CDW transition line. Therefore, the two separate
critical points (with significant uncertainty) in Fig. 1, inferred
from Fig. 4(e), may be an artifact of the challenging finite-size
scaling in the tricritical region of the phase diagram.
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FIG. 6. (a)–(d) Charge stiffness and (e)–(h) LL parameter as a function of t/ω0 for different λ.

In contrast to Ginzburg-Landau theory, the BOW-CDW
transition does not require fine-tuning of both t/ω0 and λ.
For a fixed λ, λφ can be tuned to zero by a suitable value of
t/ω0, giving rise to a line of critical points. Since Kρ < 1/2
at criticality, any nonzero λφ yields long-range BOW or CDW
order. The theory hence excludes an extended metallic region
(as opposed to a critical line) with Kρ < 1/2.

Previous work on the extended Hubbard model [83] sug-
gests that a peak in Kρ (L) that narrows with increasing L
indicates a continuous transition, whereas the absence of a
peak or a broadening with increasing L signals a first-order
transition. Figures 6(e)–6(h) hence support continuous behav-
ior, in accordance with theoretical expectations [16,36].

2. LL-BOW and LL-CDW transition

The stiffness fits are based on the characteristic logarithmic
scaling at the critical point. As is commonly done for non-
BKT transitions in higher dimensions, the LL-BOW and LL-
CDW critical phase boundaries can also be estimated from
the real-space correlation functions in Eq. (3), evaluated at the
maximum distance L/2. Results for Cb(L/2) at t/ω0 = 1/3
and Cρ (L/2) at t/ω0 = 1/10 are shown in Figs. 7(a) and 7(c),
respectively. For both cases, the critical values can be identi-
fied visually as λc ≈ 2.75. They agree with our estimates from
the stiffness fits within error bars, but suggest the possibility
that the latter slightly overestimate the critical couplings. We
notice that logarithmic corrections are expected to appear
close to the transition. A similar analysis was done for the
t-V model in Ref. [64].

The critical points of the LL-BOW and LL-CDW phase
transitions can further be deduced from the bond and
charge susceptibilities defined in Eq. (7). In the LL phase,
χb/ρ (π )/L ∼ L1−η with η = 2Kρ . If we assume Kρ = 1/2
at the critical point—as predicted theoretically (Kρ < 1/2 is
only expected at BOW-CDW critical points [36])—χb/ρ (π )/L
will converge to a constant at λ = λc but scale to zero (di-
verge) for λ < λc (λ > λc). In contrast to the CDW-BOW
transition considered in Sec. III C, the presence of logarithmic

corrections close to the critical point complicates a precise
estimation of λc. It was recently demonstrated for the t-V
model that χb/ρ (π )/L at λ = λc increases slowly as a function
of L for the system sizes considered here [64]. Figures 7(b)
and 7(d) are therefore in agreement with our estimates λc ≈
2.75 from Cb/ρ (L/2). In principle, critical values can also be
extracted from the correlation length, which shows a logarith-
mic scaling similar to the stiffness at λ = λc [84].

The critical values from Fig. 7 are compatible with
those from the stiffness fits. The assumption of Kρ = 1/2
at λc can give a more precise estimate of λc when us-
ing the susceptibility instead of the stiffness fits. How-
ever, the stiffness fits are more general and do not re-
quire Kρ = 1/2. The fact that all our estimates are consis-
tent does not imply Kρ = 1/2 at λc. On the other hand,
we do not find evidence for Kρ < 1/2 at the LL-BOW
and LL-CDW transitions, contrary to predictions from func-
tional RG calculations for the LL-BOW transition in the
SSH model [41].
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(d) t/ω0 = 1/10
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FIG. 7. (a),(c) Finite-size scaling of the BOW/CDW order pa-
rameter Cb/ρ (L/2) and (b),(d) scaling analysis of the susceptibility
χb/ρ (π )/L at t/ω0 = 1/3 and 1/10.
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FIG. 8. Comparison of different fit functions and minimal system
sizes for t/ω0 = 0 (corresponding to the t-V model). The exact crit-
ical value is λc = 2. The bottom row shows fits based on Dρ (∞) =
t/2 and g = 1.

