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Signature of dynamical heterogeneity in spatial correlations of particle displacement
and its temporal evolution in supercooled liquids
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The existence of heterogeneity in the dynamics of supercooled liquids is believed to be one of the hallmarks
of the glass transition. Intense research has been carried out in the past to understand the origin of this
heterogeneity in dynamics and a possible length scale associated with it. We have done extensive molecular
dynamics simulations of a few model glass-forming liquids in three dimensions to understand the temporal
evolution of the dynamic heterogeneity and the heterogeneity length scale. We find that although the strength
of the dynamic heterogeneity is maximum at a timescale close to the characteristic α-relaxation time of the
system, dynamic heterogeneity itself is well developed at a timescale as short as the β-relaxation time and
survives up to a timescale as long as a few tens of the α-relaxation time. Moreover, we discovered that the
temperature dependence of the heterogeneity length remains the same in the whole time window, in agreement
with the inhomogeneous mode-coupling theory, although its absolute value changes over time in a nonmonotonic
manner.

DOI: 10.1103/PhysRevResearch.2.022067

Dynamic heterogeneity (DH) is ubiquitous in a vast variety
of natural processes spanning from molecular systems to bio-
logical cells and tissues [1–8]. The existence, characterization,
and its role in different dynamical processes, particularly in
the dynamics of glass-forming liquids approaching the glass
transition, is an active field of research [9–17]. Extensive
studies [9,11,18–20] have been performed in the past to under-
stand the behavior of DH at the characteristic long relaxation
timescale or the α-relaxation timescale τα (defined later) [21],
and only a handful studies have been done at the shorter β-
relaxation timescale [22]. In Ref. [22], it has been shown that
the β-relaxation time τβ (defined later) has a strong finite-size
effect, which can be rationalized if one assumes the existence
of a growing correlation length. It was surprisingly found in
Ref. [22] that the temperature dependence of this growing
correlation length at the β-relaxation time is the same as that
of the heterogeneity length scale obtained at the α-relaxation
time. This observation is very surprising as these timescales
can differ by many orders of magnitude, especially at low
temperatures.

The main goals of this Rapid Communication are twofold.
The first goal is to find direct signatures of DH in the dynamics
at τβ . Then we would like to understand the subsequent
growth and temporal evolution of DH at timescales ranging
from τβ to at least an order of magnitude larger than τα . As
most of the research works have focused on the characteriza-
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tion of DH in the α-relaxation timescale, it is very important
to comprehend the time evolution of DH in the intermediate
as well as long timescale compare to τα , to understand the
role of DH in the glass transition. The main results of this
Rapid Communication are the observation of the signature
of DH in the displacement fields of particles at τβ and the
survival of DH at timescales that are larger than τα by at
least a factor of 10 in the studied temperature range. We
have also discovered that the temperature dependence of the
heterogeneity length scale ξ remains the same throughout
the studied time window, but the region of heterogeneity or
the spatial extent of heterogeneity changes with time in a
nonmonotonic way with the maximum appearing at or near τα .

Although in Ref. [22] it was shown that DH seems to
be quite well developed in the system at τβ , it was not
immediately clear how particle motions at this short timescale
get affected due to the presence of the heterogeneity. In other
words, it is not immediately clear whether particle motions at
τβ are correlated over ξ . In this study, τβ is defined from the
logarithmic derivative of mean squared displacement (MSD)
with time [22] (see Ref. [23] for further details).

To measure the spatial correlation and to extract the as-
sociated length scale in the displacements of particles at τβ ,
we have implemented the procedure given in Refs. [24–27].
Note that this measure of the spatially correlated motion
in supercooled liquids does not depend on arbitrary cutoff
parameters as already conclusively shown in Refs. [24–26] for
DH at τα . The spatial correlation of the particle displacements
guu(r,�t ) is defined as

guu(r,�t ) =
〈∑N

i, j=1, j �=i ui(t,�t )u j (t,�t )δ(r − |ri j (t )|)
〉

4πr2�rNρ〈u2(�t )〉 ,
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FIG. 1. (a) Displacement-displacement correlation guu(r,�t ) at �t = τβ for 3dKA (N = 108 000). (b) System size dependence of
guu(r,�t ) for the 3dKA model. (c) The dynamic length scale as a function of time and compared with the corresponding quantities obtained
using conventional finite-size scaling (FSS) at τβ .

