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Minimal percolating sets for mutating infectious diseases
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This paper is dedicated to the study of the interaction between dynamical systems and percolation models,
with views toward the study of viral infections whose virus mutate with time. Recall that r-bootstrap percolation
describes a deterministic process where vertices of a graph are infected once r neighbors of it are infected.
We generalize this by introducing F (t )-bootstrap percolation, a time-dependent process where the number of
neighboring vertices that need to be infected for a disease to be transmitted is determined by a percolation
function F (t ) at each time t . After studying some of the basic properties of the model, we consider smallest
percolating sets and construct a polynomial-timed algorithm to find one smallest minimal percolating set on
finite trees for certain F (t )-bootstrap percolation models.
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I. INTRODUCTION

The study of infectious diseases though mathematical mod-
els dates back to 1766, when Bernoulli developed a model
to examine the mortality due to smallpox in England [1].
Moreover, the germ theory that describes the spreading of
infectious diseases was first established in 1840 by Henle
and was further developed in the late 19th and early 20th
centuries. This laid the groundwork for mathematical models
as it explained the way that infectious diseases spread, which
led to the rise of compartmental models. These models divide
populations into compartments (also called coarse-grained
models), where individuals in each compartment have the
same characteristics; Ross first established one such model in
1911 in Ref. [2] to study malaria and later on, basic compart-
mental models to study infectious diseases were established in
a sequence of three papers by Kermack and McKendrick [3]
(see also Ref. [4]).

In this paper we are interested in the interaction between
dynamical systems and percolation models, from the point
of view of infections which mutate with time. The use of
stochastic models to study infectious diseases has been popu-
lar for a long time, and dates back to the 1970s (e.g., see the
celebrated work of Harris [5] and Metz [4]). There are many
ways to mathematically model infections, including statistics-
based models such as regression models (e.g., Ref. [6]),
cumulative sum charts (e.g., Ref. [7]), hidden Markov mod-
els (e.g., Ref. [8]), and spatial models (e.g., Ref. [7]), as
well as mechanistic state-space models such as continuum
models which are described by differential equations (e.g.,
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Ref. [9]), stochastic models (e.g., Ref. [10]), complex network
models (e.g., Ref. [11]), and agent-based simulations (e.g.,
Ref. [12]—see also Ref. [1] and references therein).

Difficulties when modeling infections include incorporat-
ing the dynamics of behavior in models, as it may be difficult
to access the extent to which behaviors should be modeled
explicitly, quantifying changes in reporting behavior, as well
as identifying the role of movement and travel [13]. When
using data from multiple sources, difficulties may arise when
determining how the evidence should be weighted and when
handling dependence between datasets [14].

In what follows we shall introduce a novel type of dynam-
ical percolation which we call F (t )-bootstrap percolation,
thought of as a generalization of classical bootstrap percola-
tion. This approach allows us to model mutating infections,
and thus we dedicate this paper to the study of some of its
main features. After recalling classical r-bootstrap percola-
tion in Sec. I A, we introduce a time-dependent percolation
function F (t ) through which we introduce a dynamical aspect
for the percolating model, as described in Definition 1 in
Sec. II, given as follows. Given a function F (t ) : N → N, we
define an F (t )-bootstrap percolation model on a graph G with
vertices V and initially infected set A0 as the process which at
time t + 1 has infected set given by

At+1 = At ∪ {v ∈ V : |N (v) ∩ At | � F (t )}, (1)

where N (v) denotes the set of neighboring vertices to v,
and we let A∞ be the final set of infected vertices once the
percolation process has finished.

As mentioned before, this model allows one to study
situations in which an infection propagates at different rates
depending on the time. As an example one may consider the
case of the mutating virus of influenza within this setting:
instead of having a mutating virus for which the current
vaccination becomes ineffective for the new mutation, we can
think of the setting as a model with a fixed virus for which
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it is the rate of infection which is the one that changes with
time—in this case, the rate becomes higher as time passes.

In Sec. II we study some basic properties of this model,
describe certain (recurrent) functions which ensure the model
percolates, and study the critical probability pc. Since our
motivation comes partially from the study of effective vac-
cination programs which would allow to contain an epidemic,
we are interested both in the percolation time of the model,
as well as in minimal percolating sets. We study the former
in Sec. III, where by considering equivalent functions to F (t ),
we obtained bounds on the percolating time.

Finally, in Secs. IV and V we introduce and study smallest
minimal percolating sets for F (t )-bootstrap percolation on
(nonregular) trees. This leads to one of our main results in
Sec. V D, where we describe an algorithm for finding the
smallest minimal percolating sets. Last, we conclude the paper
with a comparison in Sec. VII between our model and our
algorithm for this model with the one considered in Ref. [15]
that solves the same problem for classical bootstrap percola-
tion, and analyze the effect of taking different functions within
our dynamical percolation.

A. Bootstrap percolation

The model introduced in this paper, described in Eq. (1),
is a dynamical generalization of what is known as bootstrap
percolation, introduced in 1979 in the context of solid state
physics to analyze diluted magnetic systems in which strong
competition exists between exchange and crystal-field inter-
actions [16]. Bootstrap percolation has seen applications in
diverse areas, including the studies of fluid flow in porous
areas, the orientational ordering process of magnetic alloys,
as well as the failure of units in a structured collection of
computer memory (e.g., see Ref. [17]).

Bootstrap percolation has long been studied mathemati-
cally on arbitrary trees [18], as well as on finite and in-
finite rooted trees including Galton-Watson trees (e.g., see
Ref. [19]). Compared with other models for infectious dis-
eases, cellular automata models better simulate the effects
of individual behavior and the spatial aspects of epidemic
spreading, and better account for the effects of mixing pat-
terns of individuals, as each individual is modeled separately,
instead of all individuals being assumed as homogeneous.
Hence, contagious diseases in which these factors have signif-
icant effects are better understood when analyzed with cellular
automata models such as bootstrap percolation [20], which
is defined as follows. For n ∈ Z+, we define an r-bootstrap
percolation model on a graph G with vertices V and initially
infected set A0 as the process in which at time t + 1 has
infected set given by

At+1 = At ∪ {v ∈ V : |N (v) ∩ At | � r}. (2)

Here, as before, we denoted by N (v) the set of neighboring
vertices to v.

