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Equalization of pulse timings in an excitable microlaser system with delay
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An excitable semiconductor micropillar laser with delayed optical feedback is able to regenerate pulses by the

excitable response of the laser. It has been shown that almost any pulse sequence can, in principle, be excited
and regenerated by this system over short periods of time. We provide experimental evidence that this is not
true anymore in the long term: Rather, the system settles down to a stable periodic orbit with equalized timing
between pulses. These observations are supported by the numerical analysis of a theoretical model of the system.
Several such attracting periodic regimes with different numbers of equalized pulse timing may coexist and we
study how they can be accessed with single external optical pulses of sufficient strength that need to be timed
appropriately. Since the observed timing equalization and switching characteristics are generated by excitability
in combination with delayed feedback, our results will be of relevance beyond the particular case of photonics,

especially in neuroscience.

DOI: 10.1103/PhysRevResearch.2.023012

I. INTRODUCTION

Excitability is observed in many natural and artificial sys-
tems, including spiking neurons, cardiac cells, and semicon-
ductor lasers. It corresponds to the all-or-none response in the
form of a single spike to an input external perturbation, de-
pending on whether the amplitude of the perturbation exceeds
the so-called excitable threshold [1]. When subject to delayed
feedback, an excitable system can either remain in its quiet
state for small external perturbations or, with an adequate
control pulse of sufficient strength, it can then regenerate its
own excitable response after the reinjection time . This very
general mechanism for self-pulsations has been implemented
in different optical systems, including a coherently driven
vertical-cavity surface-emitting laser (VCSEL) [2], a VCSEL
subject to optoelectronic feedback [3], coupled semiconductor
lasers [4], a photonic resonator with optical self-feedback [5],
and a micropillar laser with integrated saturable absorber [6].

Since almost arbitrary pulse timing patterns can, in princi-
ple, be excited and regenerated after each delay, regenerative
dynamics can be of particular interest for producing com-
plex optically controllable temporal pulsing patterns [7—11]
or for spike-based optical memory applications [2,5,11,12].
In the context of biological spiking neurons, delayed self-
connections have also been recognized to play a central role in
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the persistent regeneration of input stimuli [13-15]. Systems
with delay generally display rich dynamics with coexistence
between different types of attractors [16,17]. Consequently, it
is an important question to determine the long-term dynamics
of regenerative pulsing in excitable systems with delay.

Here we show experimentally that it is not possible to
regenerate arbitrary timing patterns in the long term, in good
agreement with a theoretical analysis [11]: Any triggered
pulse pattern will equalize, after sufficiently many successive
regenerations, to an equidistant pulse train. Hence, positional
information of nonequalized pulse patterns is preserved only
for short periods of time and cannot be sustained in the long
term. Since the long-term information is encoded in the num-
ber of pulses in the feedback loop, we also investigate how
one can switch between different equalized stable pulse trains.
From a theoretical perspective, this is related to the structure
of their basins of attraction, which we investigate numerically.
The underlying physics of equalization as well as of switching
between patterns is entirely the result of an interplay between
the timescale of the slow dynamical variable (here the net gain
dynamics [18]) and the latency time of the excitable system
[19]. As such, this mechanism is very general for excitable
systems subject to delayed feedback.

In this paper, we consider an excitable microlaser with
integrated saturable absorber [20-23] and delayed optical
feedback [6,11]. Thanks to its small footprint, subnanosecond
response time and easy bidimensional integration, this device
is of particular interest for applications ranging from photonic
spike processing [24,25] for efficient optical communications
applications to ultrafast artificial neural networks. Without
feedback, the solitary micropillar laser is excitable in a wide
pump parameter region below the self-pulsing threshold [22]
and displays various neuromimetic properties such as a rel-
ative refractory period [23], temporal summation [26], and
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spike latency [19,27]. In the presence of delayed optical
feedback, it sustains trains of regenerative optical pulses,
which can be asymmetrically perturbed by noise [6] or added
and erased by single optical perturbations [11].

II. EXPERIMENTAL SETUP AND MODEL

The experimental setup consists of a micropillar laser with
two gain and one saturable absorber (SA) quantum wells,
which emits light at a wavelength close to 980 nm. Part of
the output light is sent back into the micropillar after a delay
7, through free-space propagation and reflection by a mirror at
several tens of cm from the laser. A beamsplitter in the optical
feedback path (R/T = 70/30) redirects some of the light to a
fast avalanche photodetector or a camera. The micropillar is
pumped at 800 nm, and short optical perturbations of 80 ps
duration can be sent by a mode-locked Ti:Sa laser emitting at
the pump wavelength.

