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We find the minimum and the maximum value for the local energy of an arbitrary finite bipartite system for
any given amount of entanglement, also identifying families of states reaching these bounds and sharing formal
analogies with thermal states. Then, we numerically study the probability of randomly generating pure states
close to these energy bounds finding, in all the considered configurations, that it is extremely low except for
the two-qubit and highly degenerate cases. These results can be important in quantum technologies to design

energetically more efficient protocols.
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Introduction. Energy and entanglement are two fundamen-
tal quantities in physics. The concept of energy has been of
great importance in the development of physics [1] while
entanglement is one of the most, if not the most, exotic feature
of quantum mechanics [2]. Therefore, it has been extensively
studied since its conception both from the theoretical and the
experimental points of view [3], also in connection with non-
locality [4-7] and measurements [8,9], even nondemolitive
ones [10]. Entanglement also plays a fundamental role in the
development of quantum technologies [11] and is considered
as aresource in several contexts such as quantum teleportation
[12-14], quantum cryptography [15-17], quantum commu-
nication [18], quantum computation [11], quantum energy
teleportation [19], and in protocols exploiting repeated mea-
surements [20-24]. As a result, the quest for entanglement
generation protocols has been one of the most flourishing
fields in recent physics literature [25-29].

Although quantum algorithms typically make use of two-
level systems (qubits) [11], it has been shown that d-level
systems (qudits) may be more powerful for information pro-
cessing [30,31]. Indeed, the higher dimensionality allows
for information coding with increased density, leading to a
simplification of the design of circuits [32], since the number
of logic gates is reduced. The realization of high-dimensional
systems and their control has thus attracted much attention
[33,34].

Understanding how energy and entanglement are con-
nected can be crucial in order to design quantum technolo-
gies in a more efficient manner [35]. In this context, some
works investigated the energy cost of generating or extracting
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entanglement [36,37]. In particular, some entanglement ex-
traction protocols can be optimized by finding a minimum en-
ergy pure state with an assigned entanglement [37]. However,
this has been done for interacting systems and the explicit
solution has been found only for a specific toy model.

In this Rapid Communication, we investigate, for an ar-
bitrary finite bipartite system, the connection between local
energy and entanglement in the case of discrete local Hamil-
tonians. In particular, for any given amount of entanglement,
we look for the range of possible values for the local energy
and search for quantum states that reach, respectively, the
lower and the upper bounds on the local energy. Moreover, we
numerically study the probability of randomly generating pure
states close to these energy bounds. This analysis can be help-
ful to design energetically efficient entanglement generation
protocols. Since the dimensions of the bipartite system are
arbitrary, our analysis naturally applies to protocols exploiting
qudits.

Definition of the problem. We consider a bipartite system
A-B composed of two arbitrary quantum systems A and B,
with local Hamiltonian H = H4 + Hp, where N4 and Np are
the dimensions of, respectively, H4 and Hpg, being Ny < Np.
H, and Hpg can be written as

Nx—1
Hy = ) XX,)(X.|, X =A,B, (1)
n=0
where Xp < X; < -+ < Xvy—1-

The above local Hamiltonian H suitably describes systems
at the start and at the end of most quantum protocols, in which
the possible interaction between the subsystems takes place
only during the protocol.

We will first consider the case of pure states. In order to
quantify the degree of entanglement of a pure state [i) of
system A-B, we use the entropy of entanglement, which is
regarded as the standard entanglement measure for pure states
[38,39] and is equal to the Von Neumann entropy of one of
the reduced states, i.e., £(|¢¥)) = S(Traw){|¥)(¥]}), where
S(p) = —Tr{pInp}.
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Every pure state of system A-B can be rewritten according
to its Schmidt decomposition as [11]:

Ny—1

=Y Vailaiby, ©)
i=0

where (a;jla;) = (b;lb;) = &;j, Zi&al Ai=1, and 0 <
w/)‘-NA—l < R VIS IS \/)x() g 1. Accordingly, 5(|Iﬂ>) =
—Zikilnki.

