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Rising and sinking intruders in dense granular flows
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‘We computationally determine the net bed force on single spherical intruder particles in dense granular flows
as a function of particle size, particle density, shear rate, overburden pressure, and gravity. A simple buoyancy-
like scaling law is recovered (analogous to that in fluids), but with a scale factor that depends on the particle size
ratio due to discrete contacts. Comparing the bed force with the intruder weight results in predictions of whether
an intruder rises or sinks that agree with data from various independent experiments of free surface granular

flows.
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Intruder particles in fluidized or flowing granular beds
tend to segregate (rise or sink) due to their size or den-
sity difference with the bed particles [1-15]. Segregation in
vibrofluidized systems, known as the Brazil nut effect [3],
depends on various mechanisms [1-8] including buoyancy.
With sufficient fluidization, the buoyancy force on an intruder
follows Archimedes’ principle [8], thus explaining the phase
transition between normal and reverse Brazil nut effects [5].
In contrast to this clear picture, the force driving segregation
in dense granular flows remains elusive. While extensive
research has focused on segregation of flowing bidisperse
mixtures from the continuum perspective [16,17], quantitative
studies of the particle-scale segregation force are fewer and
more recent. Guillard et al. [12] proposed a virtual spring-
based force meter in numerical simulations that allows direct
measurement of the segregation force in shear flows. They in-
terpreted the force as summed contributions from normal and
shear stress gradients based on two-dimensional wall-driven
flow simulations. van der Vaart et al. [14] applied a similar
approach in three-dimensional chute flows and decomposed
the measured force into lift- and buoyancy-like forces. Despite
these insights, a generalized characterization of the segrega-
tion force is still lacking in either size [11-15] or density
[10] segregation, as well as more complicated situations of
combined size and density segregation. For example, Félix
and Thomas [9] found an interplay between size and den-
sity whereby segregation can change direction (rise or sink)
more than once as the intruder size increases. The rise-sink
transition depends mainly on size and density ratios but is
insensitive to flow geometries (chute, heap, and rotating drum)
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or flow rates (e.g., the rotation speed of a drum) [9]. None of
the recent segregation force laws [12,14] or state-of-the-art
segregation theories [16-20] offer a priori prediction of the
entire rise-sink transition.

Here we solve the puzzle by providing a general scaling
law that allows shear-induced segregation to be viewed as a
result of the imbalance between the gravitational force and a
size-corrected buoyancy force. This is achieved by exploring
a wide range of size and density ratios under controlled
pressure and shear rate in a constant-shear-rate system. The
scaling law is confirmed in chute flow simulations where shear
rate gradients are small and validated by previous canonical
surface flow experiments [9].

Methods. We simulate two flow systems using the dis-
crete element method code LIGGGHTS [21]. The first system
consists of a constant-shear-rate geometry [Fig. 1(a)] where
bed particles of diameter d and density p are sheared in
a streamwise (x) and spanwise (y) periodic box of length
30d, height 30d, and width 10d to 30d (varied as needed)
in the presence of gravity (typically, g = 9.81 m/s*). The top
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FIG. 1. (a) Intruder particle (red) in a controlled, constant-shear-
rate flow. A virtual spring measures the net vertical bed force on
the intruder. (b) Rheology for constant-shear-rate and chute flows
(60 = {22,24,25,28}°). Data are depth-averaged values. Error bars
indicate £1 standard deviation.
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and bottom walls are roughened with randomly distributed
stationary particles to reduce slip [22], and an overburden
pressure P, is applied reactively on the top wall. A constant
shear rate y is imposed across the geometry by applying a
streamwise stabilizing force to each particle (including the
intruder); at each time step, for a particle with streamwise
velocity u, and vertical position z,, a small force proportional
to Yz, —u, is added in the x direction [Fig. 1(a)]. This
stabilizing algorithm, commonly used by granular rheologists
[23-25] and recently applied to segregation studies [26],
can generate constant-shear-rate flows over a wide range of
conditions: 600 Pa < Py <3000 Paand 157! <y <40s7!,
leading to depth-averaged inertial numbers I = yd+/p/o;
ranging from 0.005 to 0.25, where o, is the vertical normal
stress. Since we focus on the flow far from rigid boundaries,
this geometry can be viewed as a representative volume where
the segregation force may be associated with a controlled,
locally uniform shear rate and vertical normal stress. The
second flow we simulate is inclined chute flow (with slope
angle 6 and g, = g cos ), as used in previous experimental
and numerical studies of intruder segregation [9,14]. This flow
exhibits slightly nonlinear velocity profiles, serving to confirm
the generality of the results based on the linearized (but inho-
mogeneous in stress fields), constant-shear-rate system. The
similar values of effective friction u and packing fraction ¢ in
the two systems indicate nearly the same rheology [Fig. 1(b)].