The experimental system is modeled accurately by the
Yamada rate equations with incoherent delayed feedback
[6,11,22,23,28,29]—a system of three delay-differential equa-
tions (DDEjs) for the dimensionless gain G, absorption Q, and
intensity I:

G =ys(A—G—GI),
0 =yoB—Q—aQl),
[=(G—-0—DI+«l(t —1). (D)

Here A is the scaled pump parameter (relative to pump at
transparency), B is the nonsaturable absorption, a is the satu-
ration parameter, and y; and y are the carrier recombination
rates in the gain and absorber media, respectively. The optical
feedback is described by the delayed term in the intensity
equation, where k is the feedback strength and t is the
feedback delay. We consider here the same parameter values
as in Ref. [11]: A=2.4, B=22, y5 =0.01, yo =0.02,
a =135, k =0.05, t = 1100. These are chosen both to match
the known physical parameters and the experimental obser-
vations. In particular, the small values of y; and y, account
for the slow nonradiative recombination of the carriers in the
gain and absorber media, compared to the fast timescale of the
laser field intensity.

III. EQUALIZATION OF PULSE TIMINGS

Figures 1(a) and 1(b) show experimental results on the
convergence of irregularly spaced pulse trains to regularly
spaced ones following two and three external perturbations,
respectively. In Figs. 1(al) and 1(a2) and Figs. 1(bl) and
1(b2) the temporal traces are folded at approximately the
delay t and stacked vertically in a pseudospace represen-
tation [30]. Initially nonequidistant pulse trains in the ex-
ternal cavity become equidistant after several thousands of
round trips, as shown in Figs. 1(a2) and 1(b2). The slow
convergence toward equidistant pulsing patterns is highlighted
in Figs. 1(a3) and 1(b3), which represent the pulse-to-pulse
timing Ap versus the round trip number from the instant
when the pulse trains are triggered by external perturbations.
The pulse-to-pulse timing Ap slowly converges to a value
close to a half or a third of the delay time t, respectively,

intensity (arb. units)

0 RT No 2800 0
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FIG. 1. [(a) and (b)] Experimental pulse trains following two
(a) and three (b) perturbations for a feedback delay of 8.2 ns.
Shown are the pseudospace representation of the time traces ob-
served shortly after the perturbations [(al) and (b1)] and after several
thousands of round trips [(a2) and (b2)]. The pulse-to-pulse timing
Ap [as shown by arrows in (al) and (b1)] is plotted versus the round
trip number in panels (a3) and (b3), where the shaded areas are the
time segments represented in (al)—(a2) and (b1)—(b2).

as equidistant pulsing is approached. This slow convergence
rate is of the order of a few picoseconds per round trip, to be
compared to the pulse duration of approximately 200 ps. It can
be observed in the experiment only over long time periods.
In contrast to the ultraweak soliton interaction observed in
Ref. [31], it can be simply explained by the variation of the
response latency time of the excitable microlaser in the slowly
recovering landscape of the net gain dynamics [11,19,27,32].
This response latency becomes identical only when all the
reinjected pulses experience an identical net gain [11,23]. This
configuration corresponds to a stable equidistant pulse train
in the case of a fast SA. The stochastic fluctuations of the
pulse-to-pulse timing are explained by the presence of pump
noise in the system, which induces stochastic fluctuations of
the microlaser net gain [6].

IV. BASINS OF ATTRACTION

A. Numerical mapping

The Yamada model with feedback (1) shows excellent
agreement with these experimental observations. Its phase
portraits are calculated with the continuation toolbox DDE-
Biftool [33,34] and show a high degree of multistability.
In particular, one stable equilibrium corresponding to the
nonlasing solution coexists with six stable periodic solutions
with different periods 7,, and equalized pulse timings, whose
corresponding time series are represented in Fig. 2(al)-2(a6).
Their periods are close to submultiples of the delay time t
[35], and they are hereafter referred to as one-pulse solution,
two-pulse solution, and so on. A Floquet stability analysis
has confirmed that the solutions with two to six coexisting
pulses in the external cavity are only weakly stable [11].
Importantly, for the chosen parameters, no stable solution
exists that corresponds to pulse trains with nonequidistant
pulses. Therefore, all pulsing dynamics must converge toward
one of the attracting periodic solution represented in Fig. 2(a).

023012-2



EQUALIZATION OF PULSE TIMINGS IN AN EXCITABLE ...