where ui(t,�t ) = ri(t + �t ) − ri(t ) is the vector displace-
ment of the particle between time t and t + �t . 〈u2(�t )〉 =
〈 1

N

∑N
i=1 ui(t,�t ) · ui(t,�t )〉. ri j (t ) = r j (t ) − ri(t ) is the

distance between the ith and jth particles. Note that our
definition of the displacement-displacement correlation is
slightly different from the definition given in Ref. [25]. In
Ref. [25], the scalar displacement-displacement [ui(t,�t ) =
|ui(t,�t )|] correlation gs

uu(r,�t ) (see Ref. [23]) is consid-
ered, whereas we have considered the vector displacement
of the particles [28]. It captures the orientational as well as
translational correlation in the particle displacements within
the time of observation.

We have performed extensive computer simulations of
four well-studied model glass formers in three dimensions
with different interparticle potentials over a wide range of
temperatures. The model systems studied are the following:
(i) 3dKA [29], (ii) 3dR10 [30], (iii) 3dIPL [31], and (iv)
3dHP [32,33]. The details of the models and simulations are
given in Ref. [23]. We find that the growth of DH identified
using guu(r,�t ) shows a strong system size dependence at
least at τβ . This was not the case in Refs. [34,35] when
the correlation function was computed at τα . Thus we have
computed guu(r,�t ) for different system sizes N = 8000,
N = 10 000, and N = 108 000.

In Fig. 1(a) we show the guu(r,�t ) for N = 108 000. It
is observed that guu(r,�t ) exhibits damped oscillation which
is in agreement with previous numerical [26,36] as well as
experimental studies [37]. The correlation function decays
to zero exponentially as a function of distance r, and with
decreasing temperature, the dynamics of the liquid becomes
more heterogeneous as the correlation between the particles’
displacements in space extends up to a larger distance as
shown in the Fig. 1(a). It physically means that particles
in the liquids are moving in a cooperative fashion with a
monotonically increasing size of the cooperative region as
the temperature is lowered. We find a strong system size
dependence in guu(r,�t ) as shown in Fig. 1(b). We have com-
puted the correlation for N = 108 000 and N = 8000 for the
3dKA model [see Fig. 1(b)] to show that at low temperature,
the relative correlation increases with an increase in system
size. For the robustness of our results, we have calculated the
correlation for the other two model systems. We found the
results are quantitatively similar (see Ref. [23]).

In Fig. 1(c), we show the temperature dependence of the
heterogeneity length scale for the 3dKA model. As expected,
strong finite-size effects are observed in the obtained ξ as well.
ξ ’s obtained from a very large system size (N = 108 000)
grow very similarly to the dynamical length scale obtained
from the finite-size scaling (FSS) of τβ [22]. For the N = 8000
system size one observes that ξ grows mildly, thus studies on
smaller system sizes would have led to a conclusion that DH
is not very strong at the β-relaxation time. We now focus on
the temporal evolution of DH and ξ across the whole range of
timescales that can be accessed in simulation.

Equipped with the method of block analysis, introduced in
Ref. [38], a systematic study of the temperature dependence
of the dynamical length scale across different timescales for
different model glass-forming liquids became computation-
ally feasible. In Ref. [35], although DH was studied over
different timescales, a systematic study on the temperature
dependence of ξ was not done. Usually, four-point correlation
functions g4(r, t ) and the corresponding susceptibilities χ4(t )
[39] are used to study DH. χ4(t ) is related to fluctuations
in the two-point function Q(t ). The Fourier transform of
g4(r, t ) is known as the four-point structure factor S4(q, t ) and
related to χ4(t ) as limq→0 S4(q, t ) ≡ χ0(t ). τα is defined as
〈Q(t = τα )〉 = 1/e, where 〈· · · 〉 denotes ensemble averages
(see Ref. [23] for further details and definitions).