In our simulations, we use bed particles of d =5 mm
with a 10% uniform size distribution to avoid layering, p =
2500 kg/m? (varied to change the density ratio), and material
properties similar to glass beads (used in experiments [9]), i.e.,
the Hertz contact model with Young’s modulus 5 x 107 Pa
(reduced for computational efficiency), Poisson’s ratio 0.4,
restitution coefficient 0.8, and friction coefficient 0.5.

An intruder of diameter d; and density p; is placed near the
middle of the bed (initial height z), with size ratio R = d;/d
varying from 0.5 to 8 and density ratio R, = p;/p varying
from 0.5 to 3. To measure the vertical force driving segrega-
tion, we follow Guillard et al. [12] and tether the intruder to a
vertical spring (leaving free the other five degrees of freedom),
which causes it to fluctuate about an equilibrium height zeq
[Fig. 1(a)]. In steady state, the net contact force exerted on
the intruder by the neighboring bed particles, the bed force F,
is balanced by the spring force and the gravitational force,
ie., F = k(zeq — 20) +m;g;, where k is the virtual spring
stiffness and m; is the intruder mass. The spring acts as a force
meter and the measurement of F' is insensitive to k [12,14].
Uncertainties (error bars) of F are estimated considering
temporal correlations [27] of the fluctuations of the intruder
height about zq.

Results. Figure 2(a) shows that, for p; = p, F (symbols)
and m;g, (dashed curve) increase similarly with R. However,
subtle differences between F and m;g, indicate imbalanced
forces that drive segregation. To better visualize the differ-
ences, the ratio F'/m;g, is plotted in Fig. 2(b). Focusing on
R, =1, F/mg; is less than one for R < 1, ie., a small
intruder is pulled down by gravity. As R is increased above
one, F'/m;g, becomes greater than one, i.e, a large intruder
is pushed up by the bed force. These scenarios are consistent
with typical percolation and squeeze expulsion explanations
for size segregation [13,28]. Notably, F/m;g, falls slightly
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FIG. 2. Dependence of F on various parameters. Data in (a)-
(c) are from the constant-shear-rate system. (a) F' and m; g, vs R for
pi = p (p =2500kg/m> Py = 600 Pa, y =30s"", g =9.81 m/s?).
Inset: varying p;. (b) F/m;g, vs R for R, = {0.5, 1, 3} with varying
o and p;. (c) F/m;g, vs R for 600 Pa < Py < 3000 Pa, 10 s~!
y <40s7!, and g = {5, 15} m/s?. Inset: F/m;g. vs I for 1.4 < R
1.6 (selected for illustration). (d) Constant-shear-rate results (P,
600 Pa, y = 30 s~!), chute flow results (6 = {22, 24, 25, 28}°), and
data from [14]. Shaded (unshaded) areas in (b)—(d) indicate that the
intruder sinks (rises) from its initial position.
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below one for R > 4, since m;g, increases more rapidly with R
than F'; thus very large intruders sink. This is consistent with
reverse segregation [9].

Next, we vary R, by changing p;. The inset of Fig. 2(a)
shows that F' remains unchanged as p; increases from 0.5p to
3p (symbols), whereas m;g, obviously depends on p; (dashed
curves). Therefore, the intruder density does not affect the
bed force but alters segregation by changing the ratio F'/m;g,.
Figure 2(b) shows that data for varying p; and p collapse on
curves identified only by R,, i.e., whether an intruder rises
or sinks is determined only by the relative diameter (R) and
density (R,).

Figure 2(c) shows that flow conditions Py, ¥, and g have
no significant impact on F/m;g, over a wide range of vari-
ation. As illustrated in Fig. 2(c) inset, F'/m;g, is essentially
independent of I for 0.05 < I < 0.25, a range encompassing
typical inertial flows [29]. Reducing I toward the quasistatic
limit (typically 10~%) may enhance the segregation force [12],
a point we address below.

Finally, Fig. 2(d) shows that results from the constant-
shear-rate system described to this point are consistent with
results from chute flows, including previous simulations of
glass beads using a different (linear) contact model [14]; the
chute flow results are insensitive to 6. This agreement indi-
cates that F' is system invariant for similar granular materials.