Minimum energy and corresponding states. For each value
of entanglement, £, multiple sets of squared Schmidt coeffi-
cients such that the correct amount of entanglement is attained
can be found. Therefore, let us concentrate on one of these
sets, A = {A; }NA ' In Sec. 1 of the Supplemental Material
(SM) [40], we prove Theorem 1, showing that no pure state
with the corresponding Schmidt coefficients can have less
energy than the state

Ni—1

W2) = > VAilAB), 3)
i=0

having energy

Na—1

Z ME;, Ei=A;+Bi. (4
i=0

= (Y1 H|Y;) =

To minimize Ej; by varying %, we use the following bijection
(valid up to phase factors on the kets |A;B;)):
Na—1 Na—1

W3) =Y VAlAB) < b= Y MIAB)AB, (5
i=0

i=0
from which we get £(|y;)) = S(p;). Moreover, after intro-
ducing
Na—1
H =) E|AB)(AB], (6)
i=0
we can express the average energy in terms of the density
operator p; because (V5 |H|vy;) = Tr{H P31 Thus, the prob-
lem of minimizing E; with respect to X fora given degree of
entanglement £ is equivalent to finding the diagonal density
matrix P, that minimizes energy when its entropy S = £ is

fixed. In Sec. II of the SM [40], we show that, if £ > Ind,
where d, > 1 is the number of H eigenstates with lowest

energy (Ey,—1 = - - = E| = Ey), the density matrix we search
is the thermal state
e‘ﬁgﬁ q
Py = . Zg=Trfe Py, @)
Z

with respect to the fictitious Hamiltonian A and inverse tem-
perature 3, obtained as the positive solution of

< ﬁgaﬂ +1>1nzg_5 ®)

In view of Eq. (5), this density operator corresponds (up to
phase factors) to a minimum energy state given by

Ny—1

W) = Z

gl()

FAAB)|A By, ©)

Its energy can be easily calculated as E; = —dg InZ,. We
stress that Eq. (8) can be solved numerically in a straightfor-
ward way and that, in the two-qubit case, analytical expres-
sions can be found.

We observe that the state of Eq. (9) is not the unique state
with minimal energy. Every other state that can be reached
from it through the application of local and energy-conserving
unitary operators fulfills this request (see Sec. II of the SM
[40] for more details).

To conclude our analysis we consider the case £ < Ind,.
In such a situation, the minimum energy is Ey and a mini-
mum energy pure state can be searched in the ground-energy
eigenspace so that the problem is trivial.

It is worth stressing that our treatment is valid for every
finite Ny and Np, even immensely large. Therefore, on a
physical ground, we conjecture that our analysis holds good
even for discrete Hilbert spaces of infinite dimensions, as in
the case of two harmonic oscillators.

Maximum energy and corresponding states. The result can
be easily obtained by searching for the minimum energy state
when considering the Hamiltonians Hyp) = —Ha(s). Hence,
if £ > Ind,, where d, is the lowest of the degeneracies of the
maximum eigenvalues of H4 and Hpg, a maximum energy state
is given by

Ni—1

A 3 BB L), (10)
¢ =0

where A = Ny — Ny, Z, = va;‘o_] eP-AitBina) " and B, is the
positive solution of the equation (—8,dp, + 1)InZ, = £. Sim-
ilarly to the minimum energy case, the energy of |,.) can be
easily calculated as E, = dg, In Z,.

The same considerations made for the minimum energy
case about the uniqueness of the state hold good here. If
& < Ind,, then the maximum energy is Ay,—1 + Bn,—1 and a
maximum energy pure state can be searched in the eigenspace
of the highest possible energy.

We finally observe that the minimization (maximization)
process we have developed can be easily extended to any
other couple of local observables. Indeed, whatever is the local
operator O = O4 + Op we want to minimize (maximize) for
an assigned value of entanglement, we can simply assume that
Hyx = Ox.

Energy-entanglement distribution. It is worth commenting
at this point about the energy distribution of the states cor-
responding to the same amount of entanglement. We have
made several numerical simulations finding, in all the studied
configurations, that the density of states in the proximity of the
bounding curves is extremely low, except for the two-qubit
case and highly degenerate cases. In fact, the main part of
the states occupy the intermediate region, and the discrepancy
between the peripheral and central densities becomes higher
and higher as the dimensionality of the systems increases.
We report here, as an example, the density of states corre-
sponding to two local Hamiltonians having spectra given by
o(Hy) = {0, 2,4} and o (Hp) = {0, 1, 6, 9} in arbitrary units.
In particular, in Fig. 1 we show the two curves defining the
energy bounds for assigned entanglement and the distribution
of a large number of randomly generated pure states [41]
(the behavior of B, and B, is shown in Sec. II of the SM

1Ve) =
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FIG. 1. Distribution of 10° randomly generated pure states with
respect to the entropy of entanglement and the local energy in a
1000 x 1000 grid. The Hamiltonians have spectra: o (H,) = {0, 2, 4}
and o (Hp) = {0, 1, 6,9} in arbitrary units. Both the entanglement
and the energy are normalized with respect to their maxima.

[40]). It is well visible that the majority of the states lies in
the central zone, while none of the generated states is very
close to the bounding curves. This circumstance allows one
to better appreciate the relevance of our results since, for
example, in an entanglement generation process, one could
choose to generate the state |/,) having the lowest energy
for the desired amount of entanglement, instead of any of
all the other states which require more energy. We finally
observe that the randomly generated states numerically satisfy
the known theoretical expected averages both in entanglement
and energy [42-44].