In contrast, a SIR Model relates at each time t the number
of susceptible individuals S(t ) to the number of infected
individuals I (t ) and the number of recovered individuals R(t ),
by a system of differential equations—an example of a SIR
model used to simulate the spread of the dengue fever disease
appears in Ref. [21]. In these models, a fixed parameter β

FIG. 1. Depiction of 2-bootstrap percolation, where shaded ver-
tices indicated infected nodes.

denotes the average number of transmissions from an infected
node per time period. In particular, the rate of spread of
diseases are not necessarily constant in these models. This
helps motivate the introduction of a time-dependent model of
bootstrap percolation where the rate of spread varies accord-
ing to time, done in Sec. II.

In what follows we shall present a dynamical generaliza-
tion of the above model, for which it will be useful to have an
example to establish the comparisons. Consider the (irregular)
tree with three infected nodes at time t = 0, given by A0 =
{2, 4, 5} as shown in Fig. 1. Through 2-bootstrap percolation
at time t = 1, node 3 becomes infected because its neighbors
4 and 5 are infected at time t = 0. At time t = 2, node 1
becomes infected since its neighbors 2 and 3 are infected
at time t = 1. Finally, note that nodes 6,7,8 cannot become
infected because they each have only 1 neighbor, yet two or
more infected neighbors are required to become infected.

II. TIME-DEPENDENT PERCOLATION

The motivation of time-dependent percolation models ap-
pears since the rate of spread of diseases may change over
time. In the SIR models mentioned before, since β is the
average number of transmissions from an infected node in a
time period, 1/β is the time it takes to infect a node. If we
“divide the work” among several neighbors, then 1/β is also
the number of infected neighbors needed to infect the current
node.

Consider now an infection which would evolve with time.
This is, instead of taking the same number of neighbours in r-
bootstrap percolation, consider a percolation model where the
number of neighbours required to be infected for the disease
to propagate changes with time, following the behavior of a
function F (t ). We shall say a function is a percolation function
if it is a function F : I → N where I is an initial segment of
N (or all of N) that we use in a time-dependent percolation
process, and which specifies the number of neighbors required
to infect a node at time t .

Definition 1 (F (t )-Bootstrap percolation). Given a func-
tion F (t ) : N → N, we define an F (t )-bootstrap percolation
model on a graph G with vertices V and initially infected set
A0 as the process in which at time t + 1 has infected set given
by

At+1 = At ∪ {v ∈ V : |N (v) ∩ At | � F (t )}. (3)

Here, as before, we denoted by N (v) the set of neighboring
vertices to v, and we let A∞ be the final set of infected vertices
once the percolation process has finished.
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One should note that r-bootstrap percolation can be recov-
ered from F (t )-bootstrap percolation by setting the percola-
tion function to be the constant F (t ) = r. In what follows,
unless otherwise stated, the initial set A0 is chosen in the same
way as in r-bootstrap percolation: by randomly selecting a set
of initially infected vertices with probability p, for some fixed
value of p which is called the probability of infection.

If there are multiple percolation functions and initially in-
fected sets under consideration, then we may use the notation
AF

t to denote the set of infected nodes at time t percolating
under the function F (t ) with A0 as the initially infected set. In
particular, this would be the case when generalising the above
dynamical model to a multitype bootstrap percolation model
such as the one introduced in Ref. [22].

To understand some basic properties of F (t )-bootstrap
percolation, we shall first focus on a single update function
F (t ), and consider the critical probability pc of infection for
which the probability of percolation is 1

2 on finite trees—in the
case of infinite trees, this is the value below which there are
no clusters, and above which there are infinite clusters, with
probability 1. When considering classical bootstrap percola-
tion, note that the resulting set Ar

∞ of r-bootstrap percolation
is always contained in the resulting set An

∞ of n-bootstrap
percolation provided n � r. From the above, setting the value
m := mint F (t ), the resulting AF

∞ set of F (t )-bootstrap perco-
lation will be contained in Am

∞.
Note that for any time t� such that

F (t�) = m,

one has that if v ∈ AF
t� , then v ∈ AF

t ′
�

for the next time t ′
� for

which F (t ′
�) = m. Moreover, since for the recurrent functions

we are considering there are infinitely many times t� such
that F (t�) = m, one has that the final resulting set Am

∞ of
m-bootstrap percolation is contained in the final resulting set
AF

∞ of F (t )-bootstrap percolation. Then, the resulting sets of
m-bootstrap percolation and F (t )-bootstrap percolation need
to be identical, and hence the critical probability for F (t )-
bootstrap percolation is that of m-bootstrap percolation. In
other words, we have shown that if F (t ) equals its minimum
for infinitely many times t , then the critical probability of
infection pc for which the probability of percolation is 1/2,
is given by the value of the critical probability in m-bootstrap
percolation for m := mint F (t ), this is

pc[F (t ) − bootstrap] = pc(m − bootstrap)

for m = min
t

F (t ). (4)

The type of update functions that satisfy this include sinu-
soidal functions and, since we restricted the codomain to be
positive, weakly decreasing functions.

The percolation function F (t ) can be written in terms of
a one-parameter family of parameters β by setting F (t ) :=
� 1

β(t )	. As we shall see later, different choices of the one-
parameter family β(t ) defining F (t ) will lead to very different
dynamical models. A particular setup arises from Ref. [23],
which provides data on the time-dependent rate of a specific
virus spread, and through which one has that an interesting
family of parameters appears by setting

β(t ) = (b0 − b f )(1 − k)t + b f ,

where b0 is the initial rate of spread, b f is the final rate of
spread, and 0 < k < 1. Then at time t , the number of infected
neighbors it takes to infect a node is

F (t ) :=
⌈

1

(b0 − b f ) · (1 − k)t + b f

⌉
.

In this case, since β(t ) tends to b f , and 1
β

tends to 1
b f

, one
cans see that there will be infinitely many times t such that

F (t ) =
⌈

1

b f

⌉
.

Hence, in this setting from Eq. (4), the critical probability will
be same as that of a r-bootstrap percolation where r = � 1

b f
	.

III. PERCOLATION TIME

Informally, the percolation time (for finite graphs) is the
time it takes for the percolation process to terminate, starting
from a specific initially infected set of a graph. In terms of
limits, recall that the final percolating set is defined as

A∞ := lim
t→∞ At , (5)

and thus one may think of the percolation time as the smallest
time t for which At = A∞. Note that for percolation on
all infinite trees, there exists a percolation function and an
initially infected set such that a percolation time does not
exist, whereas there is always a defined percolation time for
percolation on finite trees. Thus, we restrict our following
discussions to finite trees.