To perform the block analysis, we equilibrate a large sys-
tem of N = 108 000 particles and measure various quantities
of interest by coarse-graining over different block sizes LB.
We then obtain the dynamic length scale ξ by a FSS analysis
of χ4(LB, t ). In previous studies [38,40], the dependence of
χP

4 (LB), the maximum intensity (peak value) of dynamical
susceptibility on the block size, was studied and the dynamic
heterogeneity correlation length ξ has been estimated by a
FSS analysis using the following scaling form,

χP
4 (LB, T ) = χP

4 (∞, T ) f [LB/ξ (T )], (2)

where χP
4 (∞, T ) is the LB → ∞ value of dynamical suscepti-

bility at a temperature T . In this work we have done a similar
scaling analysis for the block size dependence of the intensity
of the dynamical heterogeneity at a few particular timescales
t = τα/3, τα/2, τα, 3τα .

In Fig. 2 we have plotted the results for the 3dKA model
system. In the top panels, we reported the block size de-
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FIG. 2. Block size dependence of χ4 at different time intervals.
The collapse of data is done by rescaling the x axis to get the length
scale ξ (T ). The inset shows the unscaled data. Figures are shown
at different time intervals: (a) τα/3, (b) τα/2, (c) τα , and (d) 3τα ,
respectively.

pendence of χ4(LB, T ) (inset) and the scaling collapse of
χ4(LB, T ) at τα/3 [Fig. 2(a)] and τα/2 [Fig. 2(b)] timescales,
respectively. A similar analysis also is shown in the bottom
panels at timescales τα [Fig. 2(c)] and 3τα [Fig. 2(d)]. The
scaling observed in all these four cases is indeed very good
and the calculated length scales from the FSS analysis of the
block method are found to be in good agreement with the ξ

obtained from the wave-vector dependence of S4(q, t ) [41]
(discussed below). In FSS, ξ (T ) is known up to a unique
multiplicative factor for all temperatures. In order to fix this
uncertainty, ξ obtain from FSS is scaled to match with ξ

obtained from S4(q, t ) at one temperature.
By fitting the q dependence of S4(q, t ) for small q values to

the Ornstein-Zernike (OZ) form S4(q, t ) � χ0(t )/[1 + (qξ )2],
one can also obtain ξ . It has already been shown that the
heterogeneity length scale obtained from FSS of the block
method is in good agreement with the same obtained from
S4(q, t = τα ). In the top panels of Fig. 3 we plot the wave-
vector dependence of the inverse of four-point structure factor
S4(q, t ) for the 3dKA model for two different times, τα/3
[Fig. 3(a)] and 3τα [Fig. 3(b)]. One can clearly see that the
OZ form fits the data very well, thus the extracted length scale
will be quite accurate. In the bottom panels of the same figure,
the temperature dependences of the length scales computed
by different methods are compared for t = τα/3 [Fig. 3(c)]
and t = 3τα [Fig. 3(d)]. The legend “ξ from FSS” refers
to the length scale obtained from the finite-size scaling at
t = τβ and taken from Ref. [40]. Note that ξ ’s from FSS are
scaled at T = 0.80. It is worth highlighting that these results
suggest that the temperature dependence of ξ is the same
across timescales starting from τβ to at least 3τα . To check
the robustness of our results, the length scales for the other
two models (3dR10 and 3dIPL) are also computed and the
temperature dependences of the length scales are found to be
the same over the time interval (τβ, 3τα ) (see Ref. [23] for
details).

FIG. 3. (a) We plot 1/S4(q, t ) vs q2 for the 3dKA model at t =
τα/3 and (b) t = 3τα and we get the dynamical length scale by fitting
S4(q, t ) to the Ornstein-Zernicke (OZ) form S4(q, t ) = S4(q→0,t )

1+(qξ )2 in
the range 0 < q < 0.578 083. (c) and (d) Comparison of different
length scales obtained by using the conventional finite-size-scaling
(FSS) method of χP

4 [40] and block analysis method.