Two-qubit system. Now we apply our general results to the
case of two qubits, i.e., to the case Ny = Np = 2. By using
the purity P [where P(p) = Tr{p?}] of one of the reduced
states instead of the entropy of entanglement £ as entangle-
ment quantifier, it is possible to obtain through straightfor-
ward calculations closed analytical expressions both for the
minimum and maximum energy states and for the energy
bounds using Eqgs. (9) and (10). This is possible thanks
to the fact that for a two-qubit system the Von Neumann
entropy and the purity can be bijectively connected. Start-
ing from [v,) = VAlAoBo) + +/1 — A|A|B;) and imposing
(1 = A)/A = exp[—B4(E| — Ep)], one can easily obtain 8, =
—(E1 — Ep)~'In[(1 — A)/A], where A = (14 2P —1)/2.
Analogously, one can find 8, = ,. Moreover, we can express
the energy bounds as E; = AEp + (1 — A)E| and E, = (1 —
MEy + AE;.

Mixed states. We now show that the bounds derived above
are still valid even when we extend the analysis to mixed
states. Contrarily to the pure state case, a standard entangle-
ment quantifier does not exist [3]. However, it is in general
required that the convexity property is satisfied [38,39], i.e.,
for any arbitrary quantifier &,

p=Y pipi=Enp) <D pilulp), (1)

--- Max. energy T~ N
o Min. energy ~.
20 \
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FIG. 2. Representation of the energy-entanglement relation for
a mixed state obtained as a convex sum of four pure states. The
assigned energy value (obtained as the average of the energies of
the pure states) and the possible values of entanglement (from zero
to the average of the entanglement values of the single pure states)
identify a segment. This segment always lies between the curves of
minimum and maximum energy because of their monotonicity and
convexity properties.

where p; > 0 Vi and Zi pi = 1. In addition, we make the
standard assumption that &,, applied to pure states is equal to
the entropy of entanglement [39]. In Sec. III of the SM [40],
we show that this assumption can be relaxed.

Every mixed state can be written as a combination of
pure states, p = Y. p;|¥;)(;|. Thus, every mixed state has
energy equal to Tr{H p} = >, p;(¥;|H|v¥;) and entanglement
En(p) < Y, pi&i, where & = E,(|¥;)). Since one can prove
(see Sec. III of the SM [40]) that the curves E,(€) and E,.(E)
are, respectively, the former increasing and convex, and the
latter decreasing and concave, the following chain of relations
holds:

Tr{Hp} > ) piEy(E) > Eg(z m&-) > Eg(En(p)). (12)

Analogously, it holds that Tr{H p} < E.(&,(p)).

It follows that, in an energy-entanglement graph, every
mixed state can be found on a segment that is entirely between
the minimum and maximum energy curves. In Fig. 2 an
example of this situation is clearly shown.

Connections with thermodynamics, entanglement Hamilto-
nian, and LOCC. The minimum and maximum energy states
are characterized by coefficients that can be directly linked
to the Boltzmann factors of a fictitious thermal state and, as
a consequence, their energy can be calculated through their
fictitious partition function. This is worth mentioning because
entanglement and thermodynamics are believed to be concep-
tually connected in the context of typicality [44,45] and they
have various formal analogies when treated within resource
theories such as local operations and classical communication
(LOCC) and thermodynamic resource theory (TRT) [3,46,47].
In fact, a connection with thermodynamics has been also
found in the study conducted in Ref. [48]. There, the authors
dealt with the problem of creating the maximum amount of
correlations (quantified by mutual information) by employ-
ing a limited amount of energy, through the application of
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a unitary operator. They considered noninteracting bipartite
systems starting from thermal product states. In the zero-
temperature limit, since the mutual information is twice the
entropy of entanglement, their problem coincides with our
search for the minimum energy states for a given amount of
entanglement. Indeed, they have found that to maximize the
correlations one has to generate states of the form of Eq. (9)
[49]. Their proof relies on the concept of passive states (states
the energy of which cannot be lowered by unitary operations),
thus providing an additional link between our results and the
field of thermodynamics.

It is also interesting to consider the limit case of Eq. (9)
when By, = By,—2 = --- = By. In this case, the reduced
state of A, pj = Tra{|1) (W}, is equal to

Ny—1 Ny—1

RS "
=7 Yo PMANAL Zo=) PN (13)
i=0 i=0

which is a thermal state with respect to Hy at temperature 7 =
1/(kgB,), where kg is the Boltzmann constant. This result can
be easily obtained without using Eq. (9) since in this limit the
problem reduces to find the minimum energy state for a fixed
entropy of subsystem A.