By considering different initial probabilities of infection p
which determine the initially infected set A0, and different
percolation functions F (t ) one can see that the percolation
time of a model can vary drastically. To illustrate this, in
Fig. 2 we have plotted the percentage of nodes infected with
two different initial probabilities and four different percolation

FIG. 2. Percentage of nodes infected at time t for F (t )-bootstrap
percolation with initial probability p, on graphs with 100 nodes and
300 edges.
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functions. The model was ran 103 times for each combination
on random graphs with 102 nodes and 300 edges.

In the settings of Fig. 2, one can see that all the models
stabilize by time 10, implying that the percolation time is less
than or equal to 10. Generally, understanding the percolation
time is useful in determining when the disease spreading has
stabilized. In what follows, we find a method to generate an
upper bound on the percolation time given a specific graph and
function. Formally, for the percolation functions considered in
this paper, we define the percolation time t∗ as the minimum

t∗ := min
t

{t |At+1 = At }.

A. Equivalent functions

Expanding on the notation of Eq. (5), we shall denote by
AF

∞ the set of nodes infected by percolating the set A0 on the
graph with percolation function F (t ), and we shall simply
write A∞ when the percolation function F (t ) is clear from
context or irrelevant. Moreover, we shall say that two percola-
tion functions F1 : I1 → Z+ and F2 : I2 → Z+ are equivalent
(written as F1 ≡ F2) for the graph G if for all initially infected
sets A0, one has that

AF1∞ = AF2∞. (6)

This equivalence relation can be understood through the
lemma below, which uses an additional function γ (t ) to relate
two percolation functions F0 and F ′

0 if F ′
0 can be intuitively

“generated” by removing some values of F0. This removal
procedure is further specified below.

Given two subsets I1 and I2 of N, we say a function γ :
I1 → I2 ∪ {−1} is a nice function if it is surjective and

1. it is injective on γ −1(I2);
2. it is increasing on γ −1(I2);
3. it satisfies γ (a) � a or γ (a) = −1.
The notion of a nice function allows us to understand the

relation between two different dynamical percolation models
defined through two functions F (t ) and F ′(t ). Given I1, I2 ⊂
N, let F (t ) be any percolation function with domain I1, and
define the percolation function F ′(t ) with domain I2 as

F ′(t ) := F [γ −1(t )]

for γ (t ) a nice function. Through the function F ′(t ), for any
fixed initially infected set A0 and t ∈ I2, one can show by
induction (see Appendix A) that

AF ′
t ⊆ AF

γ −1(t ). (7)

Intuitively, the above results tell us that given a fixed time t0
and some t > t0, if F (t ) = � is the smallest value the function
takes on after the time t0, and F (t ) has already taken on that
value more than � times, for � the number of nodes in the
graph, then there will be no nodes that will be infected at that
time and the value is safe to be “removed.”

B. Removal process

In what follows we shall clarify the removal process, by
defining an upper bound on percolation time on a specified
tree and function F (t ). For this, let G be a regular tree of
degree d and � vertices. Given a percolation function F (t ),
define the functions F ′(t ) and γ : N → N ∪ {−1} by setting:

(i) F ′(0) := F (0), and γ (0) := 0.
(ii) Suppose the least value we have not considered F (t ) at

is a, and let b be the least value where F ′(b) has not yet been
defined. If F (a) has not yet appeared � times since the last
time t such that F (t ) < F (a) and F (a) � d , then set F ′(b) :=
F (a), and let γ (a) = b. Otherwise, γ (a) = −1.

Then, one can show (see Appendix B) that the two func-
tions are equivalent as defined in Eq. (6), this is

F ′(t ) ≡ F (t ). (8)

From the above description of equivalent functions, we can
see two things:

(i) The upper bound on the percolation time is the time
of the largest t such that F ′(t ) is defined, and we can use
this function in an algorithm to find the smallest minimal
percolating set since F (t ) and F ′(t ) are equivalent.

(ii) An upper bound on the percolation time can not be
obtained without regards to the percolation function.

To see item (ii), suppose we have such an upper bound b on
some connected graph with degree d and with 1 node initially
infected and more than 1 node not initially infected. If we have
percolation function F (t ) such that F (t ) = d + 1 for all t ∈
N � b and F (m) = 1 otherwise, then we see that there will
be nodes infected at time b + 1, leading to a contradiction.

To see the implications of the above points within the
equivalence of functions, suppose that the degree of the graph
in consideration is d , and define a sequence a, where a1 = d
and

an+1 = (an + 1)d.

Then, the size of the domain of F ′(t ) in Eq. (8) is

�d
i=1ai. (9)

Indeed, suppose each value do appear exactly d times after
the last value smaller than it appears. To count how large the
domain can be, we start with the possible ts such as F ′(t ) = 1s
in the function; there are d of them as 1 can maximally
appear d times. Note that this is equal to a1. Now, suppose
we have already counted all the possible ts when F ′(t ) <

n + 1, for 1leqn < d , which amounted to an. Then, there can
be maximally d instances at the between the appearance of
each t when F ′(t ) < n as well as before and after all such
appearances, so there are an + 1 places where F ′(t ) = n can
appear. Thus, there are maximally (an + 1)d elements t in
the domain such that F ′(t ) = n + 1. Summing all of them
yields �d

i=1ai, the total number of elements in the domain in
Eq. (9). Finally, note that from Eq. (8), for some F (t ), A0 and
n, one has AF

γ −1(n) = AF ′
n . If AF ′

∞ is reached by time �d
i=1ai, then

the set must be infected by time γ −1(�d
i=1ai ). Hence, in this

setting an upper bound of F (t ) percolating on a graph with
d vertices can be found by taking γ −1(�d

i=1ai ), as defined in
Eq. (9).

IV. MINIMAL PERCOLATING SETS

When considering percolations within a graph, it is of
much interest to understand which subsets of vertices, when
infected, would lead to the infection reaching the whole graph.
To study those sets, we shall refer to a percolating set of
a graph G with percolation function F (t ) is a set A0 for
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FIG. 3. (a) In this tree, having nodes 2,4,5 infected (shaded)
initially is sufficient to ensure that the whole tree is infected. (b) This
minimal percolating set shaded is of size 5.

which AF
∞ = G at a finite time. A minimal percolating set is a

percolating set A such that if any node is removed from A, it
will no longer be a percolating set.

