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Ballistic transport in disordered Dirac and Weyl semimetals

Koji Kobayashi ,1 Miku Wada,2 and Tomi Ohtsuki 2

1Institute for Materials Research, Tohoku University, Sendai Aoba-ku 980-8577, Japan
2Physics Division, Sophia University, Chiyoda-ku, Tokyo 102-8554, Japan

(Received 3 March 2020; accepted 27 May 2020; published 17 June 2020)

We study the dynamics of Dirac and Weyl electrons in disordered point-node semimetals. The ballistic feature
of the transport is demonstrated by simulating the wave-packet dynamics on lattice models. We show that the
ballistic transport survives under a considerable strength of disorder up to the semimetal-metal transition point,
which indicates the robustness of point-node semimetals against disorder. We also visualize the robustness of the
nodal points and linear dispersion under broken translational symmetry. The speed of the wave packets slows
down with increasing disorder strength, and vanishes toward the critical strength of disorder, hence becoming the
order parameter. The obtained critical behavior of the speed of the wave packets is consistent with that predicted
by the scaling conjecture.
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Introduction. Dirac/Weyl semimetals (DSM/WSM) [1–4]
are three-dimensional (3D) systems where an electron near the
Fermi energy obeys the massless Dirac/Weyl-like equation of
motion. They show 3D linear dispersions and nodal points,
and are called point-node semimetals (PNSMs). The PNSMs
are often defined by a vanishing density of states (DOS) at the
nodal point. However, in the presence of disorder, the problem
of DOS is complicated because “rare events” might introduce
a small but finite DOS [5–10]. It is still an open question
whether or not the DOS at the nodal point is finite; in other
words, we have not reached a clear agreement whether or
not a “disordered PNSM” exists [11–35]. The problem seems
difficult to resolve, since the investigation of the vanishing
DOS exactly at the nodal point is difficult both theoretically
and experimentally. Therefore, it would be desirable to char-
acterize the disordered PNSMs by other observables.

In this Rapid Communication we visualize a character-
istic feature of disordered PNSMs: ballistic transport under
disorder. The simulation of wave-packet dynamics clearly
shows the ballistic feature, and the calculated spectral function
shows that the “linear dispersion” in PNSM is robust against
disorder. It is also shown that the speed of the ballistic trans-
port obeys the scaling theory [36–40] near the PNSM-metal
transition point.

Model for Dirac semimetals. For the numerical simulations,
we consider the following two models of a simple cubic lattice
describing disordered PNSMs. The DSM phase, where doubly
degenerated 3D Dirac cones arise at the high-symmetry points
in the Brillouin zone, can be realized on the topological-trivial
phase boundary of topological insulators. As a simple model
for topological insulators, we employ the Wilson-Dirac type
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tight-binding Hamiltonian [38,41–47],

HD =
∑

r

∑
μ=x,y,z

[
|r + eμ〉

(
iu

2
αμ − m2

2
β

)
〈r| + H.c.

]

+
∑

r

|r〉[(m0 + 3m2)β + V (r)14]〈r|, (1)

where r is the position of lattice sites and eμ (μ = x, y, z)
is the lattice vector in the μ direction. u is the nearest-
neighbor transfer with spin-orbit interactions, m0 is referred
to as “mass,” and m2 is the Wilson parameter. The length
unit is set to the lattice constant. Dirac matrices αμ and β

are an anticommuting set of 4 × 4 matrices satisfying α2
μ =

β2 = 14, with 14 the identity matrix. We introduce an on-
site random potential V (r), which is uniformly distributed in
[−W

2 , W
2 ]. We take m2 as the energy unit, and set u/m2 = 2.

We tune the parameters (m0/m2,W/m2) along the line of
DSM phase starting from (−2, 0), where the Dirac points
locate at (kx, ky, kz ) = (π, 0, 0), (0, π, 0), and (0, 0, π ). The
DSM phase, which is the phase boundary between the weak
and strong topological insulators, is identified by the transfer
matrix method [44]. Note that the slope of the Dirac cones
(i.e., group velocity at the nodal point) is u in the clean limit.

Model for Weyl semimetals. The time-reversal-broken type
WSM phase, where pairs of 3D Dirac cones arise, can be
realized in the tight-binding Hamiltonian [19,23,47–49],

HW =
∑

r

∑
μ=y,z

[
|r + eμ〉

(
iu

2
σμ

)
〈r| + H.c.

]

+
∑

r

∑
μ=x,y,z

[
|r + eμ〉

(
− m2

2
σx

)
〈r| + H.c.

