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Chiral quantum optics in photonic sawtooth lattices
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Chiral quantum optics has become a burgeoning field due to its potential applications in quantum networks
or quantum simulation of many-body physics. Current implementations are based on the interplay between
local polarization and propagation direction of light in nanophotonic structures. In this manuscript, we propose
an alternative platform based on coupling quantum emitters to a photonic sawtooth lattice, a one-dimensional
model with an effective flux per plaquette introduced by complex tunnelings. We study the dynamics emerging
from such structured photonic bath and find the conditions to obtain quasiperfect directional emission when the
emitters are resonant with the band. In addition, we find that the photons in this bath can also mediate complex
emitter-emitter interactions tunable in range and phase when the emitters transition frequencies lie within a band
gap. Since these effects do not rely on polarization, we propose an implementation based on circuit QED to
observe this physics.
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I. INTRODUCTION

Designing nonreciprocal optical devices at the classical
and quantum level has remained a challenge for many years
(see, e.g., Refs. [1–4], and references therein). On the classical
level, the search was mainly focused on systems breaking
Lorentz reciprocity such as magneto-optical materials. On
the quantum side nanophotonic systems have emerged as
a powerful candidate due to the link between the polariza-
tion and propagation direction that appears thanks to the
subwavelength-light confinement [5,6]. Using this connection
and the intrinsic polarization of classical and quantum emit-
ters (QEs) many experiments have shown chiral light-matter
coupling in waveguides [7–12], and harnessed it to achieve,
e.g., optical isolation at the single-photon level [2]. Chiral
quantum optical systems [13] have also been proposed to
build spin-photon interfaces [14] and directional amplifiers
[15,16] in quantum networks, to engineer many-body spin or
photonic states [17–21], to emit nonclassical light [22,23], or
to induce exotic self-organization patterns [24], among other
phenomena.

These exciting predictions have triggered a race to observe
this nonreciprocal penomena also beyond the optical regime.
For example, linear optical circulators have been designed in
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the microwave regime [25–28] and nonreciprocal transmis-
sion of photons has been achieved using two qubits [29]. Re-
garding the possibility of obtaining chiral light-matter inter-
actions, there are already theoretical proposals to obtain them
based on using complex nonlocal light-matter interactions
[17–19] or with moving atoms [30], but their experimental
realization remains elusive. We explore here an alternative
where QEs couple locally to a photonic bath without time-
reserval symmetry. In particular, we use the so-called photonic
sawtooth lattice [see Fig. 1(a)], also labeled as � chain [31] or
triangle lattice [32,33]. This is a one-dimensional model with
closed loops, which allows for complex couplings (φ �= 0 in
Fig. 1) between the bosonic degrees of freedom defining an
effective magnetic flux per loop [34]. We predict that one can
obtain quasiperfect directional emission [13] when the QEs
are resonant with the bands of the system. Rather than select-
ing a momentum using the destructive interference induced
by nonlocal couplings [17–19] or breaking the symmetry by
means of an external laser in a phononic system [35], it is the
asymmetric nature of the band structure the one responsible
of the chirality. The properties of the bath lead to other
phenomena such as the emergence of a sublattice-dependent
directional emission or QE interactions tunable in range and
phase when their frequencies lie in a band gap.

The text is organized as follows. We first introduce the
model in Sec. II. We then describe the single-qubit dynamics
when the emitter is on resonance with the photonic band in
Sec. III, characterizing the emergence of directional emission.
We consider the complementary situation in Sec. IV, when
the QEs are off resonance with the band (i.e., in a band
gap), and we characterize both the single-QE bound states
and the effective qubit-qubit interactions mediated by the
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FIG. 1. (a) Two QEs (in blue), with energy gap �, coupled
with strength g to a sawtooth lattice described by a bipartite lattice
of coupled resonators. The red/green lattice sites denote the A/B
sublattices with couplings JAA, JAB, and JABeiφ . (b) Bands ωu/l (k)
(solid/dashed) for JAA = JAB, for six equally spaced φ from φ = 0
(dark green) to φ and φ = π/2 (red).

bath. A realistic implementation for the system based on
superconducting technologies is presented in Sec. V. We end
up with the conclusions in Sec. VI. We leave some technical
aspects for the Appendices.

