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Possible enhancement of superconductivity in ladder-type cuprates by longitudinal compression
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We study theoretically the effect of uniaxial deformation of ladder-type cuprate superconductors. Model
construction based on first principles calculation shows that the rung-to-leg ratio of the nearest-neighbor
hoppings counterintuitively increases when the lattice is compressed in the longitudinal (leg) direction. This
leads to an enhancement of the superconducting transition temperature, which intuitively is expected when
compressed in the rung direction. Such a trend is traced back to the on-site hybridization between Cu 4s and
Cu dx2−y2 orbitals, which varies and changes sign upon lattice deformation.
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Superconductivity in ladder-type cuprates has been studied
extensively both theoretically and experimentally following
the seminal proposal by Dagotto and Rice [1–3]. In fact, the
(Sr,Ca)14Cu24O41 compound [4], which consists of two-leg
ladders and chains, were found to be superconducting with a
transition temperature Tc above 10 K under high pressure [5].
Theoretically, it was suggested that a stronger spin-spin
coupling in the rung direction enhances superconductivity
[1,6–10].

Nowadays, there is a renewed interest in the problem of
ladder-type materials since a two-leg ladder lattice can be
viewed as a two-band system where wide and narrow bands
coexist [11–16]. In such a system, when the Fermi level
is placed in the vicinity of the narrow-band edge, strong
enhancement of superconductivity is expected. A band po-
sitioned in the vicinity of the Fermi level is often referred
to as an “incipient band,” which has attracted increased in-
terest recently in the context of the iron-based superconduc-
tors [17–26] and also flat-band superconductivity [27–30].
In fact, as explained in more detail later, when electrons are
doped in the two-leg ladder system, larger electron hopping
in the rung direction pushes down the lower band so as to
make this band closer to the incipient band situation, thereby
enhancing superconductivity [15,16].

Hence, in the two-leg ladder system, both from real-
space and momentum-space viewpoints, increasing the elec-
tron hopping in the rung direction is expected to enhance
superconductivity. We note that larger rung-direction hopping
enhancing superconductivity is a tendency not expected in the
layered cuprates, where the Cu atoms form a square lattice
within the CuO2 layers. This is because, in real space, x and
y directions are equivalent for the square lattice, so that the
dx2−y2 -wave pairs are formed with equal amplitudes in the
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x and y directions. Therefore, an enhancement of supercon-
ductivity owing to a mechanism similar to that in the ladders
cannot be expected. Also, in the momentum-space picture, the
incipient band situation, which is characteristic of multiband
systems like the ladders, does not take place in the layered
cuprates because they are essentially single-band systems.

From the above consideration, one may intuitively expect
that uniaxially compressing the two-leg ladder cuprate in
the rung direction would enhance superconductivity because
a shorter Cu-Cu distance in the rung direction is likely to
increase the electron hopping in that direction. In the present
study, we explore how the electron hoppings of the two-leg
ladder cuprate are affected when uniaxial compression or
tension is applied to the lattice in the leg or rung directions
and investigate its consequences to superconductivity. For
simplicity, we consider the two-leg ladder cuprate without the
chains; that is, SrCu2O3 [31], although this material is known
to be difficult to dope with carriers. We surprisingly find that
the ratio tr/tl , where tr (tl ) is the nearest-neighbor hopping in
the rung (leg) direction, is enhanced when the lattice is com-
pressed in the leg direction or stretched in the rung direction.
This counterintuitive manner of the hopping variation can be
attributed to the on-site hybridization between Cu dx2−y2 and
Cu 4s orbitals, which arises due to the low symmetry of the
lattice [32]. Due to such variation of the hoppings, we find
that the superconducting transition temperature Tc is enhanced
when the lattice is compressed in the leg direction, which is
opposed to an intuitive expectation. The effect is expected to
be strong, especially in the electron-doped regime.

The model construction of SrCu2O3 is performed as fol-
lows: We take the lattice constant determined experimen-
tally [33] as a reference and assume crystal structures com-
pressed or stretched by a certain amount in the leg or rung
directions. We determine the internal coordinates for these
crystal structures through structural optimization and calcu-
late the electronic band structure, using the Perdew-Burke-
Ernzerhof parametrization of the generalized gradient ap-
proximation (PBE-GGA) [34] and the projector augmented
wave method [35] as implemented in the VASP code [36–39].
Plane-wave cutoff energy and the k-meshes were taken as

2643-1564/2020/2(2)/022055(6) 022055-1 Published by the American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.022055&domain=pdf&date_stamp=2020-06-09
https://doi.org/10.1103/PhysRevResearch.2.022055
https://creativecommons.org/licenses/by/4.0/


HIKARU SAKAMOTO AND KAZUHIKO KUROKI PHYSICAL REVIEW RESEARCH 2, 022055(R) (2020)

FIG. 1. The variation of the hoppings against uniaxial deforma-
tion in the leg (left panels) or rung (right panels) directions. We take
the tension (+) or compression (−) rate as the horizontal axis. (a) The
ratio tr/tl . (b) tl , tr , and t ′ of the composite-d model (solid lines) and
the d-s model estimation (see text) of tl and tr (dashed lines). (c) t d

l

and t d
r in the d-s model. (d) t d→s

onsite in the d-s model.