]

+
∑

r

|r〉 [(m0 + 3m2)σx + V (r)12] 〈r| , (2)

2643-1564/2020/2(2)/022061(6) 022061-1 Published by the American Physical Society

https://orcid.org/0000-0001-7223-607X
https://orcid.org/0000-0002-4069-6917
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.022061&domain=pdf&date_stamp=2020-06-17
https://doi.org/10.1103/PhysRevResearch.2.022061
https://creativecommons.org/licenses/by/4.0/


KOBAYASHI, WADA, AND OHTSUKI PHYSICAL REVIEW RESEARCH 2, 022061(R) (2020)

where σμ are the Pauli matrices. The Weyl nodes are split in
the kx direction with separation 2k0,

k0 = arccos (m0/m2 + 3 − cos ky − cos kz ), (3)

where ky, kz = 0 or π . The parameters u and m2 are the same
as in the DSM. We tune the parameters (m0/m2,W/m2) on
the line starting from (−1, 0) where the Weyl points locate at
(k0 = ±π/2, 0, 0) (details of the tuning are described later).
The clean limit group velocity at the Weyl points is m2 in the
x direction, and is u in the y and z directions.

Time-evolution simulation. We study the dynamics of wave
packets in PNSMs in the presence of randomness by a direct
time-evolution simulation on the lattice models. For simplic-
ity, we focus on the transport in a specific (x) direction without
loss of generality. Periodic boundary conditions are imposed
in the directions transverse to the transport (y and z), and
the system length is sufficiently large so that the boundaries
in the x direction can be neglected. That is, we consider a
quasi-one-dimensional (Q1D) system with the cross section
of L × L sites. The 3D dynamics is obtained from the limit
L → ∞.

The time-evolution operator U (�t ) for the wave function
ψ (t ),

ψ (t + �t ) = U (�t )ψ (t ), (4)

can be written for a time-independent Hamiltonian H ,

U (�t ) = exp(−iH�t ), (5)

where h̄ = 1. The exponential function is expanded by Cheby-
shev polynomial Tn [50],

exp(−iH̃�t̃ ) �
M∑

n=0

(−i)nCn Jn(�t̃ ) Tn(H̃ ), (6)

where M is an order of truncation [51], Jn is the Bessel
function of the first kind, and C0 = 1, Cn�1 = 2. We have
rescaled the Hamiltonian and time step so that the eigenvalues
of H̃ are in the range (−1, 1),

H̃ = H

λmax
, �t̃ = λmax�t, (7)

where λmax is set to be slightly larger than the possible
maximum absolute value in eigenvalues of H .

We focus on the time evolution of the Dirac/Weyl states
near the nodal points. Thus we prepare the state corresponding
to the eigenstate at a nodal point k0 in a clean system, exp(ik0 ·
r)χ . Then we make an initial wave packet by multiplying a
Gaussian factor centered at x0,

ψ (x, y, z, t = 0) = exp

[
− (x − x0)2

ξ 2

]
exp(ik0 · r)χ. (8)

We adopt the eigenstate of αx for DSM and σx for WSM as the
spinor χ of the initial state, so that the wave packet moves in
the x direction according to the spin-momentum locking. We
set the width of the wave packet ξ = 40 for weak disorders

FIG. 1. (a) Time evolution of wave packets for DSM at (a) the clean limit W = 0, (b) a weak disorder W = 3, and (c) a strong disorder
W = 6. The vertical axis is F (x, t ), and the horizontal axis is distance from the center of the initial wave packet x − x0. The size of the cross
section L = 35.
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and ξ = 10 near the critical point, in order to see the wave-
packet dynamics efficiently.

Wave-packet dynamics. Figure 1 shows the time evolution
of a wave packet in disordered DSM. The plotted probability
density F (x, t ) = 〈∑s |ψs(x, y, z, t )|2〉y,z,dis is summed over
all internal degrees of freedom, and averaged over the cross
section at x and over disorder realizations (e.g., 4000 sim-
ulations for W = 6). The wave packet travels linearly with
time, that is, ballistically, even in a strong disorder (note that
the DSM-metal transition occurs at W = W DSM

c � 6.4 [38]),
while the speed slows down with increasing disorder strength.
The wave packets left at the initial position in Figs. 1(b)
and 1(c) are the diffusive components in the initial wave
packet. The height of the wave packet decays near Wc, as the
energy range of ballistic transport decreases and mixes with
the diffusive states. The reduction of the ballistic range can be
intuitively understood by spectral functions shown later.