II. MODEL

The global Hamiltonian of the system composed by the
QE’s and the photonic bath reads (h̄ = 1)

H = HST + �

M∑
j=1

σ+
j σ−

j + Hint, (1)

where � is the frequency of each QE described as a two-level
system with ladder operators σ

+/−
j for the jth QE, M is the

number of QEs, Hint describes the interaction, and HST is the
Hamiltonian of the sawtooth lattice. The latter reads

HST = ωB

N∑
n=1

(a†
nan + b†nbn) − JAA

N∑
n=1

(a†
nan+1 + H.c.)

− JAB

N∑
n=1

(a†
nbn + e−iφa†

n+1bn + H.c.), (2)

being an and bn the annihilation operators of the nth a and b
modes [the photonic bath is bipartite and is described by two
sublattices A and B; see Fig. 1(a)], N the number of modes
per sublattice, ωB the energy of each resonator, that we take
as the energy reference: ωB ≡ 0, JAA the coupling between the

A sites, JAB the hopping strength between the a and b modes,
and φ the phase difference in each loop.

For the interaction term Hint [last term of Eq. (1)], we con-
sider pointlike and dipole-field coupling under the rotating-
wave approximation, valid when the coupling strength is small
with respect to the other energy scales of the system [36]:

Hint = g

⎛
⎝ Ma∑

j=1

σ+
j an j +

M∑
j=Ma+1

σ+
j bn j

⎞
⎠ + H.c. (3)

Here g is the coupling constant, Ma is the number of qubits
coupled to A (so Mb ≡ M − Ma are coupled to B), and n j is
the position of the jth qubit.

Since we are interested in predictions in the thermody-
namic limit, N → ∞, we take periodic boundary condi-
tions for the bath and introduce plane-wave modes âk/b̂k ≡
1/

√
N

∑N
n=1 e−iknan/bn, in terms of which HST [Eq. (2)] reads

HST =
∑

k

(â†
k b̂†k )hST(k)

(
âk

b̂k

)
, (4)

with hST(k)

hST(k) =
(−2JAA cos k f (k, φ)

f ∗(k, φ) 0

)
, (5)

and f (k, φ) = −JAB(1 + e−i(k+φ) ). We introduce the ·̂ nota-
tion to distinguish the operators in real/momentum space.
We diagonalize hST(k) such that HST = ∑

k [ωu(k) û†
k ûk +

ωl (k) l̂†k l̂k], where ûk and l̂k are related to âk and b̂k by means
of a unitary:(

ûk

l̂k

)
=

(
cos(θk )e−iϕk − sin(θk )
sin(θk )e−iϕk cos(θk )

)(
âk

b̂k

)
, (6)

We provide the explicit expressions of θk and ϕk in
Appendix A. The bands ωu/l (k) read

ωu/l (k) = −JAA cos k ±
√

J2
AA cos2 k + 4J2

AB cos2[(k + φ)/2].

(7)

A celebrated feature of the sawtooth lattice is the appear-
ance of flat bands, setting JAB/JAA = √

2 and φ = 0 [37]. Here
we are, however, interested in the implications of a nontrivial
phase, φ �= 0, leading to nonsymmetric bands [see Fig. 1(b)],
due to the explicit breaking of time reversal [HST �= H∗

ST,
which implies hST(k) �= hST(−k)]. This cannot happen in a
photonic system without loops since one can get rid of the
phase φ by means of local transformations of the bosonic
operators. Besides, there appears another gap between both
bands unless φ = ±π/2 [see again Fig. 1(b)] where the two
bands touch at a single point k = ±π/2. These singular band
gaps lead to exotic phenomenology in higher dimensions
[38–40]. This is not the case here, since the coupling strength
to the upper/lower band ωl/u(k), defined by the functions
θk, ϕk , turn this point into a trivial band crossing, as we explain
in the next section.

III. QE RESONANT WITH ωu/l (k)

We study the spontaneous decay of one qubit when
� lies within the bands. The state at time t reads
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FIG. 2. Decay rate γD = −2Im
D
e (solid lines) and energy shift

δωD(�) = Re
D
e (� + i0+) (dashed lines) as a function of � for a

qubit coupled to sublattice A (blue) and B (red), with JAB = JAA and
φ = π/3 (a) and φ = π/2 (b). The vertical black lines stand for the
band limits.

|�D(t )〉 = e−iHtσ+|vac〉, where |vac〉 is the vacuum state and
D stands for the sublattice the QE is coupled to. As the
number of excitations N ≡ ∑N

n=1 (a†
nan + b†nbn) + σ+σ− is

a conserved quantity under the rotating-wave approximation
(3), the state |�D(t )〉 can be spanned in the single-excitation
subspace:

|�D(t )〉 =
{

cD
e (t )σ+ +

∑
k

[
cD

u (k, t )û†
k + cD

l (k, t )l̂†k
]}|0〉.