550 eV and 10 × 10 × 10, respectively. We then extract the
Wannier functions [40,41] from the calculated band structures
by using the WANNIER90 [42] code, which gives the tight-
binding hoppings and on-site energies tαβ

i , where i and α, β

denote the lattice vectors and the orbitals, respectively. The
tight-binding model in momentum space is obtained in the
form εαβ (k) = ∑N

i tαβ
i exp(ik · �ri ), where we take N = 621

lattice vectors �ri.
Here, we first construct a two-orbital model where we ex-

plicitly consider the dx2−y2 orbitals centered at the two Cu sites
in a unit cell. These dx2−y2 Wannier orbitals actually consist
of a mixture of Cu dx2−y2 , oxygen 2p and, also, as explained
later, Cu 4s atomic orbitals. Throughout the paper, the oxygen
orbitals are considered only implicitly, but later the 4s orbital
shall be explicitly taken into account. In the sense that the
dx2−y2 Wannier orbital here implicitly contains the 4s orbital,
this two-orbital model will be referred to as the “composite-d
model.” From this model, we estimate the nearest-neighbor
hoppings in the leg (tl ) and rung (tr) directions, and also
the next-nearest-neighbor diagonal hopping t ′ [see inset of
Fig. 1(a)]. In Fig. 1(b) (solid lines), we present the variation
of the hoppings tl , tr , and t ′ upon compressing or stretching
the lattice in the leg or rung directions, and in Fig. 1(a)

the variation of the ratio tr/tl . In contrast to an intuitive
expectation, tr/tl increases when the lattice is compressed in
the leg direction or stretched in the rung direction.

To understand the origin of this variation of the hoppings
against the lattice deformation, we now construct a model
which explicitly takes into account not only the 3dx2−y2 Wan-
nier orbital but also the Cu 4s orbital, which was implicitly
taken into account in the composite-d model. Note that the
3dx2−y2 Wannier orbital in this model still implicitly takes into
account the oxygen 2p orbital as in the composite-d model.
This model will be called the d-s model. In fact, it has been
known that the 4s orbital hybridizes with dx2−y2 to give rise
to an appreciable diagonal hopping in the cuprates [43–46].
For the ladder structure in particular, it was pointed out in
Ref. [32] that the anisotropy of the 4s-orbital-related hoppings
is the origin of the anisotropy of the effective d-d hoppings in
the leg and rung directions. In Fig. 1(c), we plot the hopping
between the nearest neighbor dx2−y2 orbitals in the leg (t d

l )
and rung (t d

r ) directions [47]. Now these hoppings behave
as intuitively expected; namely, t d

l becomes large when the
lattice is compressed in the leg direction, and t d

r is reduced
when the lattice is stretched in the rung direction. Similarly,
we find that the nearest-neighbor hoppings between 4s and
dx2−y2 (t s→d

l,r ) behave as intuitively expected under lattice de-
formation (not shown). We therefore expect that the hoppings
between the dx2−y2 orbitals via the 4s orbital (see Fig. 2) play a
crucial role in the counterintuitive lattice deformation depen-
dence of the hoppings in the composite-d model. We estimate
the d → s → d hopping using second-order perturbation
theory as

t d→s→d
l,r = t d→s

onsitet
s→d
l,r

εd − εs
, (1)

where t d→s
onsite is the dx2−y2 to 4s hopping within the same Cu

site, t s→d
l,r is the nearest neighbor 4s to dx2−y2 hopping in

the leg or rung directions, and εd,s is the on-site energy of
the dx2−y2 or 4s orbitals. Perturbation theory is expected to
work since |εd − εs| ≈ 6eV is fairly large. Contribution from
all possible equivalent paths are added up, and added to t d

l,r ,
which gives the dashed-line plots in Fig. 2. As seen in this
plot, the d-s model estimation almost perfectly reproduces the
composite-d results, which confirms the view that the origin
of the counterintuitive variation of tr and tl is the hopping path
d → s → d (we have also checked that contributions coming
from other paths that involve the 4s orbital are very small).