APPENDIX D: STIFFNESS FITS

Standard BKT universality is predicted for the LL-BOW
and LL-CDW transitions both in a general LL [51] and
specifically for the frustrated XXZ chain [36]. A detailed RG
analysis [84] gives the finite-size scaling forms

Dρ (L)

Dρ (∞)
= 1 + g

2 ln L + C + ln(C/2 + ln L)
, (D1)

Dρ (L)

Dρ (∞)
= 1 + g

2 ln L + C + ln(C/2 + ln L)

+ a

[2 ln L + C + ln(C/2 + ln L)]2
, (D2)

which provide the leading corrections to Eq. (6). However,
in light of the observed nonuniversal jumps, functional RG
predictions of Kρ < 1/2 at the LL-BOW transition [41], and
Kρ < 1/2 at the BOW-CDW transition according to our data
and theory [36], we determined the critical values in Fig. 1
using fits based on Eq. (6) with three parameters: Dρ (∞), g,
and C. In contrast, g and Dρ (∞) can be computed exactly for
the classical 2D XY model (see below), leaving only one free
parameter. Specifically, for βt ∼ Ly = ∞ (1D quantum chain
at T = 0), g = 1 and Dρ = 2/π (Dρ = t/2) for the 2D XY
(1D t-V ) model [60,85]. As expected and demonstrated below,
multiparameter fits provide less accurate, but nonetheless
fully consistent, critical values (shallower minima, stronger
dependence on the range of L) than single-parameter fits. This
is particularly relevant for the analysis of quantum systems
such as the SSH model, where the range and number of system
sizes are limited.

For a fit involving N data points, i.e., stiffness values On for
different system sizes Ln ∈ {L1, L2, . . . , LN } with correspond-
ing statistical errors σn, the reduced χ2 is calculated from

χ2
ν = 1

ν
χ2 = 1

ν

N∑
n=1

(
On − Cn

σn

)2

. (D3)
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FIG. 9. Stiffness fits for (a),(b) t/ω0 = 1/10; (c),(d) t/ω0 = 1/3;
and (e),(f) λ = 4.

Here, the number of degrees of freedom ν is given by N − M,
where M is the number of fit parameters, and Cn is the stiffness
value predicted by the fit for system size Ln.

For the fits, we restricted the range of the jump to 0 <

Dρ (∞) < 2t/π , using the known value of the noninteracting
case. To discriminate between the logarithmic scaling at the
critical point and the very weak finite-size dependence at
weak coupling [see Fig. 4(a)], a nonzero lower bound gmin

was imposed. Otherwise, the choice g = 0 gives good fits
throughout the LL phase and there would be no minimum
of χ2

ν at the critical point. The exact value of gmin does not
significantly affect the results and was chosen as 0.25. Finally,
the allowed range of C was [0,∞].

An important test case for the generalized, multiparameter
fit ansatz (6) was the LL-CDW transition of the t-V model,
for which the critical value is known. We used the same range
of system sizes as for the SSH model. Figures 8(a)–8(c) give
a comparison of results based on Eqs. (6), (D1), and (D2).
All three fit functions yield very similar and hence compatible
minima of χ2

ν at the correct value λ = 2. Figures 8(d)–8(f)
are based on fits that exploit the known values g = 1 and
Dρ (∞) = t/2. This additional information produces signif-
icantly sharper minima, in accordance with previous work
on 2D XY models [59]. At the same time, the first-order
fit functions (6) and (D1) do not fully capture the finite-
size scaling on small system sizes, as manifested in χ2

ν � 1
even at λ = 2 in Figs. 8(d) and 8(e) for L � 22 and L � 30.
Higher-order corrections are partially captured by varying g
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and Dρ (∞) [60], which explains the much better χ2
ν for the

same range of L in Figs. 8(a) and 8(b).
For the more challenging case of t/ω0 > 0, we focused

on three-parameter fits based on Eqs. (6) and (D1). Within
the present accuracy, the results in Fig. 9 are compatible with
each other but slightly less systematic than for the t-V model.
In particular, the fits become less robust upon increasing the
smallest value of L due to a reduced number of degrees of
freedom. A similar picture arises for a fixed λ = 4 in Figs. 9(e)
and 9(f). For the present accuracy and range of system sizes,
we cannot discriminate between the scaling forms (6), (D1),
and (D2).

APPENDIX E: NONUNIVERSAL STIFFNESS JUMPS

For the XY model, the stiffness jump and the con-
stant g can be computed from a series for a given aspect

ratio r = Lx/Ly [60,86]. For 1 + 1D quantum systems, r =
cL/β, with c a model-dependent constant. For example,
Dρ (∞) varies significantly as a function of Lx/Ly, cov-
ering the whole range from 2/π to 0 [86]. Similarly, g
varies between 1 and ∞ as a function of r. In principle, a
change of the range of the retarded interaction can mimic a
change in r, leading to the dependence of Dρ (∞) and g on
ω0.

There are several other known mechanisms for nonuni-
versal values of the stiffness jump. The bosonization re-
lation Dρ = Kρu [51] implies that, even if Kρ = 1/2 at
a QPT, Dρ (∞) can change via the renormalized veloc-
ity u. For example, u increases with V in the t-V model
[42] but decreases with λ in the Holstein model [80]. The
stiffness can also be reduced by nonvortex excitations that
are not captured by the standard BKT theory of the XY
model [87].
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