(8)

We can then calculate the dynamics numerically or semi-
analytically using the resolvent method [36], where cD

e (t )
is obtained as cD

e (t ) = L −1[Ge(z)], being L the Laplace
transform and Ge(z) the QE Green Function. The latter reads
Ge(z) = 1/[z + 
D

e (z)], being the self-energy 
D
e (z) (see

Appendix B)


D
e (z) =

∑
k

∑
α=u,l

|〈0|αkHintσ
+|0〉|2

z − ωα (k)
. (9)

Within the Markovian approximation z can be replaced
by z = � + i0+ when doing the inverse Laplace, yielding
cD

e (t ) 
 e−i
D
e (�+i0+ )t , where 
D

e (� + i0+) = δωD − iγD/2.
Therefore, δωD and γD correspond to the renormalization of
the excited state frequency and line width, respectively. In
Fig. 2 we plot these quantities for φ = π/3 and φ = π/2
[Figs. 2(a) and 2(b), respectively]. Both δωD and γD depends
on the sublattice the QE is coupled. Besides, as usual with
this kind of system, γD diverges in the band limits; there is

FIG. 3. Coupling G±,A(k) between a qubit placed at sublattice
A and ω±(k) for φ = π/2 and JAA = JAB. As seen, the couplings
G±,A(k) are not discontinuous at k = π/2.

an exception for φ �= π/2, where γA actually tends to 0 when
� matches the the upper (lower) band edge of ωl (k) [ωu(k)]
for φ ∈ [0, π/2) [(π/2, π ]]. Similar behavior was also
found in two-dimensional photonic crystals without sublattice
symmetry [41].

When φ = π/2, the self-energy (both the real and the
imaginary parts) is a smooth function for energies in the
band. This predicts that the spontaneous emission by a QE
will undergo an exponential decay. Consequently, the singular
band gap here does not imply exotic dynamics, contrarily to
the case of other photonic reservoirs in higher dimensions
[38–40]. This is better understood studying how the QE
couples to the bands for φ = π/2. We define two new bands
ω±(k), together with the corresponding qubit-band couplings
G±,D(k) (see Appendix C) as

ω±(k) ≡
{
ωu(k) if k < π/2

ωl (k) if k > π/2
, (10)

G±,D(k) ≡
{

Gu,D(k) if k < π/2

Gl,D(k) if k > π/2
, (11)

being Gu/l,D(k) the coupling to the upper/lower band when
the QE is coupled to the sublattice D (see again Appendix C).
Even if the results do not depend on the sublattice the QE
couples to, we consider for the sake of simplicity that the QE
is coupled to A. We plot both ω±(k) and G±,A(k) in Fig. 3
for φ = π/2. As seen, these bands ω±(k) do not have any
kink: They are smooth functions and just cross at k = π/2.
The couplings are also smooth. In conclusion, the apparent
nonanalytical behavior is actually an artifact of the definition
of the bands.

When calculating the exact QE dynamics (not shown),
we find band-edge-related phenomena such as fractional and
power-law decays in the long-time limit, similarly to those
appearing in other photonic materials [38,41–52]. We focus
instead on the emitted photons, which displays very distinc-
tive features from other photonic baths. We plot in Fig. 4(a) a
snapshot of the photon population in real space for a situation
where the emission is highly directional, which corresponds
to a QE coupled to the B sublattice with parameters JAB =
0.2JAA, φ = 1.5, and � = −0.5JAA. We emphasize that, even
though the bath breaks the ±k symmetry for any φ �= 0, the
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FIG. 4. (a) Emitted photon in positions as a function of time,
〈a†

n an〉(t ) and 〈b†nbn〉(t ), when the qubit is coupled to B for JAB =
0.2JAA, φ = 1.5, � = −0.5JAA, g = 0.1JAA, and bath size N = 200.
The qubit is at n = ne. (b) Directionality ratio RB

L for JAB = 0.2JAA as
a function of � and φ.

degree of directionality depends strongly on the parameters,
especially �. That is, φ �= 0 is a necessary but not sufficient
condition for chiral emission.