Our results are in reasonable agreement with the inho-
mogeneous mode-coupling theory (IMCT) prediction [42],
which says that there exists a unique growing dynamical
correlation length that grows as ξ ∼ |T − Td |−ν with a critical
exponent ν = 1/4, where Td is the MCT divergence temper-
ature. IMCT also predicts that this length scale remains the
same in both the α- and β-relaxation regimes. We also found
that ν � 1/4 is not inconsistent with our low-temperature
data for all the model systems (see Ref. [23]). Although
the temperature dependence of ξ remains the same over the
studied timescales for all model systems, the spatial extent of
the heterogeneity is observed to increase up to a particular
timescale and then starts to decrease.

Next, we examine the power-law relation between χ4(T )
and ξ (T ). According to IMCT [42–44], one expects a power
relation between χ3(τα ) (a three-point correlator which is
similar to χ4 at least in the scaling behavior) and ξ (τα ) as
χ3(τα ) = ξ 2−η(τα ) with the theoretically predicted exponent
2 − η = 4 in the α regime and 2 for the β regime [45].
Following Ref. [38] we have done the scaling analysis of
χ t∗

4 (T ) to obtain the exponent 2 − η at different times t∗.
In the large system size limit, LB � ξ , the LB dependence
should disappear in the scaling relation in Eq. (2) and it
should approach a constant value for x � 1. On the other
hand, for ξ → ∞ and LB remaining finite the dependence
of χ4 on ξ should go away. This implies that the scaling
function f (x) should be proportional to x2−η at x → 0 and
χ t

4(LB, T ) should grow as L2−η
B . We show the results of such

an analysis for the 3dKA model in Fig. 4. The exponent
value is found to be η � 0 for both t = τα/3 as well as at
3τα . This is different from the exponent (2 − η � 4) predicted
by IMCT in the α regime but is in very good agreement
with the prediction at the β regime. This observation can
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FIG. 4. Scaling analysis for the 3dKA model to obtain the ex-
ponent η at time intervals t = τα/3 and t = 3τα (inset). The black
solid line represents the function f (x) = x2−η, where 2 − η = 2, thus
η = 0.

be rationalized if one assumes that the amount of activated
relaxation at a short timescale will be less compared to the
α-relaxation timescale and the IMCT approximation will then
become reasonable. Thus we can expect to have a reasonable
agreement with IMCT predictions at short timescales but
not as good at longer timescales. Our results very nicely
highlight this agreement with good quality data. We have
done a similar analysis for other model systems (3dIPL and
3dR10) and found that the exponent η � 0 (see Ref. [23] for
details).

Next, we look at the time evolution of the DH length scale.
In Ref. [41], it was shown that the time dependence of ξ (t ) is
the same as χ4(t ), which is in contradiction with the results
reported in Ref. [46]. In Ref. [46], ξ is found to increase
monotonically with time, in partial agreement with the results
reported in Ref. [47] for hard-sphere systems. Moreover, in
Ref. [47] it is found that ξ saturates to a plateau at a later
time. On the other hand, IMCT predicts ξ remains the same
in between the τβ and τα timescale. We then look at the
mutual time evolution of ξ and χ4 for all the model systems
to understand the contradiction in the reported results in the
literature.

In Fig. 5(a), the time dependence of ξ (t ) for the 3dR10
model is shown. It is clear that ξ (t ) grows up to τα and
decreases at a later time, in agreement with Ref. [41]. We
also found a completely different behavior of ξ (t ), if we
compute it from guu(r, t ). ξ (t ) seems to remain the same
in magnitude throughout the entire time window from τβ

to τα [magenta � in Fig. 5(a)]. We found a similar length
scale dependence with time for the 3dKA model as well.
(See Ref. [23].) Next, we look at the results obtained for the
3dHP model (see Ref. [23]) [32], a paradigmatic model in the
context of jamming physics. For the 3dHP model, ξ (t ) shows
a peak at a timescale close to 4τα [Fig. 5(b)] for the softness
parameter of the potential δ = 2 (see Ref. [23] for a definition
of δ). This implies that ξ (t ) increases even though the overall
strength of the heterogeneity decreases after τα . To study the