To further understand intuitively the contribution from the
d → s → d path, we focus on t d→s

onsite, plotted in Fig. 1(d),
which changes sign upon lattice deformation. This sign
change can be intuitively understood from the upper panels
of Fig. 2. Namely, when the nearest-neighbor Cu-Cu distance
in the leg direction al is long, the widely spread 4s orbital
is elongated in the leg direction, while the more localized
dx2−y2 orbital is less deformed. In this case, the on-site hopping
is dominated by the longitudinal portion of the dx2−y2 wave
function, so that t d→s

onsite < 0, taking the phase of the orbitals as
depicted in the figure (note that the sign of a hopping is the
opposite to that of the multiplication of the signs of the wave
function of the initial and final orbitals because of the negative
potential energy felt by the electrons). Similarly, when the
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FIG. 2. (a) Schematic image of the hoppings of the d-s model in
the large al (left) and large ar (right cases). + and − enclosed by
circles indicate the sign of the hoppings. Red (blue) portion of the
wave functions has positive (negative) sign. Adding t d→s→d

l,r to t d
l,r

explains the hopping variation in the composite-d model against the
lattice deformation. (b) The on-site hopping from Cu 4s to Cu dx2−y2

orbitals in the d-s model, plotted against the difference between the
nearest-neighbor distances in the leg and rung directions.

nearest-neighbor Cu-Cu distance in the rung direction ar is
long and the 4s orbital is elongated in the rung direction,
t d→s
onsite > 0. This tendency is confirmed in the calculation result

shown in the lower panel of Fig. 2. When al is large and hence
t d→s
onsite < 0, from Eq. (1), t d→s→d

r > 0 and t d→s→d
l < 0 because

t s→d
r > 0, t s→d

l < 0, and εd − εs < 0. Similarly, when ar is
large and hence t d→s

onsite > 0, the sign of the indirect hoppings
becomes the opposite as t d→s→d

r < 0 and t d→s→d
l > 0 [48].

Adding t d→s→d
l,r to the negative t d

l,r explains the counterin-
tuitive variation of the hoppings in the composite-d model
against the lattice deformation.

We now move on to the analysis of superconductivity. To
take into account the correlation effects that induce super-
conductivity, we add the on-site interaction U term to the
composite-d model, where we take an on-site repulsion of
U = 3 eV, which is a typical value for the cuprates [49]. The
many-body study of this model is performed within the fluc-
tuation exchange approximation (FLEX) [50]. We obtain the
renormalized Green’s function by solving Dyson’s equation in
a self-consistent calculation. The obtained Green’s function
and the pairing interaction mediated mainly by spin fluctu-
ations are plugged into the linearized Eliashberg equation.
The superconducting transition temperature Tc is determined
as the temperature where the eigenvalue of the Eliashberg
equation reaches unity. In the FLEX calculation, 32 × 32 × 4
(kx, ky, kz )-meshes were taken.

FIG. 3. The FLEX result of the superconducting transition tem-
perature calculated for the composite-d model against lattice defor-
mation in the (a) leg or (b) rung directions. Inset of (a) shows a
similar calculation result for the single orbital model of HgBa2CuO4.
(c) A schematic image of the relative shift of the bonding and
antibonding bands as tr/tl increases.

Before going into the results, we comment on the Tc

obtained in the present calculation. The FLEX calculation for
the Hubbard model on ladder-type lattice is often performed
for a two-dimensional lattice where the ladders are weakly
coupled [51] because a single-ladder system is a purely one-
dimensional system, where one might question the validity of
perturbational approaches such as FLEX. Here, however, we
perform the FLEX calculation for a purely-one-dimensional
lattice since Tc calculated in the present formalism barely
depends on whether the weak ladder-ladder coupling is con-
sidered. To be more strict, a finite Tc should not exist even
for two-dimensional systems; finite Tc is obtained for two-
dimensional as well as one-dimensional systems because a
mean-field approximation is adopted. However, it was shown
that introducing a weak three-dimensional coupling between
two-dimensional layers also barely affects the Tc in the FLEX
calculation [52]. This further justifies our approach of apply-
ing FLEX to a single-ladder system. Another point that should
be noted is that we do not calculate Tc near half filling, where
FLEX cannot sufficiently incorporate the strong correlation
effects accompanying the Mott transition. In fact, taking into
account the strong correlation effects should reduce Tc near
half filling, as shown in previous studies for the ladder [53]
and two-dimensional systems [54].

In the upper panels of Fig. 3, we plot the superconducting
transition temperature against the band filling n(= number of
electrons/number of sites) for the cases when the lattice is
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compressed or stretched by 5% in the leg or rung directions.
A common feature in all cases is the double local maximum
of Tc, one around half filling, and another at n > 1, i.e., in
the electron-doped regime. Tc is enhanced near half filling
due to the enhancement of electron correlation. A prominent
feature peculiar to the ladder-type lattice is the rather high Tc

in the electron-doped regime. The Tc maximum in this regime
is about twice as high as that of the Tc calculated in the same
way for a 100 K cuprate superconductor HgBa2CuO4, shown
in the inset of Fig. 3. To understand this Tc maximum, we
introduce the tight-binding band dispersion of the two-leg
ladder given as E±(k) = tl [2(1 ∓ t ′