Let us further understand the origin and possibilities of the
directional emission in this system by considering that the QE
is resonant with ωl (k) and taking the limit when g is small
enough such that we are in the Markov regime. In this regime,
the dynamics is dominated by the resonant k-modes defined
by ωl (kR/L ) = �, where kR/L correspond to right- and left-
moving photons, respectively [see Fig. 1(b)]. Furthermore,
within each direction the excitations split between photons
propagating in the A or B sublattices. Thus, the decay rate γD

introduced as the imaginary part of the self-energy [Eq. (9)]
can be separated into four contributions:

γD = �D
a (kR) + �D

a (kL ) + �D
b (kR) + �D

b (kL ) , (12)

where �D
α (k) denotes the decay rate into the α sublattice at

momentum k for a QE coupled to the D sublattice, reading

�
A(B)
a(b) (k) = | sin(θk )|4(| cos(θk )|4)

|vl (k)| , (13)

�A
b (k) = | sin(θk )|2| cos(θk )|2

|vl (k)| = �B
a (k) (14)

where vl (k) is the group velocity in the lower band, vl (k) =
∂kωl (k) and θk was defined in (6) (see also Appendix A). We
define a global directionality ratio:

RD
L/R =

∑
α �D

α (kR/L )∑
α

[
�D

α (kR) + �D
α (kL )

] (15)

with α = a, b, that tell us the ratio of light emitted in the
left/right side in both sublattices, and a local one which
distinguishes between sublattices RD

R/L,a/b with the same ex-
pressions but without summing in α.

In Fig. 4(b) we plot RB
L as a function of � and φ > 0 for

a tunneling JAB = 0.2JAA. We observe that we can find nonre-
ciprocal emission, that is, RD

α > 1/2 for any φ �= 0. However,
in order to find RB

L ≈ 1 one has to take the limit JAB/JAA 
 1,
φ � π/2, and � � 0. In this regime, the slope of ωl (k) around
k = π/2 is drastically different for the resonant momenta kR

and kL, yielding a density of states which is much larger for kL

than for kR. Besides, θk is such that the numerators of �B
α (k)

are much larger for kL than for kR, which actually reinforces
the previous argument. Notice that the directional emission
can be kept for more than 95% for variations of φ and �

around 10% of the optimal value.
If the QE couples to the A sublattice instead, the global

emission is not directional: RA
L/R = 1/2. However, locally in

each sublattice, the emission can be made very directional,
RA

L,b, RA
R,a ≈ 1. We illustrate this fact in Fig. 5, where we see

that once again we get chirality for φ → π/2 and � → 0.
This is possible because in that case the coefficients θkR/L

are such that the directionality is reversed for emission into
the a modes: �A

a (kR) � �A
a (kL ), compensating the effect of

the density of states. We show a snapshot of wave packets
emitted into opposite directions in Fig. 6: As seen, the qubit
emits mainly into right-/left-propagating a/b modes. To our
knowledge, this is the first time this sublattice-dependent
chirality has been reported in the literature.

IV. QES OUTSIDE OF THE BAND:
TUNABLE COMPLEX INTERACTIONS

We focus now on the regime where � /∈ ωl/u(k), such that
the physics is dominated by the bound states (BSs) [52–66].
In the single-excitation subspace, the BS wave function of one
emitter coupled to the D sublattice reads∣∣�D

m

〉 =
∑

n

[
cD

m,a(n)a†
n + cD

m,b(n)b†n
]|0〉 + cD

m,eσ
+|0〉, (16)

where m = −1, 0, 1 denotes the different BSs that can appear
in the upper/middle/lower band gap, respectively. Their wave
functions and energies are obtained from H |�D

m 〉 = ED
m |�D

m 〉
with ED

m /∈ ωl,u(k) (see Appendix D). There always exists a BS
|�D

∓1〉 below [above] ωl[u](k), because the self-energy always
diverges at these band edges [62,64], such that the interaction
with the bath is able to push one state out of the band;
however, in the middle band gap, an extra BS |�D

0 〉 emerges
when � > 0, |φ| < π/2 or � < 0 and φ ∈ (−π,−π/2) ∪
(π/2, π ) for D = B or A, respectively (see Appendix D). The
reason of this condition is the finite value of 
D

e (z) in one of
the band edges, as shown in Fig. 2(a), which defines a critical
detuning for the existence of the BS.
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FIG. 5. Directionality ratio RA
L,a/b in panels (a) and (b), respec-

tively, for JAB = 0.2JAA. Notice that the scale of both panels is
different: (0,0.5) in (a) and (0.5,1) in (b).