FIG. 5. (a) The dynamic length scale vs time (semilog plot) for
the 3dR10 model. Vertical solid lines represent the τα line at different
temperatures. The vertical dotted line is the τβ line for T = 0.560.
In the inset we show the power-law dependence of χ0(t ) vs ξ (t ). ξrep

(magenta �) represents the length obtained from guu(r, t ). (b) Similar
plot for the 3dHP model. In the x axis, time is rescaled by its
corresponding τα value. The vertical line represents the τα line for
the 3dHP model.

effect of density (ρ) on the temporal evolution of ξ (t ), we
have done a simulation at different densities ρ = 0.81 and
temperature T = 0.0048 for the 3dHP model. The results are
found to be similar (see Ref. [23]). ξ (t ) increases up to time
4τα and decreases at a later time. Our observations are very
robust over different temperatures and density regimes. This
seems to suggest that a hard-sphere-like model is probably
different from those models where the particles are treated as
point particles. Although these observations corroborate the
previous observations, the reason for it is not immediately
clear. To check the similarity in behavior of ξ with time for
soft- and hard-sphere-like systems, we systematically tune
the softness of the interaction potential in the 3dHP model
from δ = 2 to 3. The nature of heterogeneity is found to be
different. Notably, we found that ξ (t ) reaches a peak at t = τα
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for δ = 3 in contrast to the scenario for δ = 2. Also, for the
3dHP model, ξ (t ) ∼ log(t ), in agreement with Ref. [47] for
hard-sphere systems. Note that the dependence for the 3dR10
model is very different. The mutual dependence between χ4(t )
and ξ (t ), as χ4(t ) ∼ ξ (t )2−η, seems to have two different
regimes. It is power-law-like with exponent 2 − η ∼ 4 for all
the models [4.18 (3dKA), 3.50 (3dR10), and 3.39 (3dHP)] for
times up to t ∼ τα , as shown in the insets of Fig. 5. On the
other hand, it is very different for t > τα . Thus it suggests that
one will not be able to extract ξ even approximately from the
measurement of χ4(t ) alone.

Finally, to conclude, we have shown the presence of dy-
namic heterogeneity in the displacement field of particles at
τβ and highlighted the strong system size effect. We have also
shown that the absolute value of the dynamic heterogeneity
length may change with time but the temperature dependence
of this length scale across timescales spanning from τβ to a
few τα remains the same. Very surprisingly, we also found that
ξ obtained from the displacement-displacement correlation
function remains the same in magnitude over the whole time
window of study. This result is very puzzling and suggests that

the usual method of extracting the correlation length from the
q → 0 dependence of S4(q, t ) may not be very reliable for
all time windows as it ignores the orientational correlations in
the displacement of particles. We also found that the absolute
value of ξ reaches its maximum value at t ∼ τα for the 3dKA,
3dIPL, and 3dR10 models but it does so at t ∼ 4τα for the
3dHP models. This indicates that the dynamic heterogeneity
in soft-sphere models may be qualitatively different from
other generic models for molecular glass formers. We believe
that our findings will have important implications in colloidal
and other biologically relevant glass-forming systems and
may motivate experimentalists to do similar studies in these
systems.

We would like to thank Chandan Dasgupta for many
useful discussions during the initial phase of this work.
This project is funded by intramural funds at TIFR Hyder-
abad from the Department of Atomic Energy (DAE). S.K.
would like to acknowledge the support from Swarna Jayanti
Fellowship Grants No. DST/SJF/PSA-01/2018-19 and No.
SB/SFJ/2019-20/05.

[1] T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J.
Fredberg, and D. A. Weitz, Glass-like dynamics of collective
cell migration, Proc. Natl. Acad. Sci. USA 108, 4714 (2011).

[2] T. E. Angelini, E. Hannezo, X. Trepat, J. J. Fredberg, and
D. A. Weitz, Cell Migration Driven by Cooperative Substrate
Deformation Patterns, Phys. Rev. Lett. 104, 168104 (2010).

[3] K. D. Nnetu, M. Knorr, J. Käs, and M. Zink, The impact of jam-
ming on boundaries of collectively moving weak-interacting
cells, New J. Phys. 14, 115012 (2012).