Scaling. We now focus on the scaling of F and test a
buoyancy-like Archimedes force scale, ¢pg.V:, where V; is
the intruder volume, viewing the granular flow as a “fluid”
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FIG. 3. (a) F/¢ppg.V; vs R, with varying p;, p, Py, y, 0, and g in
constant-shear-rate and chute flows. Data from [14] is also included
(red stars). Solid curve is a fit to F = f(R)¢pg.V:, with dashed
curves showing the two exponential terms defining f(R); see text.
Inset: extreme cases with I = 0.005 (Py = 3000 Pa, y =1 s7!) and
w; =0 (P, = 1800 Pa, y =20 s™'), respectively. (b) N./N, vs R
(Py = 2400 Pa, y = 20 s71). Inset: xz-plane view of contact network
at various R, showing intruders (red), contacting particles (blue), and
noncontacting neighbor particles (gray).

of bulk density ¢p with normal stress gradient ¢ pg.. Unlike
van der Vaart et al. [14], who split F into buoyancy- and
lift-like forces, we propose instead that F', as a whole, scales
like a buoyancy force. This is confirmed in Fig. 3(a), which
shows F/¢pg.V: vs R for 252 distinct simulations with all
data collapsing onto a master curve. This scaling provides a
simple and robust description of the bed force over widely
varying flow conditions and is an apparent consequence of
force fluctuations, which depend primarily on pressure (gra-
dients) but weakly on flow conditions in inertial granular
flows [30].

The master curve in Fig. 3(a) deviates notably from the
Archimedean force F/¢pg,V; = 1, starting below one for R <
1, increasing toward a maximum at R &~ 2, and asymptotically
approaching one as R is further increased. The deviation
appears to originate in discrete contacts between finite-size
particles. A small intruder (R < 1) can percolate through
voids [13], thereby reducing F, i.e., F/¢ppg.V; < 1, while
a large intruder (R > 1) that preferentially receives large
force fluctuations [31] can experience an enhanced F, i.e.,
F/ppg,V; > 1. As R further increases (R > 1), finite-size
effects diminish and the continuum limit F/¢pg,V; =1 is
recovered. These arguments are qualitatively illustrated in the
inset of Fig. 3(b), where distinct contact networks (with blue
contacting and gray noncontacting particles around red in-
truders) are displayed at various R. Quantitatively, the relative
number of contacts can be characterized by the time-averaged
number ratio of contacting neighbor particles (N.) to all
“nearby” particles (N,), defined as having their centers within
d + d;/2 of the intruder center. The number ratio increases
with R, asymptotically approaching a maximum [Fig. 3(b)],
which is consistent with the asymptotic approach of the data
in Fig. 3(a) to the limit of Archimedes’ buoyancy.

The geometric effects (i.e., non-Archimedian) are associ-
ated with the frictional nature of granular contacts, which
enhances segregation; this enhancement saturates for u; =
0.4 [13], where u; is the intruder friction coefficient. For
frictionless intruders [u; = 0 in Fig. 3(a) inset], F/¢pg.V;
collapses toward one (closer to Archimedian and hence does

not overcome the intruder weight for R, = 1), which explains
previous observations that large frictionless intruders tend to
sink [13,14]. In nearly quasistatic flows [/ = 0.005 in Fig. 3(a)
inset], F/¢pg,V; is higher, likely due to enhanced frictional
resistance to deformation near yielding [32]. This effect tends
to plateau above yielding, explaining the insensitivity of
F/m;g, to I in Fig. 2(c) inset. A similar trend of enhanced
segregation forces at very low / was found in previous two-
dimensional simulations [12].

Rise-sink transition. It is convenient to express F as F =
F(R)ppg.V:, where f(R) is a dimensionless scale factor. It is
unclear how to derive f(R) from first principles; extending
kinetic theory-based segregation models toward the dense-
flow limit could be feasible [18,19] but is beyond the scope
of this work.

Here we instead choose an empirical expression based on
the observation that two geometric effects dominate in differ-
ent ranges of R, i.e., percolation-induced bed force weakening
for R < 1 and particle contact induced force strengthening
for R > 1: f(R) = (1 —cie ®/R)(1 4 e ®/R2), where ¢,
¢z, Ry, and R, are fitting parameters. The first term [lower
dashed curve in Fig. 3(a)] represents stronger percolation
(thus smaller bed force) as R decreases; its exponential form is
chosen to reconcile the exponential dependency of percolation
probability [28] and percolation velocity [33] on R. The sec-
ond term [upper dashed curve in Fig. 3(a)], which decreases
toward one as R increases, accounts for the decreased relative
number of contacts around the intruder at small R [Fig. 3(b)]
and the requirement that the curve asymptotically approaches
Archimedes’ buoyancy for large R. Fitting to the data in
Fig. 3(a) gives ¢ = 1.43, ¢; =3.55, Ry =0.92, and R, =
2.94, where R; and R, are characteristic size ratios for the two
effects to dominate. Interestingly, the fitting parameters are
insensitive to shear conditions and material properties (except
very low friction; see Supplemental Material [34]). The two
terms together recover the continuum argument, f(co) — 1,
and the force balance in monodisperse flows, f(1) =1/¢
(i.e., F = pg,V; at R = 1). Although ¢ is case specific, the
fitting results in ¢ = 1/f(1) = 0.55, a value agreeing with
Fig. 1(b), further supporting the model.