Scaling behavior of speed. In a system with dispersion E =
vα|k|α , the number of states below k behaves as

N ∝ kd ∝ v−d/α
α |E |d/α, (9)

and the DOS is given by

ρ(E ) ∝ v−d/α
α |E |d/α−1. (10)

On the other hand, the scaling theory [38] predicts that near
the critical disorder strength Wc, that is, δ = |Wc−W |

Wc
� 0, DOS

obeys a scaling formula,

ρ(E ) = δ(d−z)ν f (|E |δ−zν ), (11)

where z is the dynamical exponent and ν is the critical
exponent. In the systems where α is well defined, the scaling
formula Eq. (11) should have the same energy dependence as
Eq. (10),

ρ(E ) ∼ δ−d (z/α−1)ν |E |d/α−1. (12)

Assuming the linear dispersion α = 1 in disordered PNSM
phases, the scaling behavior of the speed of Dirac/Weyl
electrons, v = v1, is obtained by comparing Eq. (10) with
Eq. (12),

v ∼ δ(z−1)ν ∼ (Wc − W )(z−1)ν . (13)

We evaluated the traveled distance of wave-packet peak r
after smoothing the curves by taking averages, and estimated
the speed of the ballistic modes v(L) = dr

dt for a specific size
of cross section. In order to estimate the speed v for the 3D
limit, L → ∞, we estimated the speed for different sizes (L =
35, 45, 55, 65, 75, 85, 95) and fitted the data with the formula

v(L) = a1L−a2 + v, (14)

where a1 and a2 > 0 are fitting parameters. Then the obtained
speeds v (see Fig. 2) coincide with the scaling ansatz Eq. (13)
with W DSM

c = 6.4, νDSM = 0.8, and z = 1.5 [38] near the
critical point, while they reproduce the slopes of the linear
bands, 2 and 1 for DSM and WSM, respectively, in the clean
limit.

The ballistic transport is expected to be a common feature
for PNSMs. We demonstrate the ballistic transport occurs also
in the disordered WSMs where the point nodes arise in pairs
and the time-reversal symmetry is broken (class A [52–54]),

FIG. 2. (a) Traveled distance of the peak of wave packet r as a
function of time t at W = 6, L = 95, averaged over 200 samples.
The solid line is a linear fitting. (b) Speed of ballistic mode v(L) in
Q1D DSM samples with W = 6 as a function of cross-section size
L. The solid line is a fitting curve Eq. (14).

while the DSM preserves the time-reversal symmetry (class
AII). The behavior of the wave packets and of their speed is
qualitatively the same as in the case of DSM. We estimated the
speed of wave packets dynamics in WSMs in the same way
(see Fig. 3). Assuming z = 1.5 [11,14,15,24,38], the speed
can be fitted by Eq. (13) with W WSM

c = 6.3, νWSM = 0.9,
which is consistent with Refs. [20,21].

Robustness of nodal points. The presence of a ballistic
mode under disorder implies that the states near the nodal
points are robust against disorder. Here, we visualize this
numerically. In disordered systems, we cannot define the
dispersion and therefore the k-space position of nodal points,
in principle. However, a spectral feature of “linear disper-
sion” and “nodal point” in real (say, disordered) materials
is observed by angle-resolved photoemission spectroscopy
(ARPES) measurements. The spectral function ρk(E ), which
is equivalent to the imaginary part of the retarded Green’s
function, − 1

π
Im Trs GR(E , k, s), can be understood as the

local density of states in momentum space,

ρk(E ) = 1

NS

S∑
s=1

〈k, s|δ(E − H )|k, s〉 , (15)

where N is the number of lattice sites and S the internal
degrees of freedom (four in DSM and two in WSM). We can
obtain the spectral function by using the kernel polynomial
method [55,56], which enables large-scale calculations using

FIG. 3. Speed of ballistic mode in the 3D limit v = v(L → ∞)
as a function of disorder strength W , in (a) DSM and (b) WSM. The
solid line is a fitting curve Eq. (13) with Wc = 6.4 and ν = 0.8 for
DSM, and Wc = 6.3 and ν = 0.9 for WSM.
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FIG. 4. Spectral feature ρ(kx ,0,0)(E ) of disordered (a)–(d) DSM
and (e)–(h) WSM with different disorder strengths: (a), (e) clean;
(b), (f) weak; (c), (g) strong; and (d), (h) critical. The horizontal axis
is kx and the vertical axis is E . The system size is 360 × 50 × 50 sites
for DSM and 360 × 100 × 100 sites for WSM. Averaged over up to
six samples.