A natural motivation for studying minimal percolating sets
is that as long as we keep the number of individuals infected
to less than the size of the minimal percolating set, we know
that the entire population will not be decimated. Bounds
on minimal percolating sets on grids and other less regular
graphs have extensively been studied. For instance, it has been
shown in Ref. [24] that for a grid [n]d , there exist a minimal
percolating set of size

4n2/33 + o(n2),

but there does not exist one larger than (n + 2)2/6. In the case
of trees, Ref. [15] gives an algorithm that finds the largest
and smallest minimal percolating sets on trees. Since then,
only a few further results have been obtained improving those
bounds (see, for example, the work on degree conditions
for bootstrap percolation from small sets in Ref. [25] and
references therein). However, the results in the above papers
cannot be easily extended to the dynamical model because
it makes several assumptions such as F (t ) �= 1 that do not
necessarily hold in the dynamical model.

In the following sections we shall study minimal percolat-
ing sets for certain models of F (t )-bootstrap percolations, but
before this is done, we shall first consider an example of a
minimal percolating set with F (t ) = t , as shown in Fig. 3.

In this case, the minimal percolating set has size 3, as
shown in Fig. 3(a). Indeed, we see that if we take away
any of the shaded nodes, the remaining initially infected
shaded nodes would not percolate to the whole tree, and thus
they form a minimal percolating set; further, there exists no
minimal percolating sets of size 1 or 2, thus this is the smallest
minimal percolating set. It should be noted that minimal
percolating sets can have different sizes. For example, another
minimal percolating set with 5 vertices appears in Fig. 3(b).

In what follows we shall work with general finite trees
T (V, E ) with set of vertices V and set of edges E . In particular,
we shall consider the smallest minimal percolating sets in the
following section.

V. ALGORITHMS FOR FINDING SMALLEST MINIMAL
PERCOLATING SET

Consider F (t )-bootstrap percolation on a tree T (V, E ) with
initially infected set A0 ⊂ V . As before, we shall denote by At

be the set of nodes infected at time t . For simplicity, we shall
use here the word “filled” synonymously with “infected.”

A. Smallest and largest times

To build an algorithm to find smallest percolating sets, we
first need to introduce a few definitions that will simplify the
notation at later stages. First, we shall denote by L(a) the
largest time t such that a � F (t ), and if there does not exist
such a time t , then set L(a) = ∞, this is

L(a) =
{

maxt {t : a � F (t )} if it exists,
∞ otherwise. (10)

Similarly, let B(a) be the smallest time t such that a � F (t ),
and if such a time t does not exist, set B(a) = ∞, leading to

B(a) =
{

mint {t : a � F (t )} if it exists,
∞ otherwise. (11)

Given a, b ∈ N, if a < b, then L(a) � L(b). Indeed, this
holds because if a node can be infected to with b neighbors,
then it can with a neighbors where a < b. Note that in general,
a smallest percolating set A0 must be a minimal percolating
set. To see this, suppose not. Then there exists some v in
A0 such that A0 − {v} percolates the graph. That means that
A0 − {v}, a smaller set that A0, is a percolating set. However,
since A0 is a smallest percolating set, we have a contradiction.
Hence, showing that a percolating set A0 is the smallest
implies that A0 is a minimal percolating set.

The first algorithm one may think of is to try every case.
There are 2n possible sets A0, and for each set we much
percolate A0 on T to find the smallest percolating set. This
amounts to an algorithm of complexity,

O(t2n),

where t is the upper bound on the percolation time. In what
follows we shall describe a polynomial-timed algorithm to
find the smallest minimal percolating set on T (V, E ), de-
scribed in the algorithm. For this, we shall introduce two
particular times associated to each vertex in the graph, and
formally define what isolated vertices are.

B. Isolated nodes

For each node v in the graph, we let ta(v) be the time
when it is infected, and t∗(v) the time when it is last allowed
to be infected; moreover, when building our algorithm, each
vertex will be allocated a truth value of whether it needs to
be further considered. A node v is said to be isolated with
regards to A0 if there is no vertex w ∈ V such that v becomes
infected when considering F (t )-bootstrap percolation with
initial set A0 ∪ {w}. From these definitions, a node is isolated
with regards to a set if it is impossible to infect it by adding
one of any other node to that set that is not itself.

Building toward the percolating algorithm, we shall show a
few properties first. First, note that if a node cannot be infected
by including a neighbor in the initial set, it is isolated. Hence,
by filling the neighbor in the initial set, we either increased
the number of neighbors infected to a sufficient amount, or we
expanded the time allowed to percolate with fewer neighbors
so that percolation is possible.
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A quick test to see whether a vertex is isolated can be done
as follows. Let v be an uninfected node such that not all of its
n neighbors are in set A0. Define a function

N : {0, 1, ..., n} → Z, (12)

where N (i) is the smallest time when i of the neighbors of
node v is infected, and set N (0) = 0. Then, a vertex v is
isolated iff there exists no i such that

F (t ) � i + 1 for some t ∈ (N (i), t∗]. (13)

To see that this test works, suppose s ∈ N (v) ∩ A0. If there
exists i such that F (t ) � i + 1 for some t ∈ (N (i), t∗], then
using A0 ∪ {s} as the initially infected set allows percolation
to happen at time t since there would be i + 1 neighbors
infected at each time N (i). Thus, by contradiction, the forward
direction is proven.

Let v be not isolated, and v ∈ P(A0 ∪ {s}) for some neigh-
bor s of v. Then there would be i + 1 neighbors infected at
each time N (i). Moreover, for v being to be infected, the
i + 1 neighbors must be able to fill v in the allowed time,
(N (i), t∗]. Thus, there exists N (i) such that F (t ) � i + 1 for
some t ∈ (N (i), t∗]. By contradiction, we proved the back-
wards direction.