[4] E.-M. Schötz, M. Lanio, J. A. Talbot, and M. L. Manning,
Glassy dynamics in three-dimensional embryonic tissues, J. R.
Soc., Interface 10, 20130726 (2013).

[5] J. C. Shillcock, Insight or illusion? Seeing inside the cell with
mesoscopic simulations, HFSP J. 2, 1 (2008).

[6] D. Bi, X. Yang, M. C. Marchetti, and M. L. Manning, Motility-
Driven Glass and Jamming Transitions in Biological Tissues,
Phys. Rev. X 6, 021011 (2016).

[7] D. M. Sussman, M. Paoluzzi, M. C. Marchetti, and M. L.
Manning, Anomalous glassy dynamics in simple models of
dense biological tissue, Europhys. Lett. 121, 36001 (2018).

[8] D. Bi, J. H. Lopez, J. M. Schwarz, and M. L. Manning,
A density-independent rigidity transition in biological tissues,
Nat. Phys. 11, 1074 (2015).

[9] L. Berthier and G. Biroli, Theoretical perspective on the glass
transition and amorphous materials, Rev. Mod. Phys. 83, 587
(2011).

[10] E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and
D. A. Weitz, Three-dimensional direct imaging of structural
relaxation near the colloidal glass transition, Science 287, 627
(2000).

[11] M. D. Ediger, Spatially heterogeneous dynamics in supercooled
liquids,Annu. Rev. Phys. Chem. 51, 99 (2000).

[12] S. Gokhale, R. Ganapathy, K. H. Nagamanasa, and A. K. Sood,
Localized Excitations and the Morphology of Cooperatively

Rearranging Regions in a Colloidal Glass-Forming Liquid,
Phys. Rev. Lett. 116, 068305 (2016).

[13] M. T. Cicerone, F. R. Blackburn, and M. D. Ediger, Anoma-
lous diffusion of probe molecules in polystyrene: Evidence for
spatially heterogeneous segmental dynamics, Macromolecules
28, 8224 (1995).

[14] L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van
Saarloos, Dynamical Heterogeneities in Glasses, Colloids, and
Granular Media (Oxford University Press, Oxford, UK, 2011).

[15] R. Yamamoto and A. Onuki, Kinetic heterogeneities in a highly
supercooled liquid, J. Phys. Soc. Jpn. 66, 2545 (1997).

[16] A. S. Keys, A. R. Abate, S. C. Glotzer, and D. J. Durian, Mea-
surement of growing dynamical length scales and prediction of
the jamming transition in a granular material, Nat. Phys. 3, 260
(2007).

[17] A. Widmer-Cooper, P. Harrowell, and H. Fynewever, How
Reproducible are Dynamic Heterogeneities in a Supercooled
Liquid? Phys. Rev. Lett. 93, 135701 (2004).

[18] S. Karmakar, C. Dasgupta, and S. Sastry, Growing length scales
and their relation to timescales in glass-forming liquids, Annu.
Rev. Condens. Matter Phys. 5, 255 (2014).

[19] I. Tah, S. Sengupta, S. Sastry, C. Dasgupta, and S. Karmakar,
Glass Transition in Supercooled Liquids with Medium-Range
Crystalline Order, Phys. Rev. Lett. 121, 085703 (2018).

[20] L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. El
Masri, D. L’Hôte, F. Ladieu, and M. Pierno, Direct experimental
evidence of a growing length scale accompanying the glass
transition, Science 310, 1797 (2005).

[21] D. Fragiadakis and C. M. Roland, Role of structure in the α and
β dynamics of a simple glass-forming liquid, Phys. Rev. E 95,
022607 (2017).

[22] S. Karmakar, C. Dasgupta, and S. Sastry, Short-Time Beta
Relaxation in Glass-Forming Liquids is Cooperative in Nature,
Phys. Rev. Lett. 116, 085701 (2016).