To illustrate the main features of these BSs, we plot
in Fig. 7 their wave function coefficients in momenta and
positions for the interband BS |�D

0 〉. (1) Contrarily to what
happens in emission, the absolute value of the wave function
|cD

m,α (n)| is always symmetrically distributed around the QE
no matter the band gap or parameters considered; (2) as
it occurs with other photonic lattices [52–66], the BS are
exponentially localized around the emitter with a localization

FIG. 6. Emitted wave packet when the qubit is coupled to A for
JAB = 0.2JAA, φ = 1.5, � = −0.1JAA, g = 0.1JAA, N = 1000, and
tJAA = 200.

FIG. 7. Interband BS |�B
0 〉 for a qubit coupled to B for JAA =

JAB = 1, φ = 2.094, � = −0.01, and g = 0.1. In panel (a) we plot
the square modulus of the wave functions in momenta in both
sublattices, |cB

0,a/b(k)|2, whereas we show the absolute value (red
dashed line) and the real (black dots) and imaginary (green dots)
parts of the coefficients in positions for the b modes in panel (b). The
wave functions in k space are centered at k = π/3, so the periodicity
in positions is 6. Notice that the qubit is placed at n = ne.

length which can be tuned: the closer ED
m lies to one of the

band edges, the less localized the BS is; and (3) the novelty is
that the BSs acquire a tunable complex phase cD

m,α (n) ∝ eiϕD
m n.

For small g, ϕD
m matches the position of the band edge closest

to �, which turns out to depend on JAB/JAA and φ, as seen
in Fig. 1(b), e.g., the minimum of the upper band runs from
0 to π/2, so the phase of the interband BS can be tuned in
this range provided � tends to this band edge. In the example
of Fig. 7, the momentum of the closest band edge occurs at
kedge 
 π/3, so |cB

0,α (k)|2 is distributed around π/3 [Fig. 7(a)]
and cB

0,α (n) has periodicity 2π/(π/3) = 6 [Fig. 7(b)].
When many emitters couple to the bath, the BS mediate

interactions between QEs, which can be harnessed to simu-
late spin models with tunable interactions, allowing for the
study of many-body physics, phase transitions, etc. (e.g., see
Refs. [38,38,40,62,64,66–68]).

In the Markovian approximation, that is, when the coupling
strength between the qubits and the bath is small compared to
the gap between � and the bands (recall that we are consid-
ering the regime where � is not embedded in the photonic
modes) and also compared to the width of both bands, an
effective Hamiltonian for the qubits can be derived [67,68]:

Hqb =
∑
i< j

[
J

DiDj

i j σ+
i σ−

j + H.c.
]
, (17)
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an an+1

bn

an an+1

bn

FIG. 8. On the left-hand side, we show a plaquette of the saw-
tooth lattice coupled to three qubits. On the right-hand side, the pro-
posal for the implementation. The qubits are the blue parts. In black,
we show the qubit-resonator couplings. Both the a/b resonators and
the resonator-resonator couplings are in red and green.

being Di the sublattice the ith qubit is coupled to. Here J
DiDj

i j
is proportional to the two-qubit self-energy (see Appendix E)
and it inherits the shape of the BS wave function with energy
�, i.e., JAA/BB

i j ∝ cA/B
a/b (ri j ) and JAB

i j ∝ cA
b (ri j ). This has several

implications. First, qubit-qubit effective interactions decay ex-
ponentially with the distance between qubits, being the range
of the interactions tunable; in particular, it is a decreasing
function of the gap between � and the closest band and it
diverges when this gap closes. Besides, we can also tune its
phase, which, as in the sawtooth bath, is physically relevant
(see Appendix D), because the geometry of the effective spin
lattice has closed loops. This allows us to tune both the peri-
odicity of the interactions [see, for instance, Fig. 7(b), where
periodicity is 6], which may give rise to qualitatively different
spin phases. Even richer many-body dynamics will appear in
the nonperturbative regime replacing spins by polaritons [65].