C. Variation of initial sets

Note that if a vertex v is uninfected and N (v) ⊂ A0, then
the vertex must be isolated. In what follows we shall study the
effect of having different initially infected sets when studying
F (t )-bootstrap percolation. For this, let Q be an initial set
for which a fixed vertex v with n neighbours is isolated.
Denoting the neighbors of v be s1, s2, ..., sn, we let the times
at which they are infected be tQ

1 , tQ
2 , . . . , tQ

n . Here, if for some
1 � i � n, the vertex si is not infected, then set tQ

i to be some
arbitrarily large number. Moreover, consider another initial set
P such that the times at which s1, s2, ..., sn are infected are
tP
1 , tP

2 , . . . , tP
n satisfying

tQ
i = tP

i for i �= j, (14)

tQ
j � tP

j for i = j, (15)

for some 1 � j � n.
In the above setting, if v /∈ P, then the vertex v must be

isolated with regards to P as well. Indeed, consider NQ(i) as
defined in Eq. (12) for the set Q, and NP(i) the corresponding
function for the set P. Then for all integers k ∈ {0, 1, ..., n},
one has that NQ(k) � NP(k). Indeed, this is because with set
P, each neighbor of v is infected at or after they are with set
Q. Then, from Eq. (3), v is isolated with regards to Q so there
is no m such that

F (t ) � m + 1 for some t ∈ (NQ(m), t∗].

However, since

NQ(k) � NP(k) for all k ∈ {0, 1, ..., n},
we can say that there is no m such that

F (t ) � m + 1 for some t ∈ (NP(m), t∗],

as (NP(m), t∗] ⊆ (NQ(m), t∗]. Thus, we know that v must also
be isolated with regards to P.

Given a vertex v which is not isolated with n infected
neighbors, we shall define tp(v) ∈ (0, t∗] to be the largest
integer such that for i ∈ {0, 1, ...n}, one has that

F (tp) � i + 1. (16)

Note that to fill an isolated node v, one can fill it by filling one
of its neighbors by time tp(v), or just add the vertex it to the
initial set. Hence, one needs to fill a node vn which is either
the parent par(vn), a child chi(vn), or itself.

One can further understand the variation of initially in-
fected sets by noting that, given an isolated node v /∈ A0, to
achieve percolation, it is always better (faster) to include v in
A0 than attempting to make v unisolated. Indeed, it is possible
to make v isolated by including only descendants of v in A0

since we must include less than deg(v) neighbors. But we
know that if given the choice to include a descendant or a
v to the initial set, choosing v is absolutely advantageous
because the upwards percolation achieved by v infected at
some positive time is a subset of upwards percolation achieved
by filling it at time 0. Thus, including v to the initial set is
superior.

The above set-up can be understood further to find which
vertex needs to be chosen to be vn. To see this, consider a
vertex v /∈ A0. Then, in finding a node u to add to A0 so that
v ∈ A∞ for the initial set A0 ∪ {u} and such A∞ is maximized,
the vertex vn must be the parent par(v) of v. This can be
understood by noting that filling v by time t∗(v) already
ensures that all descendants of v will be infected, and that all
percolation upwards must go through the parent par(v) of v.
This means that filling any child of v to fill v (by including
some descendant of v in A0) we obtain a subset of percolation
if we include the parent par(v) of v in A0. Therefore, the
parent par(v) of v or a further ancestor needs to be included
in A0, which means vn needs to be the parent par(v) of v.

D. Smallest minimal percolating set algorithm

Note that given a node v /∈ A0, if we fill its parent par(v)
before tp(v), then the vertex will be infected. We are now
ready for our main result, which improves the naive O(t2n)
bound for finding minimal percolating sets to O(tn), as dis-
cussed further in the last section.

To obtain one smallest minimal percolating set of a tree
T (V, E ) with percolation function F (t ), proceed as follows:

1. Step 1. Initialize tree: For each node v, set t∗(v) to be
some arbitrarily large number, and set it to true for needing to
be considered.

2. Step 2. Percolate using current A0. Save the time ta’s at
which the nodes were infected. Stop the algorithm if the set of
nodes that are infected equals the set V .

3. Step 3. Consider a node v that is furthest away from the
root, and if there are multiple such nodes, then choose the one
that is isolated, if it exists.

(a) if v is isolated or is the root, then add v to A0.
(b) otherwise, set

t∗[par(v)] = tp(v) − 1

if it is smaller than the current t∗[par(v)] of the parent [for
tp(v) defined in Eq. (16)].

Set v as considered.
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4. Step 4. Go to step 2.
After the process has finished, the resulting set A0 is one of

the smallest minimal percolating sets.
Note that the specification that the tree must be finite

is important as the algorithm is iterative and relies on the
existence of a node furthest from the root.

The description of the algorithm through which one can
find a smallest percolating set, shall be organized as follows:
we will first show that the set A0 constructed through the steps
of the algorithm is a minimal percolating set, and then show
that it is the smallest such set. To see that A0 is a minimal
percolating set, we first need to show that A0 percolates. In
step 3, we have included all isolated nodes, as well as the root
if it wasn’t infected already, in A0 and guaranteed to fill all
other nodes by guaranteeing that their parents will be infected
by their time tp.

Showing that A0 is a minimal percolating set is equivalent
to showing that if we remove any node from A0, it will not
percolate to the whole tree. Note that in the process, we have
only included isolated nodes in A0 other than the root. This
means that if any node v0 is removed from A0, it will not
percolate to v0 because we only fill nodes higher than v0

after considering v0 and since turning a node isolated requires
filling at least one node higher and one descendant of v0, it
cannot be infected to after removing it from A0. Moreover, if
the root is in A0, since we considered the root last, it is implied
that the rest of A0 does not percolate to the root. Thus, A0 is a
minimal percolating set.

Now we show that the set A0 constructed through the algo-
rithm is of the smallest percolating size by contradiction using
Lemma 15. For this, suppose there is some other minimal
percolating set B for which |B| � |A|. Then, we can build an
injection A0 to B in the following manner: iteratively consider
the node a that is furthest from the root and a ∈ A0 that hasn’t
been considered, and map it to a vertex b0 which is itself or
one of its descendants of b where b ∈ B. We know that such a
b0 must exist by induction.

We first consider the case where a has no descendant in A.
Then, if the vertex b ∈ B and b is a descendant of a, we map
a to b. Now suppose there is no node b that is a descendant
of a where b ∈ B. Then, a ∈ B because otherwise a would be
isolated with regards to B as well, by Lemma 15. This means
that we can map a to a in this case.