022067-5

https://doi.org/10.1073/pnas.1010059108
https://doi.org/10.1103/PhysRevLett.104.168104
https://doi.org/10.1088/1367-2630/14/11/115012
https://doi.org/10.1098/rsif.2013.0726
https://doi.org/10.2976/1.2833599
https://doi.org/10.1103/PhysRevX.6.021011
https://doi.org/10.1209/0295-5075/121/36001
https://doi.org/10.1038/nphys3471
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1126/science.287.5453.627
https://doi.org/10.1146/annurev.physchem.51.1.99
https://doi.org/10.1103/PhysRevLett.116.068305
https://doi.org/10.1021/ma00128a036
https://doi.org/10.1143/JPSJ.66.2545
https://doi.org/10.1038/nphys572
https://doi.org/10.1103/PhysRevLett.93.135701
https://doi.org/10.1146/annurev-conmatphys-031113-133848
https://doi.org/10.1103/PhysRevLett.121.085703
https://doi.org/10.1126/science.1120714
https://doi.org/10.1103/PhysRevE.95.022607
https://doi.org/10.1103/PhysRevLett.116.085701


INDRAJIT TAH AND SMARAJIT KARMAKAR PHYSICAL REVIEW RESEARCH 2, 022067(R) (2020)

[23] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.2.022067 for details related to mod-
els and methods and other supporting analyses that are referred
to in this Rapid Communication.

[24] W. Kob, C. Donati, S. J. Plimpton, P. H. Poole, and S. C.
Glotzer, Dynamical Heterogeneities in a Supercooled Lennard-
Jones Liquid, Phys. Rev. Lett. 79, 2827 (1997).

[25] P. H. Poole, C. Donati, and S. C. Glotzer, Spatial correlations
of particle displacements in a glass-forming liquid, Physica A:
Stat. Mech. Appl. 261, 51 (1998).

[26] C. Donati, S. C. Glotzer, and P. H. Poole, Growing Spatial
Correlations of Particle Displacements in a Simulated Liquid
on Cooling Toward the Glass Transition, Phys. Rev. Lett. 82,
5064 (1999).

[27] B. Doliwa and A. Heuer, Cooperativity and spatial correlations
near the glass transition: Computer simulation results for hard
spheres and disks, Phys. Rev. E 61, 6898 (2000).

[28] F. Puosi and D. Leporini, Spatial displacement correlations in
polymeric systems, J. Chem. Phys. 136, 164901 (2012).

[29] W. Kob and H. C. Andersen, Testing mode-coupling theory for
a supercooled binary Lennard-Jones mixture I: The van Hove
correlation function, Phys. Rev. E 51, 4626 (1995).

[30] S. Karmakar, E. Lerner, I. Procaccia, and J. Zylberg, Statistical
physics of elastoplastic steady states in amorphous solids: Finite
temperatures and strain rates, Phys. Rev. E 82, 031301 (2010).

[31] U. R. Pedersen, T. B. Schrøder, and J. C. Dyre, Repulsive
Reference Potential Reproducing the Dynamics of a Liquid
with Attractions, Phys. Rev. Lett. 105, 157801 (2010).

[32] C. S. O’Hern, S. A. Langer, A. J. Liu, and S. R. Nagel, Random
Packings of Frictionless Particles, Phys. Rev. Lett. 88, 075507
(2002).

[33] A. J. Liu and S. R. Nagel, The jamming transition and the
marginally jammed solid, Annu. Rev. Condens. Matter Phys.
1, 347 (2010).

[34] K. Kim and S. Saito, Multiple time scales hidden in hetero-
geneous dynamics of glass-forming liquids, Phys. Rev. E 79,
060501(R) (2009).

[35] H. Mizuno and R. Yamamoto, Dynamical heterogeneity in a
highly supercooled liquid: Consistent calculations of correla-
tion length, intensity, and lifetime, Phys. Rev. E 84, 011506
(2011).

[36] C. Bennemann, C. Donati, J. Baschnagel, and S. C. Glotzer,
Growing range of correlated motion in a polymer melt on

cooling towards the glass transition, Nature (London) 399, 246
(1999).

[37] E. R. Weeks, J. C. Crocker, and D. A. Weitz, Short- and
long-range correlated motion observed in colloidal glasses and
liquids, J. Phys.: Condens. Matter 19, 205131 (2007).