tl
) cos(k) ± tr

tl
], where −

and + in E±(k) stand for bonding and antibonding bands,
respectively, and −1 < t ′/tl < 0 (appropriate for the cuprates)
makes the bonding band narrower than the antibonding band.
In the previous studies [11,13], it was shown that Tc is strongly
enhanced when the Fermi level is raised by electron doping
(the necessity of about 30% electron doping was suggested in
Ref. [11]) so that it lies just above the top of the bonding band.
There, this was considered as an example of superconduc-
tivity enhanced in systems with coexisting wide and narrow
bands, when the Fermi level is positioned in the vicinity
of the narrow-band edge; namely, when the narrow band is
“incipient” [17–26].

Now, when the lattice is compressed in the leg direction or
stretched in the rung direction, the ratio tr/tl increases (while
t ′/tl is barely affected) as we have seen, so that the bonding
band is lowered relatively to the antibonding band, as depicted
schematically in the lower panel of Fig. 3. Hence, less electron
is required for the Fermi level to reach the vicinity of the
bonding band top. This is the reason why the Tc maximum
moves toward the less-electron-doped regime in these cases.
Especially when the lattice is compressed in the leg direction,
the maximum Tc itself is enhanced because the electron corre-
lation effect becomes stronger as the band filling approaches
half filling. On the other hand, when the lattice is stretched
in the rung direction, although Tc is maximized in the less-
electron-doped regime, the maximum Tc is suppressed. This is
because |tl | decreases, leading to the reduction of the energy
scale, opposed to when compressed in the leg direction, where
tl barely varies.

We now extract the 4s orbital effect by considering a hypo-
thetical two-orbital model where the 4s orbitals are removed
“by hand” from the d-s model. Tc calculated for this “d-
only” model, adopting the same U = 3 eV, against the band
filling for the same lattice deformation as in the composite-d
model is shown in Fig. 4. The trend is almost completely
the opposite compared with the composite-d model; namely,
the local Tc maximum is reduced and moves toward the
more-electron-doped regime when the lattice is compressed
in the leg direction or stretched in the rung direction. This
is because the counterintuitive variation of tr/tl is lost in
the absence of 4s. Therefore, compressing the lattice in the
leg direction or stretching it in the rung direction simply
suppresses tr/tl , requiring large amount of doped electrons
for the bonding band to be incipient. These results conversely
reveal the crucial role played by the implicitly considered 4s
orbital in the composite-d model [55].

The quantitative analysis on superconductivity in our
study is based on FLEX, which is a kind of weak-coupling

FIG. 4. Plots similar to Fig. 3 for the hypothetical “d-only”
two-orbital model, obtained by removing the 4s orbitals from the d-s
model. Deformed in the (a) leg or (b) rung directions.

approach. However, the main conclusion drawn here, that
longitudinal compression is favorable for superconductivity,
is qualitatively unaffected in a wider scope. Namely, the
tendency of enhanced superconductivity with larger tr (for a
fixed tl ) has been pointed out in a previous density-matrix
renormalization-group study [6], which is suitable for treating
strong correlation effects. Moreover, in the large-U limit, the
spin-spin couplings in the leg and rung directions are given
as Jl = 4t2

l /U and Jr = 4t2
r /U , respectively. The compression

of the lattice in the leg direction enhances tr and hence Jr

(while keeping tl and Jl almost unchanged), from which
we expect superconductivity to be enhanced based on the
previous studies on the t-J model on a ladder-type lattice [1,7–
10]. Although we cannot be certain about how the “incipient
band” situation affects superconductivity in the t-J model, we
do expect a larger effect in the electron-doped regime than in
the hole-doped regime due to the larger density of states in the
former.

The relevance of the present study to experiments is of
great interest. In fact, it was found in Ref. [56] that applying
uniaxial pressure to (Sr,Ca)14Cu24O41 in the leg direction
results in an enhancement of Tc compared with the case when
hydrostatic pressure is applied [5,57], although the quanti-
tative correspondence between theory and experiment is not
clear.

To summarize, we have investigated how superconductiv-
ity in the ladder-type cuprates is affected through modification
of the electronic structure when uniaxial compression or
tension is applied. It is found that the ratio tr/tl is enhanced
when the lattice is compressed in the leg direction or stretched
in the rung direction. This counterintuitive manner of the
hopping variation is attributed to the on-site hybridization
between Cu dx2−y2 and Cu 4s orbitals, which varies as the
4s orbital is deformed through the lattice deformation. Due to
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such variation of the hoppings, Tc is enhanced when the lattice
is compressed in the leg direction, as opposed to an intuitive
expectation. The effect is expected to be strong, especially in
the electron-doped regime, where the Fermi level approaches
the top of the bonding band.
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