the Chebyshev polynomial expansion,

ρk(Ẽ ) � 1

π
√

1 − Ẽ

M∑
n=0

CngnμnTn(Ẽ ), (16)

gn = 1

M + 2

[
(M − n + 2) cos

πn

M + 2

+ sin
πn

M + 2
cot

π

M + 2

]
, (17)

μn = 1

NS

S∑
s=1

〈k, s|Tn(H̃ )|k, s〉 , (18)

where Ẽ = E/λmax. Here, we focus on the bulk spectral
function by taking 〈r|k, s〉 = ψk,s(x, y, z) as

ψk,s(x, y, z) = eikxxeikyyeikzzχs, (19)

where χs is one of the orthonormal bases. Figure 4 shows
the density plot of the spectral function Eq. (15) at ky = kz =
0. In the clean system W = 0, the dispersion is reproduced

[Figs. 4(a) and 4(b)]. With increasing disorder, the “band”
gets blurred. However, we can still find a clear “nodal point”
and “linear dispersion” below the critical disorder strength
of the DSM-metal transition W DSM

c � 6.4 or the WSM-metal
transition W WSM

c � 6.3. The slope of the “linear dispersion”
decreases with increasing disorder; the evolution of the slope
is consistent with the self-consistent Born approximation
[20,57–59] and coincides with that of the speed of wave-
packet dynamics (shown in Fig. 3). In addition, the “gap” of
cosine bands, i.e., the energy range where only the “linear
dispersion” arises, is narrowed with increasing disorder; the
cosine bands are broadened by the disorder and the “gap”
closes in a diffusive metallic phase (W > Wc). We note that the
surface spectral function, which is accessible by the ARPES
measurements, can be obtained in the same way and gives the
same dependence on the disorder.

We have also utilized the spectral function to fix the
effective mass for the disordered WSMs. The spectrum in
WSMs (as in DSMs) shows the linear band structures and
nodal points up to the critical point, and enables us to estimate
the position of Weyl nodes. We have tuned the mass m0 so
that the Weyl nodes locate at (±π/2, 0, 0) with a sufficient
precision.

Critical superdiffusion. Before concluding, we mention
some interesting properties that signal the PNSM-metal phase
transition. The first point is the vanishing velocity of the bal-
listic modes (see Fig. 3). The second point is the breakdown
of the linear dispersion [see Figs. 4(d) and 4(h)]. The third
point is superdiffusion. The scaling formula for the mean
displacement at E = 0 is [38]

〈||r||〉 ∼ δ−ν fr (tδzν ). (20)

At the critical point δ = 0, δ dependence should be canceled
to avoid singularity,

〈||r||〉 ∼ t1/z. (21)

Since 1/z � 0.67 > 1/2, a superdiffusion is expected at the
critical point. Although it was technically difficult to see the
critical superdiffusion directly (since the wave-packet speed
vanishes at the critical point), a sub-ballistic transport has been
obtained in the vicinity of the critical point. It can be also seen
in Fig. 4 as a superlinear “dispersion” 2 > α > 1 around the
critical point.

Conclusion. We have studied the wave-packet dynamics
of disordered DSM/WSMs and found that the PNSMs show
a ballistic transport, reflecting the robustness of PNSMs
against disorder. Similar ballistic transport is also observed
in topological insulators on a percolative lattice [60], and is
a universal behavior. It is to be noted that since the wave
packet studied here is not an energy eigenstate, the ballistic
transport feature is not restricted to E = 0. This is due to the
fact that the lifetime of ballistic particles is long even if it is
away from E = 0, and the renormalization of the speed is the
same for E = 0 and |E | > 0, which can be seen in the robust
“linear dispersion” (spectral function) of disordered PNSMs.
The finite lifetime may be reflected by the amplitude of the
ballistic wave packets, which diminishes as they travel. We
have confirmed that the speed of the ballistic mode slows
down and vanishes toward the PNSM-metal transition point.
The behavior of the speed is consistent with the prediction of
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the scaling theory. This means that the speed of the ballistic
mode can be an order parameter characterizing the PNSM-
metal transition. Indeed, we have estimated the critical point
and the critical exponent for the WSM-metal transition. The
approach we introduced will be applied to other types of
semimetals and transitions, such as the surface of topological
insulators or the corner of higher-order topological insulators,
and semimetal-insulator transitions or semimetal-semimetal

transitions. It might be also interesting to study the ballis-
tic motion in one-dimensional semimetal-metal transitions
[61].
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