PHYSICAL REVIEW RESEARCH 2, 023012 (2020)

45 (al (ad)
0 | | 1 |

45 (a2 (ab)
0 l L 1|

4? (a3 (a6)

0 t

Sl
3
.

nT, 0

FIG. 2. [(al)—(a6)] Intensity time series of the stable periodic
pulsing regimes of equations (1) represented over n periods T, with
n the number of pulses in the span of the delay t. [(b)-(g)] Basins
of attraction of (1) in the plane of timing 7 and amplitude AG of a
gain perturbation, when one (b) to six (g) equidistant pulses initially
exist in the external cavity. The color represents the number of pulses
observed in the long-term in the external cavity [see (al)—(a6) for
the color code], and the vertical gray lines indicate the timing of the
pre-existing pulses.

As observed in the experiment, the convergence to the weakly
stable pulsing regimes occurs on a slow timescale [11] com-
pared to the feedback delay time.

The final state of a multistable system depends crucially
on the initial conditions. For each attractor in Fig. 2(a), its
basin of attraction is the set of initial conditions for which the
system settles on that attractor after transient dynamics. From
a practical point of view, the structure of these basins of attrac-
tion gives essential information on how to access the different
coexisting stable pulsing regimes and, as such, on how to
control the long-term dynamics of the multistable system [36].
In systems of ordinary differential equations with up to three
dimensions, the invariant manifolds that bound the different
basins of attraction can be calculated with advanced numerical
methods [37]. However, we deal here with a system of DDE:s,
whose phase space is intrinsically of infinite dimension (see,
e.g., Ref. [38]). The numerical continuation of the projections
of such invariant manifolds is, hence, more complex [39,40],
and we rather integrate (1) numerically to map the basins of
attraction.

Figures 2(b)-2(g) represents the long-term effect of an
additive perturbation on the gain variable G of amplitude AG,
when it is given at a relative timing 7 in a stable equidistant
pulsing regime of (1), where 7 = 0 is the reinjection time of a
pre-existing pulse in the microlaser. The color code represents
the attractor on which the system settles in the long term (i.e.,

after the transient dynamics). When the system is initially in
the n-pulse regime with n = 1, 2, and 3 [Figs. 2(b)-2(d)], the
perturbation triggers an additional pulse and the system can
settle to the (n + 1)-pulse regime for suitable amplitude and
timing of the perturbation. In Figs. 2(b)-2(g) we first observe
that there is a minimum perturbation amplitude (AGyn, =~
1.5) to induce a change in the pulsing regime. For AG >
AGhnin, a perturbation has no effect on the overall number
of coexisting pulses if it is introduced immediately before or
immediately after a pre-existing pulse is reinjected into the
microlaser. In the first case, a new sustained pulse train is
triggered, but its refractory period prevents the pre-existing
pulse train from being regenerated, thus resulting in a global
retiming of the pulse train [11]. In the second case, the pertur-
bation is introduced in the refractory period of a pre-existing
pulse, and the gain in the micropillar laser is not sufficiently
high for a new pulse to be sustained. Note that the effect
of the relative refractory period [23] is clearly visible in the
initial negative slopes of the bottom left boundaries of the new
stable pulsing regimes. When the perturbation is introduced
away from the previous zones, a new sustained pulse train
is triggered. Figures 2(b)-2(d) shows that AGp;, globally
increases with the number n of the initial n-pulse regime,
while the time window to trigger an additional sustained pulse
and switch to the (n 4+ 1)-pulse regime shrinks.

When the initial stable regime is the n-pulse regime with
n > 3, Figs. 2(e)-2(g) shows that, as before, a perturbation
has no effect on the long-term dynamics if it is introduced in
a (generally small) time window around a pre-existing pulse.
However, and in contrast to the previous cases, it is no longer
possible to reach the (n + 1)-pulse regime. A perturbation
with appropriate timing and amplitude now only brings the
system to the (n — 1)-pulse regime, thus removing one pulse
from a pre-exisiting pulse train. For this to happen, the time
window in which the perturbation has to be introduced widens
with increasing #n. It is thus more likely, e.g., to take the system
away from the six-pulse regime than from the four-pulse
regime. Although regimes with more than four coexisting
pulses in the external cavity exist and are stable, Figs. 2(e)—
2(g) clearly suggests that they could be particularly difficult
to observe in practice with this perturbation method, and this
is confirmed by the experiment.

B. Experimental observations

In the experiment, the ability of an optical perturbation to
trigger a second and a third sustained pulse trains has been
shown in Fig. 1. Figure 3 highlights the influence of the
perturbation timing on the long-term dynamics of the micro-
laser with delayed optical feedback. Figure 3(a) shows that a
perturbation (labelled A) introduced far from a pre-existing
pulse train can make the system switch to the two-pulse
regime, in excellent qualitative agreement with the theoretical
results of Fig. 2(b). Had the perturbation been sent closer
to an existing pulse, it would have either globally retimed
the initial pulse train, leaving the system in the same state
if introduced slightly earlier; if introduced slightly later than
the regenerated pulse, it would have had no effect since it
would have fallen in the refractory period of the pre-existing
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FIG. 3. Pseudo-space representation of experimental time traces,
with a feedback delay of 8.2 ns, showing the effect of external
perturbations (indicated by arrows) of different timings for a one-
pulse (a) and a two-pulse (b) regime.

pulse. The net effect in the two cases is the same, as far as the
asymptotic state is concerned.