Now we can consider the case where all the descendants d
of a such that d ∈ A := A0 has been mapped to a node bd ∈ B
where bd is d or a descendant of d . If there is such a b ∈ B,
then b is a descendant of a, and thus no nodes in A have been
matched to b yet, allowing us to map a to b. Now suppose
there is no such b ∈ B. This means that there is no b ∈ B such
that all of the descendants of a are descendants of b. Then, all
nodes in B that are descendants of a is either some descendant
of a ∈ A or some descendant of a descendant of a in A. This
means that percolating B, the children of a will all be infected
at later times than when percolating A, and by Lemma 15, one
has that a ∈ B because a would be isolated with regards to B.
So in this case, we can map a to a.

The map constructed above is injective because each ele-
ment of B has been mapped to not more than once. Since we
constructed an injective function from the set generated by
the algorithm A0 to a smaller minimal percolating set B0, we

FIG. 4. Panels (a–c) show the first three updates through the
algorithm in Sec. V D, where the vertices considered at each time
are shaded and each vertex is assigned the value of t∗.

have a contradiction because A0 then must be the same size
or larger than B0. Thus, the set generated from the algorithm
must be a smallest minimal percolating set.

From Sec. V D one can find the smallest minimal perco-
lating set on any finite tree. Moreover, it gives an intuition
for how to think of the vertices of the graph: in particular,
the property of “isolated” is not an absolute property, but a
property relative to the set of nodes that has been infected
before it. This isolatedness is easy to define and work with
in trees since each node has at most one parent. Moreover, a
similar property may be considered in more general graphs
and we hope to explore this in future work. Below we shall
demonstrate the algorithm of Sec. V D with an example.

E. Smallest minimal percolating sets on trees

We will preform the algorithm on the tree in Fig. 3,
with percolating function F (t ) = t . We first initialize all the
nodes, setting their time t∗ to some arbitrarily large number,
represented as ∞ in Fig. 4.

Percolating the empty set A0, the resulting infected set is
empty, as shown in Fig. 4(a). We then consider the furthest
node from root. None of them are isolated, so we can consider
any; we begin by considering node v = 6 in the labeling of
Fig. 3. It is not isolated, so we set the value to be

t∗[par(v)] = tp(v) − 1 = 0,

as can be seen in Fig. 4(b). Then we consider another node
furthest from the root, and through the algorithm set the t∗ of
the parent to tp − 1 = 0, as can be seen in Fig. 4(c).

The following steps of the algorithm are depicted in Fig. 5
below. As done in the first three steps of Fig. 4, we consider
the next furthest node v from the root, and by the same reason-
ing as node 6, set the t∗par(v) of the parent to t∗par(v) = 1, as
can be seen in Fig. 5(a) below.

FIG. 5. Panels (a, b) update 4–5 through the algorithm. Panel
(c) sets A0 in light shade, and infected vertices as gridded vertices.
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FIG. 6. Panels (a–c) update through the algorithm in Sec. V D
after setting A0 to be as in Fig. 5.

Now we consider node 4: since it is isolated, we fill it in as
in Fig. 5(b). The set of nodes infected can be seen in Fig. 5(c).
We then consider node 5, the furthest node from the root not
considered yet. Since it is not isolated, change the t∗par(v) of
its parent to tp(v) − 1 = 0, as in Fig. 6(a).

Then we consider node 3, which is isolated, so we include
it in A0. The infected nodes as a result of percolation by
this A0 is shown as red vertices in Fig. 6(c). To finish the
process, consider the vertex v = 2 since it is the furthest away
nonconsidered node. It is not isolated so we change the

t∗[par(v)] = tp(v) − 1 = 0,

as shown in Fig. 7(a). Finally, we consider the root: since it is
isolated, we include it in our A0 as seen in Fig. 7(b). Finally,
percolating this A0 results in all nodes being infected as shown
in Fig. 7(c), and thus we stop our algorithm.

Through the above algorithm, we have constructed a small-
est minimal percolating set shown as red vertices in Fig. 7(c),
which is of size 3. Comparing it with Fig. 3, we see that the
minimal percolating set in that example is indeed the smallest,
also with 3 elements. Finally, it should be noted that in general
the times tp for each node could be different from each other
and are not the same object.

From the above example, and its comparison with Fig. 3,
one can see that a graph can have multiple different smallest
minimal percolating sets, and the algorithm finds just one.
In the algorithm of Sec. V D, one minimizes the size of a
minimal percolating set, relying on the fact that as long as
a node is not isolated, one can engineer its parent to become
infected so as to infect the initial node. The motivation of the
definition of isolated stems from trying to find a variable that
describes whether a node is still possible to become infected
by infecting its parent. Because the algorithm is on trees, we
could define isolation to be the inability to be infected if we
add only one node.

FIG. 7. Final steps of the algorithm, as in Fig. 5.

FIG. 8. The size of smallest minimal percolating sets on perfect
trees with height 4, with a constant and a nonconstant percolation
function F (t ).

VI. FURTHER PROPERTIES OF F(t )-BOOTSTRAP
PERCOLATION AND OUR ALGORITHM

We shall dedicate this section to further the analysis of our
algorithm and its complexity, its comparison to the work in
Ref. [15], and to consider our model on random trees.

A. Complexity

First, we shall consider the complexity of the algorithm
in Sec. V D to find the smallest minimal percolating set on a
graph with n vertices. To calculate this, suppose t is the upper
bound on percolation time; we have presented a way to find
such an upper bound in the previous sections. In the algorithm,
we first initialize the tree, which is linear timed. Steps 2 and
3 are run at most n times as there can only be a total of n
unconsidered nodes. The upper bound on time is t , so steps 2
will take t to run. Determining whether a node is isolated is
linear timed, so determining isolated-ness of all nodes on the
same level is quadratic timed, and doing the specifics of step
3 is constant timed. Thus, the algorithm is

O[n + n(t + n2)] = O(tn + n3) = O(tn),

much better than then O(t2n) complexity of the naive algo-
rithm.

B. Comparison on perfect trees

Finally, we shall compare our algorithm with classical
r-bootstrap percolation. For this, in Fig. 8 we show a com-
parison of sizes of the smallest minimal percolating sets on
perfect trees of height 4, varying the degree of the tree. Two
different functions were compared: one is constant and the
other is quadratic. We see that the time-dependent bootstrap
percolation model can be superior in modeling diseases with
time-variant speed of spread, for that if each individual has
around 10 social connections, the smallest number of individ-
uals needed to be infected to percolate the whole population
has a difference of around 103 between the two models.