The empirical double-exponential model requires only four
parameters to describe the nonmonotonic curve, clearly indi-
cates two geometric effects associated with physically reason-
able characteristic size ratios, and is appropriately constrained
by limiting cases. It provides a simple means to predict segre-
gation based only on R and R,,. An intruder in a flowing bed
is “neutral” when the bed force f(R)¢ppg.V; offsets its weight
pigVi, i.e.,, R, = ¢ f(R), which describes a curve dividing the
R-R, space into “rise” (below the curve) and “sink” (above
the curve) zones; see Fig. 4. To validate this phase diagram,
we first simulate single untethered intruders with varying
d; and p; in the constant-shear-rate flow, observing whether
they rise, sink, or neither (i.e., mean displacement <3d) over
500 s of simulation. The independent simulation results are in
excellent agreement with the predictions derived with tethered
intruders [Fig. 4(a)].

To further demonstrate the generality of the predicted rise-
sink transition, we compare it with experiments by Félix
and Thomas [9], who studied segregation of tracer particles
of different sizes and densities in various configurations:
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FIG. 4. Predicted rise-sink transition compared to untethered
intruders in (a) 88 constant-shear-rate simulations (P, = 600 Pa,
y =20 s7!) and (b) 189 experiments [9]. Curves show R, = ¢ f(R)
with ¢ = 0.55. Red, gray, and black symbols indicate rising, sinking,
and neutral intruders, respectively. Data in (b) are from rotating
drums ([J), chute flows (), and heap flows (&>).

rotating drums, chute flows, and heap flows. The experimental
results agree well with the predictions of our phase diagram
[Fig. 4(b)]. The few mismatches near R &~ 2 are expected
as experimental results are sensitive near rise-sink transition
zones and depend slightly on the detailed criterion for de-
termining the segregation direction [9]. Nevertheless, such
complete and accurate prediction of the rise-sink transition
is remarkable given the wide range of approaches (simula-
tions and experiments), flow geometries, flow conditions, and
particle sizes and densities included in Fig. 4. The agree-
ment demonstrates that the empirical scaling law captures
the primary feature of the bed force (i.e., a size-corrected
buoyancy force), while other factors (e.g., material properties,
geometries, and flow conditions) are secondary, at least for the
constant-shear-rate flows and free surface flows we consider.
Discussion. The scaling law we propose for the segregation
force has a simple, buoyancy-like form, which is not unfamil-
iar given that Archimedes’ principle with corrections has been
applied to creeping granular fluids [35], vibrofluidized granu-
lar gases [7,8], and yielding granular solids [32]. The general
applicability of this scaling is evident in that a single set
of parameters obtained from independent spring-based force

measurements predicts rise-sink transitions in a broad range
of physical situations involving dense granular flows [9].

This work paves the way for further advancing the under-
standing of granular segregation. Although our results indicate
that F is invariant with varying shear profiles in surface flows,
segregation in wall-driven flows (or close to boundaries)
exhibits additional dependence on gradients of shear [12],
granular temperature [36], and packing density [36,37]. In
particular, the shear contribution in F' found by Guillard et al.
[12] may be attributed to the use of wall-driven flows that
exhibit strong shear variations over a distance comparable
to the intruder size. This contrasts with surface flows where
the velocity profile is nearly linear in the vicinity of an
intruder, corresponding to an essentially uniform local shear
rate, as is the case here. Nonlocal (or higher-order) effects,
particularly those related to shear rate gradients [12], warrant
further investigation. Furthermore, the finding that F/¢pg.V;
is insensitive to external flow conditions is not to be confused
with the known effects of shear rate and confining pressure
on segregation velocity [26,38—40]. While the direction of
segregation is determined by competition between the bed
force and the gravitational force, the segregation velocity
depends further on resistive forces (often viewed as drag).
Understanding the drag force has proved challenging due to
the difficulty in isolating driving and drag terms from contact
forces [10,15,41]. Now, with the generalized driving force
model we provide, it is possible to calculate the drag force
on moving intruders. It is also relevant to consider varying
the particle species concentration around the tethered intruder
to include general industrial and geophysical settings [42—47]
where the segregation force depends on the particle species
concentration [11,48].
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