Figure 3(b) illustrates the influence of perturbations with
different timings when two and three pulse trains pre-exist
in the feedback cavity: Starting from the two-pulse regime,
a third sustained pulse train is triggered by an optical per-
turbation (labelled B). The fourth perturbation (labelled C) is
introduced shorty afterward with a similar relative timing with
respect to the two pre-existing pulses (i.e., in the pseudo-space
representation it appears to be half-way in between two pre-
existing pulses). However, it only triggers a transient pulse;
hence, it does not affect the long-term dynamics of the system
which settles back on the three-pulse solution after a few
hundreds of round trips. As predicted by the theory in Fig. 2,
these results confirm that triggering new sustained pulse trains
becomes more and more challenging when the number of
pre-existing pulse trains in the external cavity increases. In
particular, Fig. 2(e) shows that an external perturbation cannot
trigger a fifth sustained pulse train in the model when the
system is in the four-pulse regime. The temporal traces asso-
ciated to this case are plotted in Fig. 4(a). As observed in the
experiment, perturbations sent slightly before or after a pulse
have no effect on the long-term dynamics and leave the system
in the same state. By contrast, Fig. 4(b) demonstrates that
it is nevertheless possible to reach the five-pulse solution by
sending the fifth perturbation (labelled C) during the transient

i
0 t/T 1

FIG. 4. Pseudospace representation of simulated time traces,
showing the effect of external perturbations. In (a), starting from
the stable four-pulse regime, two perturbations are introduced before
(A) and after (B) a reinjected pulse, leaving the system in the stable
four-pulse regime. In (b), the five-pulse regime is approached from a
transient regime with four pulses per round trip.

intensity I (arb. units)
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dynamics, when four pre-existing pulses are still far from their
stable configuration. In general, all the stable n-pulse regimes
can be accessed from suitable transient dynamics by addition
of single or multiple perturbation pulses. Overall, the exper-
iment and the numerical analysis show excellent qualitative
agreement in terms of the influence of the perturbation timing
on the long-term dynamics of the system.

We point out that, in the experiment, external perturbations
can be sent either coherently (at the laser emission wave-
length) or incoherently (at the pump wavelength) [19], which
corresponds in system (1) to perturbations on the intensity
variable [ or on the gain variable G, respectively. The basins
were also mapped with coherent perturbations Al on the
intensity variable /. Apart from differences observed mainly
in the finer details of the basin boundaries, which is related
to intersections of higher dimension manifolds, the structure
of the basins of attraction is qualitatively as those shown in
Figs 2(b)-2(g). Interestingly, this strongly suggests that what
does matter is the strength and timing of the perturbation,
rather than the exact way the perturbation is introduced.

V. DISCUSSION AND CONCLUSION

In conclusion, we have shown how any initial pulsing
pattern equalizes to an equidistant pulse train in the excitable
micropillar laser with delayed optical feedback. Different
stable equalized periodic orbits with different number of
pulses in the feedback loop are sustained, and they can be
accessed by means of single optical input pulses. Our study
of the basins of attraction has shown that, depending on the
timing, a new pulse can be added when the number of initial
equalized pulses is low, or a pulse can be subtracted from
a sequence when the number of initial equalized pulses is
larger. The experimental and theoretical results are in good
agreement and allow a clear interpretation of the observed
physical phenomena, which are based on small pulse-to-pulse
differences generated by the slow carrier dynamics of the gain
and absorber media. They provide a global physical picture of
the short-term and long-term dynamics of regenerative pulse
coexistence.

In terms of memory applications, any input pulse pattern
will necessarily converge to one of the sustained and stable
equalized pulse trains. While the information encoded in
nonequal pulse spacing will be lost in the medium to long
term, this device has the ability to converge to a given number
of pulses in the feedback loop from an imperfect input [41].
This approximation property is linked to the fine structure of
the infinite-dimensional basins of attractions of the system,
which we have mapped out here for the case of a single short
optical perturbation.

Finally, we highlight that the results presented here are
quite general in that they are generated only by excitability
and delayed feedback. As such, we believe that they will be
of relevance beyond the scope of laser dynamics for systems
that encode information as pulse trains, e.g., those arising in
neuroscience.
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