[38] S. Chakrabarty, I. Tah, S. Karmakar, and C. Dasgupta, Block
Analysis for the Calculation of Dynamic and Static Length
Scales in Glass-Forming Liquids, Phys. Rev. Lett. 119, 205502
(2017).

[39] C. Dasgupta, V. A. Indrani, S. Ramaswamy, and K. M. Phani,
Is there a growing correlation length near the glass transition?,
Europhys. Lett. 15, 307 (1991).

[40] S. Karmakar, C. Dasgupta, and S. Sastry, Growing length and
time scales in glass-forming liquids, Proc. Natl. Acad. Sci. USA
106, 3675 (2009).

[41] N. Lacevic, W. F. Star, B. T. Schrøder, and C. S. Glotzer,
Spatially heterogeneous dynamics investigated via a time-
dependent four-point density correlation function, J. Chem.
Phys. 119, 7372 (2003).

[42] G. Biroli, J.-P. Bouchaud, K. Miyazaki, and D. R. Reichman,
Inhomogeneous Mode-Coupling Theory and Growing Dynamic
Length in Supercooled Liquids, Phys. Rev. Lett. 97, 195701
(2006).

[43] L. Berthier, G. Biroli, J.-P. Bouchaud, W. Kob, K. Miyazaki,
and D. R. Reichman, Spontaneous and induced dynamic fluc-
tuations in glass formers. I. General results and dependence
on ensemble and dynamics, J. Chem. Phys. 126, 184503
(2007).

[44] L. Berthier, G. Biroli, J.-P. Bouchaud, W. Kob, K. Miyazaki,
and D. R. Reichman, Spontaneous and induced dynamic cor-
relations in glass formers. II. Model calculations and compar-
ison to numerical simulations, J. Chem. Phys. 126, 184504
(2007).

[45] R. S. L. Stein and H. C. Andersen, Scaling Analysis of Dy-
namic Heterogeneity in a Supercooled Lennard-Jones Liquid,
Phys. Rev. Lett. 101, 267802 (2008).

[46] C. Toninelli, M. Wyart, L. Berthier, G. Biroli, and J.-P.
Bouchaud, Dynamical susceptibility of glass formers: Contrast-
ing the predictions of theoretical scenarios, Phys. Rev. E 71,
041505 (2005).

[47] E. Flenner, M. Zhang, and G. Szamel, Analysis of a growing
dynamic length scale in a glass-forming binary hard-sphere
mixture, Phys. Rev. E 83, 051501 (2011).

022067-6

http://link.aps.org/supplemental/10.1103/PhysRevResearch.2.022067
https://doi.org/10.1103/PhysRevLett.79.2827
https://doi.org/10.1016/S0378-4371(98)00376-8
https://doi.org/10.1103/PhysRevLett.82.5064
https://doi.org/10.1103/PhysRevE.61.6898
https://doi.org/10.1063/1.4704674
https://doi.org/10.1103/PhysRevE.51.4626
https://doi.org/10.1103/PhysRevE.82.031301
https://doi.org/10.1103/PhysRevLett.105.157801
https://doi.org/10.1103/PhysRevLett.88.075507
https://doi.org/10.1146/annurev-conmatphys-070909-104045
https://doi.org/10.1103/PhysRevE.79.060501
https://doi.org/10.1103/PhysRevE.84.011506
https://doi.org/10.1038/20406
https://doi.org/10.1088/0953-8984/19/20/205131
https://doi.org/10.1103/PhysRevLett.119.205502
https://doi.org/10.1209/0295-5075/15/3/013
https://doi.org/10.1073/pnas.0811082106
https://doi.org/10.1063/1.1605094
https://doi.org/10.1103/PhysRevLett.97.195701
https://doi.org/10.1063/1.2721554
https://doi.org/10.1063/1.2721555
https://doi.org/10.1103/PhysRevLett.101.267802
https://doi.org/10.1103/PhysRevE.71.041505
https://doi.org/10.1103/PhysRevE.83.051501