C. Comparison on random trees

We shall conclude this work by comparing the smallest
minimal percolating sets found through our algorithm and
those constructed by Riedl in Ref. [15]. To understand the
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FIG. 9. Trials done on 10 000 random trees of n nodes, taking
the average, and dividing it by n for the fraction of node needed to be
initially infected for the model to percolate.

difference of the two models, we shall first consider in Fig. 9
three percolating functions F (t ) on random trees of different
sizes, where each random tree has been formed by beginning
with one node, and then for each new node i we add, use a
random number from 1 to i − 1 to determine where to attach
this node.

In Fig. 9, the size of the smallest minimal percolating set
can be obtained by multiplying the size of the minimal perco-
lating set by the corresponding value of n. In particular, one
can see how the exponential function requires an increasingly
larger minimal percolating set in comparison with polynomial
percolating functions.

D. Comparison with Ref. [15]

Riedl provided an algorithm for the smallest minimal per-
colating sets in trees for r-bootstrap percolation in Ref. [15]
that runs in linear time. We shall describe his algorithm
generally to clarify the comparisons we will make. Riedl
defined a trailing star or trailing pseudostar as a subtree with
each vertex being of distance at most 1 or 2 away, respectively,
from a certain center vertex that is connected to the rest of the
tree by only one edge. Then, the first step of Riedl’s algorithm
is a reduction procedure that ensures every nonleaf has degree
at least r: Intuitively, one repeatedly finds a vertex with degree
less than r, include it to the minimal percolating set, remove it
and all the edges attached to it, and for each of the connected
components, add a new node with degree 1 connected to the
node that was a neighbor of the node we removed.

Then, the algorithm identifies a trailing star or pseudostar,
whose center shall be denoted by v and its set of leaves
by L. Letting the original tree be T , if the number of leafs
on v is less than r, then set T ′ = T \ (v ∪ L); otherwise,
set T ′ = T \ L. Recursively set A′ as the smallest minimal
percolating set of T ′ under r-bootstrap percolation. Then, the
smallest minimal percolating set for T is A′ ∪ L if |L| < r and
A′ ∪ L \ v otherwise. Using Riedl’s algorithm, we first note
that there is a trailing star centered at 3 with 2 leaves, as seen
in Fig. 10. Removing the leaf, there is a trailing star at 1 with
1 leaf. Removing 1 and 2, we have one node left, which is in
our A′. Adding the leaves back and removing 3, we have an
A0 of 2,3 and 5, a smallest minimal percolating set. Thus, the
smallest minimal percolating set with Riedl’s algorithm also
has size 3, as expected.

FIG. 10. Degree 2 tree with 5 nodes.

To compare with the work of Ref. [15], we shall run the
algorithm with F (t ) = 2 (leading to 2-bootstrap percolation
as considered in Ref. [15]) as well as linear-timed function on
the following graph:

With our algorithm, we see that nodes 2, 3, and 5 are
isolated, respectively, and when we add them to the initial
set, all nodes become infected. Thus, the smallest minimal
percolating set with our algorithm has size 3.

We shall now compare our algorithm to that of Riedl. A
key step in Riedl’s algorithm, which is including the leaves
of stars and pseudostars in the final minimal percolating set,
assumes that these leaves cannot be infected as it is assumed
that r > 1. However, in our algorithm, we consider functions
that may have the value of 1 somewhere in the function,
thus we cannot make that assumption. Further, in r-bootstrap
percolation, time of infection of each vertex does not need
to be taken into account when calculating the conditions for
a node to be infected as that r is constant, whereas in the
time-dependent case, it is necessary: Suppose a node has n
neighbors, and there is only one t such that F (t ) � n, so all
neighbors must be infected by time n in order for n to become
infected.

The problem our algorithm solves is a generalization of
Riedl’s, for that it finds one smallest minimal percolating set
for functions including constant ones. It has higher computa-
tional complexity for that it is not guaranteed for an unisolated
node to be infected once one other neighbor of it is infected
without accounting for time limits.

VII. CONCLUDING REMARKS

This paper is dedicated to the introduction and study of
a novel time-dependant percolation model. The set up gen-
eralises the standard r-bootstrap percolation by introducing a
time-dependant percolation function F (t ), through which we
define F (t )-bootstrap percolation (see Definition 1). Some ba-
sic properties of F (t )-bootstrap percolation are then studied,
with particular attention given to the critical probability pc for
certain recurrent functions F (t ), for which we give bounds in
Sec. II.

Our motivation comes partially from the study of effec-
tive vaccination programs which would allow to contain an
epidemic, and thus we are interested both in the percolation
time of the model, as well as in minimal percolating sets. We
study the former in Sec. III, where by considering equivalent
functions to F (t ), we obtained bounds on the percolating time
(see Fig. 2). In particular, the results in Sec. III we show that if
F (t ) = � is the smallest value the function takes on after some
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fixed time t0, and F (t ) has already taken on that value more
than times than the number of nodes in the graph, then there
will be no nodes that will be infected at that time and the value
is safe to be “removed.” The removal process is explained in
the same section, and is characterized by obtaining an upper
bound on percolation time on a specified tree and function
F (t ).

In Secs. IV and V we introduce and study smallest minimal
percolating sets for F (t )-bootstrap percolation on (nonregu-
lar) trees. Our main results appear in Sec. V D, and are given
by an algorithm for finding the smallest minimal percolating
sets. To show the relevance of our work, we shall conclude this
note with a short comparison of our model with those existing
in the literature.

Finally, we should mention that the work presented in
previous sections could be generalized in several directions
and, in particular, we hope to develop a similar algorithm for
largest minimal percolating set; and study the size of largest
and smallest minimal percolating sets in lattices.

ACKNOWLEDGMENTS

The authors are thankful to MIT PRIMES-USA for the
opportunity to conduct this research together, and in particular
Tanya Khovanova for her continued support, to Eric Riedl
and Yongyi Chen for comments on a draft of the paper, and
to Rinni Bhansali and Fidel I. Schaposnik for useful advice
regarding our code. The work of Laura Schaposnik is partially
supported through the NSF Grants No. DMS-1509693 and
CAREER DMS No. 1749013, and she is thankful to the
Simons Center for Geometry and Physics for the hospitality
during part of the preparation of the manuscript. This material
is also based upon work supported by the National Science
Foundation under Grant No. DMS- 1440140 while Laura
Schaposnik was in residence at the Mathematical Sciences
Research Institute in Berkeley, CA.