Our results also present connections with some stud-
ies based on the entanglement Hamiltonian formalism. In-
deed, when Ny = Np, the reduced states of [v,) are (o, =

Tra{l9e) (Vel})

1 ~
,O?(B) L (14)

Zs

Thus, the reduced states have been easily written in the
entanglement Hamiltonian formalism (this can be done for ,0?
even when Ny < Ng), which has been proved to be useful to
get various insights into solid-state physics research [50-54].
In Sec. IV of the SM [40], we show that some many-body
systems of interest are characterized, under appropriate ap-
proximations [52], by ground states belonging to the family
of minimal energy states for a given entanglement.

Lastly, we point out that minimum or maximum energy
states with respect to the same local Hamiltonians are con-
nected through one-shot LOCC (see Sec. V of the SM [40]
for the proof). This has two direct implications. The first
one is that, given any pure state |y), one can immediately
write down a family of states that are LOCC connected to it
(see Sec. V of the SM [40]). The second one is that if two
distant parties share a minimum energy state having more
entanglement than needed, they can recover, with certainty,
the maximum amount of local energy compatible with the
needed entanglement.

Connections to quantum technologies. Our results are par-
ticularly relevant in protocols exploiting partially entangled
qudits. Although maximally entangled states are requested
in many applications, nonmaximally entangled states have
been proven useful in quantum technologies, for example
in processes involving two-mode squeezed states [55,56], in
quantum telecloning of qudits [57,58], and in probabilistic
quantum teleportation [59]. In the last two cases, our results
allow one to implement the procedure by exploiting less
expensive entangled states, through the direct utilization of

minimum energy states or of Theorem 1 (see Sec. VI of the
SM [40]).

More in general, in the LOCC asymptotic limit, n copies of
a state |¢) can be converted to m copies of a state |¢’) if and
only if nE(|¢)) = mE(|¢’)), with n, m — oo, thus making the
entropy of entanglement the quantifier of the resource entan-
glement [11]. For example, Bell states can always be obtained
by entanglement distillation [11]. In this framework, given
a certain amount of energy, it is then particularly relevant
that it is possible to generate more entanglement overall by
producing many copies of our minimum energy states with
nonmaximal entanglement (see Sec. VII of the SM [40]).

Our results also permit one to identify bounds in the
production of pure entangled states within the framework
of the TRT, which has recently drawn a lot of attention
[47,60]. Its goal is to study what states are reachable through
thermal operations given an arbitrary starting state o and the
environmental temperature 7. Since the energy amount of
reachable states from the state p is bounded, when TRT is
equipped with our results, it lets us individuate which are the
reachable pure states with the maximum allowed degree of
entanglement. Indeed, allowing the use of catalysts [60], the
state we search is one of our minimum energy states with
energy equal to Tr{p(Hs + Hp)} — kgT S(p).

We have also proven, under the conjecture that our analysis
is valid also in the case of discrete Hilbert spaces of infinite
dimensions, that two-mode squeezed states are minimum
energy states for a given amount of entanglement (see Sec.
VIII of the SM [40]). Therefore, these states, extensively
exploited in quantum optics laboratories [55,56,61,62], are the
most energetically convenient states to generate. In general, a
possible way to generate minimum energy states is to exploit
dissipative processes leading to a unique steady state, such
as simple zero-temperature thermalizations [63]. In this case,
choosing a suitable interaction Hamiltonian leads the bipartite
system to the desired state, i.e., the ground state. We give
an example of this process for a two-qubit system and for a
two-harmonic-oscillator system in Sec. IX of the SM [40].
Such kind of processes involving a simple thermalization have
been studied, for example, in Ref. [64].

Conclusive remarks. In summary, we have found the min-
imum and maximum permitted local energy of an arbitrary
finite bipartite system for a given quantity of entanglement,
also reporting the explicit form of a family of minimum
and maximum energy states. Then, we have numerically
investigated the energy distribution of entangled pure states,
finding, in all the studied configurations, that the probability
of randomly generating states with a fixed entanglement close
to the energy bounds is extremely low except for the two-qubit
case and highly degenerate cases.

Our results can be important in quantum technologies
since, given the degree of entanglement necessary for a certain
application, our approach allows one to identify a class of
states having this entanglement and whose generation requires
the lowest energy cost. Such an identification appears even
more important also in the light of our numerical simula-
tions, showing that the energies of the majority of the states
with a fixed entanglement typically lie quite far from the
energy bounds. Finally, we stress that Theorem 1 can bring
by itself great practical advantages in optimization problems
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depending exclusively on the Schmidt coefficients, given
some energy constraints, as discussed in detail in Sec. VI of
the SM [40].
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