V. IMPLEMENTATION

As the physics of Eq. (2) does not rely on polarization,
it can be obtained in platforms beyond optical ones [7,8,10–
12] such as cold atoms in state-dependent lattices [69–71],
where such complex loops have already been engineered
[72], or circuit QED platforms [73–79]. In Fig. 8 we show
a proposal to design this geometry with complex couplings
using superconducting qubits as implemented for a single loop
in Ref. [80]. For the qubit-resonator interaction, we assume
that the qubit is capacitively coupled to an LC resonator,
whereas the resonators are inductively coupled via a SQUID-
type loop based on Josephson junctions [81,82]. The junctions
are controlled via an external flux φext (t ) leading to the time-
dependent coupling Hamiltonian between two resonators:

Haux =
∑
i=1,2

ωia
†
i ai + J (t )(a†

1 + a1)(a†
2 + a2). (18)

Setting ω1 = ω, ω2 = ω + δ, and J (t ) = J cos(δt + φ),
and assuming J, δ 
 ω, we can average out the time depen-
dence of J (t ), getting the Hamiltonian we want to simulate;
cf. Eq. (2) [83]. For the implemented loop of Ref. [80], they
measure couplings of the order of 4.1 MHz (i.e.. J/ω ∼ 10−3).
Thus, concatenating several of these cells and placing selec-
tively the qubits, as done in Refs. [84,85] for simple coupled-
cavity arrays, one can explore the phenomena predicted in this
paper.

Thanks to the tunability of cQED implementations,
one can explore different regimes of parameters (e.g., see
Refs. [78,79]); in particular, it is possible to study the Marko-
vian regime, on which the results presented here are based.
It would be interesting also to study other regimes, e.g., the
ultrastrong coupling, which has been found in waveguide
QED [86], and whose consequences in chiral light-matter
interactions have been recently explored [87].

VI. CONCLUSIONS

We have studied the properties of QEs coupled to a min-
imal one-dimensional model breaking time-reversal symme-
try: the photonic sawtooth lattice. When the emitters are
resonant with the band they decay in an asymmetric fash-
ion into left-/right-moving modes. We identified regimes of
quasiperfect directionality, or more exotic ones in which the
emitter decays in both directions but to a different sublattice.
Thus, these systems can be an alternative way of exploring
chiral quantum optics without polarization or moving emit-
ters. Besides, when the emitter frequency lies in a band gap we
have found the emergence of BSs whose not only their spatial
range, but also their complex phase can be tuned through
the system parameters. Since these BSs mediate interactions
between emitters when many of them couple to the bath, our
setup provides access to the simulation of a large class of spin
models with complex interactions. Furthermore, we discussed
an implementation to observe such phenomenology based on
superconducting technologies.
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APPENDIX A: DIAGONALIZATION
OF THE SAWTOOTH LATTICE

In this Appendix, we give some details on the diagonal-
ization of the sawtooth Hamiltonian [Eq. (2)]. The bosonic
operators which diagonalize the model, ûk/l̂k [see Eq. (6)] are
related to âk and b̂k by means of a unitary transformation Pk .
The latter reads

Pk =
(

cos(θk )eiϕk sin(θk )eiϕk

− sin(θk ) cos(θk )

)
=

(
Nu(k) f ∗(k, φ) Nl (k) f ∗(k, φ)

Nu(k)(ωu(k) + 2JAA cos k) Nl (k)(ωl (k) + 2JAA cos k)

)
, (A1)
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where Nu/l (k) is a normalization factor

Nu/l (k) = 1√| f (k, φ)|2 + [ωu/l (k) + 2JAA cos k]2
. (A2)

APPENDIX B: SINGLE-QUBIT SELF-ENERGY

To compute cD
e (t ), we use the resolvent operator method

[36], which tells us that the probability amplitude can be
computed as

cD
e (t ) = − 1

2π i

∫ ∞

−∞
dE GD

e (E + i0+)e−iEt , (B1)

where GD
e (z) is the single-qubit Green function when it is

coupled to the sublattice D:

GD
e (z) = 1

z − � − 
D
e (z)

, (B2)

where 
D
e (z) the so-called self-energy. In this section, we

derive the expressions for the single-qubit self-energy when
the qubit is locally coupled to A or B. The 
D

e (z) of our
two-band model reads


D
e (z) =

∑
k

∑
α=u,l

|〈0|αkHintσ
+|0〉|2

z − ωα (k)
. (B3)

Considering Hint [Eq. (3)] for a single qubit) coupled to A
or B and taking into account the relation between (uk, lk ) and
(ak, bk ) [see Eqs. (6) and (A1)] and the expressions for ωu/l (k)
[see Eq. (7)]:


A
e (z) = g2

2π

∫ π

−π

dk
z

z2 + 2zJAA cos k − | f (k, φ)|2 , (B4)


B
e (z) = g2

2π

∫ π

−π

dk
z + 2JAA cos k

z2 + 2zJAA cos k − | f (k, φ)|2 . (B5)

We take here the thermodynamic limit: N → ∞. One can
solve these integrals by means of the change of variable
y ≡ eik . The integration domain is now the unit circle in the
complex plane:


A
e (z) = g2

2π i

∮
dy

zJAA(
zJAA − J2

ABeiφ
)
(y − y+)(y − y−)

, (B6)


B
e (z) = g2

2π i

∮
dy

JAAy2 + zy + JAA(
zJAA − J2

ABeiφ
)

y(y − y+)(y − y−)
, (B7)

where y± are

y± =
2J2

AB − z2 ±
√(

2J2
AB − z2

)2 − 4
(
z2J2

AA + J4
AB − 2zJAAJ2

AB cos φ
)

2
(
zJAA − J2

ABeiφ
) . (B8)

We define ymin/max as the minimum/maximum of {y−, y+}
with respect to the absolute values |y±|. Applying the
Cauchy’s residue theorem and taking into account that (|y+| −
1)(|y−| − 1) < 1 for all z ∈ C with Im(z) �= 0:


A
e (z) = g2z sign(|y−| − |y+|)(

zJAA − J2
ABeiφ

)
(y+ − y−)

, (B9)


B
e (z) = g2JAA

zJAA − J2
ABeiφ

[
1

y+y−
+ y2

min + (z/JAA)ymin + 1

ymin(ymin − ymax)

]
.

(B10)

For instance, if we consider that � is embedded in the lower
band, it is straightforward to derive Eqs. (13) and (14) from
Eqs. (B9) and (B10).

APPENDIX C: QUBIT-BAND COUPLINGS

Here we write the qubit-band coupling for both bands.
Let us consider the interaction Hamiltonian Hint [Eq. (3)]

for a single qubit. For the sake of simplicity, the qubit will
be coupled to A; it is because of this that we will denote the
interaction Hamiltonian as HA

int in this Appendix. We write this
Hamiltonian in terms of uk and lk [see Eq. (6)]:

HA
int = g√

N
σ+ ∑

k

eikx0 [cos(θk )eiϕk ûk + sin(θk )eiφk l̂k] + H.c.,

(C1)

where x0 is the position of the qubit and cos / sin(θk ) are
the matrix elements of the unitary transformation Pk [see

Eq. (A1)]. The latter determines the coupling strength to each
band: Gu,A(k) = | cos(θk )|2 and Gl,A(k) = | sin(θk )|2, up to
the density of states, which is given by 1/|∂ωu/l (k)|.

APPENDIX D: BOUND STATES

In this section, we discuss the existence conditions of the
bound states (BSs) and we compute their wave functions in
real space.

As mentioned in the main text, we have to impose the
eigenvalue equation H |�D

m 〉 = ED
m |�D

m 〉 with the energy ED
m

outside of the bands. This can be mapped into finding the roots
of the following function:

FD(E ) ≡ E − � − 
D
e (E ), (D1)

with E /∈ ωl,u(k) [64]. It can be easily proved from Eq. (9)
that 
D

e (E ) is a decreasing function, so FD(E ) is an increasing
function. Besides, limE→±∞ FD(E ) = ±∞. Then, according
to the behavior of 
D

e (E ) in the band edges, we can figure out
whether there exists or not a bound state in each of the band
gaps:

(1) A BS exists with Ebs < ωl (k) [Ebs > ωl (k)] for all the
values of the parameters if and only if FD(E ) > (<)0 when
E tends to the minimum of ωl (k) [maximum of ωu(k)]. We
plot 
D

e (E ) for E outside of the band in Fig. 2 and show that
it diverges in the the lowest/highest energy band edge, which
guarantees the aforementioned conditions, so the existence of
two BS below ωl (k) and over ωu(k), which we label as |�D

−1〉
and |�D

+1〉, respectively.
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(2) The situation is different in the middle band gap. In
Fig. 2(a) we observe when the QE is coupled to the B lattice,
the self-energy diverges in both the upper/lower middle band
edges. Thus, a middle BS, |�B

0 〉, always exists. On the other
hand, if the emitter is coupled to A, the state |�A

0 〉 exists
if � > 0 when |φ| < π/2 because the self-energy 
A

e (E )
vanishes when E tends to the maximum of ωl (k). When
φ ∈ (−π,−π/2) or φ ∈ (π/2, π ), the existence condition is
� < 0 (not shown).