APPENDIX A: ON NICE FUNCTIONS

In what follows we shall prove Eq. (7). One should note
that F ′(t ) is well-defined. Indeed, since the domain of F ′(t ) is
I2, we have that t ∈ I2 and thus γ −1(t ) is a valid expression.
Moreover, γ −1(t ) exists because γ is surjective, and it is
unique since I2 is an initial segment of N and hence t �= −1.
Furthermore, for any a, b ∈ I1, if γ (a) = γ (b) �= −1, then
a = b. Since the domain of γ is I1, then γ −1(t ) ∈ I1. This
means that γ −1(t ) is in the domain of F (t ) and thus one has
that F ′(t ) is defined for all t ∈ I2.

To prove Eq. (7), note that since γ −1(0) = 0 and the
initially infected sets for the models with F (t ) and F ′(t )
are the same, it must be true that AF ′

0 ⊆ AF
0 , and in particu-

lar, AF ′
0 = AF

0 = A0. To perform the inductive step, suppose
that for some t ∈ I2 and t + 1 ∈ I2, one has AF ′

t ⊆ AF
γ −1(t ).

Moreover, suppose there is a node n such that n ∈ AF ′
t+1 but

n /∈ AF
γ −1(t+1). Then, this means that there exists a neighbor n′

of n such that n′ ∈ AF ′
t but n′ /∈ AF

γ −1(t+1)−1. Indeed, otherwise

this would imply that the set of neighbors of n infected
prior to the specified times are the same for both models,
and since F ′(t + 1) = F [γ −1(t + 1)] for t ∈ I2, and thus n
would be infected in both or neither models. From the above,
since t < t + 1 one must have γ −1(t ) < γ −1(t + 1), and
thus

γ −1(t ) � γ −1(t + 1) − 1.

Moreover, since n′ /∈ AF
γ −1(t+1)−1, then n′ /∈ AF

γ −1(t ). However,

we assumed n′ ∈ AF ′
t , and since AF ′

0 ⊆ AF
0 , we have a contra-

diction, so it must be true that the sets satisfy AF ′
t+1 ⊆ AF

γ −1(t+1).
Thus, we have proven that for any initially infected set A0 and
t ∈ I2, one has that Eq. (7) is satisfied for all t ∈ I2.

Through Eq. (7) we can further understand when an F (t )-
percolation process finishes in the following manner. Given a
percolation function F (t ) and a fixed time t ∈ N, let tp < t
be such that F (tp) < F (t ), and suppose there does not exist
another time ti ∈ N where tp < ti < t such that F (ti ) < F (t ).
Suppose further that we use this percolation function on a
graph with � vertices. Then, if

|{ti|F (ti ) = F (t )}| > �,

then there are no nodes that becomes infected at time t . To
see this, suppose some node n is infected at time t . Then, this
would imply that all nodes are infected before time t . We can
show this using contradiction: suppose there exists m nodes ni

that there are not infected by time t . Then we know that there
exists at least m of t j ∈ N such that tp < t j < t , for which
F (t j ) = F (t ) and such that there is no node infected at t j .
Matching each ni with some t j and letting tk ∈ N be such that
t j < tk � t , one can see that there is some node infected at
tk , and F (tk ) = F (t ). Moreover, this implies that there is no
tx ∈ N such that t j < tx < tk and such that there is some node
infected at tx and F (tx ) = a. We know such a tk exists because
there is a node infected at time t .

From the above, for each ni there are two cases: either the
set of nodes infected by t j is the same as the set of nodes
infected by tk , or there exists node p in the set of nodes
infected by tk but not in the set of nodes infected by its t j . We
have a contradiction for the first case: there must be a node
infected at time t j is this is the case, as the set of infected
nodes are the same as time tk , so the first case is not possible.
So the second case must hold for all m of ni’s. But then, the
second case implies that there is a node infected between t j

and tk . This means that at least m additional nodes are infected,
adding to the at least � − m nodes infected at ti such that
F (ti ) = a and there is a node infected at ti, we have at least
� − m + m = � nodes infected before t . But if all � nodes are
infected before t , this would mean there are no nodes to infect
at time t , so n does not exist.

APPENDIX B: ON EQUIVALENT FUNCTIONS

To show Eq. (8), note that intuitively the function γ con-
structed above is mapping the index associated to F (t ) to the
index associated to F ′(t ). If omitted, then it is mapped to −1
by γ . To prove the statements, we will prove that PF (t )(A) =
PF ′(t )(A). Suppose we have a node n in PF (t )(A), and it is
infected at time t0. Suppose F (t0) = a for some a ∈ Z+, and
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let tprev be the largest integer tprev < a such that F (tprev) < a.
Suppose further that t0 is the mth instance such that F (t ) = a
for some t . Moreover, if m > v, then there cannot be any node
infected at time t0 under F (t ), and thus it follows that m � v.
But if m � v, then γ (t0) �= −1, and therefore all nodes that
are infected under F (t ) became infected at some time t where
γ (t0) �= −1.

Recall that AF
0 = AF ′

0 , and suppose for some n such that
γ (n) �= −1, one has that AF

n = AF ′
γ (n). We know that for any

n < t < γ −1[γ (n) + 1], γ (t ) = −1, so nothing would be in-
fected under F (t ) after time n but before γ −1[γ (n) + 1].
This means that the set of previously infected nodes at time

γ −1[γ (n) + 1] − 1 is the same as the set of nodes infected
before time n leading to

AF
n = AF ′

γ −1(γ (n)+1)−1.

Then, since F {γ −1[γ (n) + 1]} = F ′[γ (n) + 1] and the set of
previously infected nodes for both are AF

n , we know that
AF

n+1 = AF ′
γ (n+1). Thus, for any time n′ in the domain of F ′(t ),

there exist a corresponding time n for percolation under F (t )
such that the infected set at time n under F (t ) and the infected
set at time n′ under F ′(t ) are the same, and thus AF

∞ = AF ′
∞,

leading to Eq. (8).
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