Concerning the wave functions, if D = A, the coefficients
read

cA
m,a(n) = gcA

e

2π

∫ π

−π

dk eikn

[ |(Pk )11|2
ED

m − ωu(k)
+ |(Pk )12|2

EA
m − ωl (k)

]
,

(D2)

cA
m,b(n) = gcA

e

2π

∫ π

−π

dk eikn

[
(Pk )21(Pk )∗11

EA
m − ωu(k)

+ (Pk )22(Pk )∗12

EA
m − ωl (k)

]
,

(D3)

where EA
m is the energy of |�A

m,bs〉 and cA
e is obtained imposing

the normalization condition. Doing the math,

cA
m,a(n) = gce

2π

∫ π

−π

dk
eikn EA

m(
EA

m

)2 + JAA2EA
m cos k − | f (k, φ)|2

,

(D4)

cA
m,b(n) = −gce

2π

∫ π

−π

dk
eikn f ∗(k, φ)(

EA
m

)2 + 2JAAEA
m cos k − | f (k, φ)|2

.

(D5)

If the qubit is instead coupled to B,

cB
m,a(n) = gcB

e

2π

∫ π

−π

dk eikn

[
(Pk )11(Pk )∗21

ED
m − ωu(k)

+ (Pk )12(Pk )∗22

EB
m − ωl (k)

]
,

(D6)

cB
m,b(n) = gcB

e

2π

∫ π

−π

dk eikn

[ |(Pk )21)|2
EB

m − ωu(k)
+ |(Pk )22)|2

EB
m − ωl (k)

]
,

(D7)

which becomes

cB
m,a(n) = −gcB

e

2π

∫ π

−π

dk
eikn f (k, φ)(

EB
m

)2 + 2JAAEB
m cos k − | f (k, φ)|2

,

(D8)

cB
m,b(n) = gcB

e

2π

∫ π

−π

dk
eikn(EB

m + 2 cos k)(
EB

m

)2 + 2JAAEB
m cos k − | f (k, φ)|2

.

(D9)

Notice that all these expressions look similar to 
D
e (z) [see

Eqs. (B4) and (B5)], so we can calculate the coefficients in
terms of complex integrals [Eqs. (B6) and (B7)]. The change
of variable is still y = eik if n � 1, but y = e−ik if n � −1.
In the first case, the poles of the integral are y±, while in the
second are their complex conjugates y∗

±.

APPENDIX E: TWO-QUBIT SELF-ENERGY

We derive here the expressions for the collective self-
energy 
D12

c , which is proportional to the coefficients of the
effective Hamiltonian (17). The computation is totally analo-
gous to the single-qubit self-energy (see Sec. B). They read


AA
c (z; r12) = g2

2π

∫ π

−π

dk
eikr12 z

z2 + 2zJAA cos k − | f (k, φ)|2 , (E1)


BB
c (z; r12) = g2

2π

∫ π

−π

dk
eikr12 (z + 2JAA cos k)

z2 + 2zJAA cos k − | f (k, φ)|2 , (E2)


AB
c (z; r12) = − g2

2π

∫ π

−π

dk
eikr12 f ∗(k, φ)

z2+ 2zJAA cos k − | f (k, φ)|2 , (E3)

where r12 = x2 − x1 is the relative position of the qubits.
Notice that 
AA

c (z; r12), 
BB
c (z; r12), and 
AB

c (z; r12) are
proportional to the bound-state coefficients cA

m,a(r12),
cB

m,b(r12), and cA
m,b(r12) respectively, by changing the

bound-state energies ED
m by z [see Eqs. (D4), (D9), and

(D5)]. It is here where it becomes evident that the effective
interactions are mediated by the bound states.

Finally, we can compute the accumulated phase of a
closed loop in the effective spin lattice. For example, taking
the parameters of Fig. 7 (JAA = JAB = 1, φ = 2.094, � =
−0.01, and g = 0.1) and choosing the closed path a → a →
b → a, this phase is arg[
AA

c (�; 1)] + arg[
AB
c (�; 1)] +

arg[
AB
c (�; −1)] 
 −1.22. As it is nonzero, the effec-

tive models can simulate systems without time and parity
invariance.
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