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Phononic crystal as a homogeneous viscous metamaterial
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A homogenization theory, representing the low-frequency limit, is developed for a phononic crystal of
cylinders embedded in a viscous fluid. The decay coefficient of sound due to viscosity is calculated analytically
for any two-dimensional Bravais lattice and cross section of the cylinders. It is shown that due to the formation
of a viscous boundary layer around each cylinder, the losses are enhanced by two to three orders of magnitude as
compared to the losses in the free fluid. Also, the decay coefficient in a phononic crystal scales with frequency
as

√
ω, unlike ω2 scaling known for free viscous fluid. In the low-frequency limit a phononic crystal with

asymmetric unit cell behaves like a dissipative homogeneous metafluid with anisotropic viscosity.
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Introduction. Pressure in a plane sound wave propagating
in a viscous homogeneous fluid decays exponentially with dis-
tance, p(x) ∼ e−γ0x. The decay coefficient γ0 = ω2

2ρc3 [ 4
3η + ξ ]

grows quadratically with frequency ω [1]. It depends on fluid
density ρ, two viscosity coefficients η and ξ , and speed of
sound c. The decay length of sound in water at the frequency
of 50 kHz is 1/γ0 ≈ 15 km. Such slow decay means that
dissipative losses can be ignored in free water. However, they
are strongly increased if sound wave meets a solid object on
its way. Oscillating fluid sticks to solid boundaries, forming a
narrow viscous layer of thickness δ = √

2η/(ω ρ) (so-called
Stokes boundary layer) where velocity gradients greatly ex-
ceed the gradients in a free fluid, leading to much higher
viscous losses. The effect of enhanced losses for reflection
from a solid boundary was predicted by Konstantinov [2] (see
also Ref. [3]). Viscous losses for reflection grow as

√
ω [1,4].

In a phononic crystal, the volume occupied by the vis-
cous boundary layers formed around solid scatterers usually
constitutes a small part of the volume of the whole sample.
It, however, strongly reduces acoustic transmission. Almost
30% reduction of transmission through a metasurface was
registered while the boundary layer was less than 3% of
the metasurface thickness [5]. Strong absorption within the
boundary layer not only reduces acoustic transmission but
also affects the speed of sound, in spite of the fact that the
principal part of the wave front propagates far away from the
solid-fluid boundaries where fluid is practically inviscid [6].
While the fraction of viscous fluid in a phononic crystal is
reduced by a factor 1 − f as compared to 100% in a free
fluid ( f is the filling factor of solid inclusions), a sound wave
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decays much faster in phononic crystal due to the Konstanti-
nov effect. In a phononic crystal designed for manipulation of
sound, the decay coefficient γph lies within the interval γ0 �
γph � 1/a0, where a0 is the period of phononic crystal. The
latter inequality allows perturbative treatment of the viscosity
effects and calculation of γph in the lowest approximation over
ξ and η. In this approximation other effective parameters, like
speed of sound, elastic modulus, etc, turn out to be viscosity-
independent and coincide with their values obtained for the
corresponding inviscid fluid [7]. Dependence on viscosity
appears in the higher approximations over η.

In a steady flow of viscous fluid through a periodic ar-
rangement of solid inclusions a traction of the fluid on each
inclusion defines the effective steady-state viscosity. A rig-
orous theory was developed in Ref. [8]. It was shown there
that in general case the effective velocity is a fourth-rank
tensor. Numerical results obtained for three cubic lattices of
spheres demonstrate that the effective viscosity grows with
filling fraction f . For the values of f near close-packing
the effective viscosity increases by order of magnitude as
compared to the viscosity of the fluid. It will be shown here
that fast oscillations of fluid in a sound wave give rise to much
stronger increase of dynamic viscous losses.

A qualitative estimate for the decay coefficient γph of
sound in a periodic structure caused by viscous losses can be
obtained from the well-known formula [1,4] for the relative
energy loss at reflection of sound with wavelength 2π/k
from a hard flat boundary, 	E/E ∼ δk/2π ∼ c−1√ωη/ρ. If
sound propagates through a periodic lattice of cylindrical rods
embedded in a viscous fluid, then the dissipation occurs within
the boundary layer formed over each scatterer. If the circum-
ference of the scatterer is L0, then the dissipative loss within
a unit cell is 	E/E ∼ (δk/2π )(L0/a0) ∼ (L0/a0c)

√
ωη/ρ.

The decay coefficient is the energy loss per unit length, i.e.,

γph = 	E

a0E
∼ 1

ca0

√
f ωη

ρ
. (1)
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Here f ∼ (L0/a0)2 is the filling fraction of hard scatterers in
2D lattice [9].

According to Eq. (1) the decay length of 50 kHz sound
in a phononic crystal ( f ∼ 0.5) of hard scatterers in water
is about 1/γph ∼ 200 m, i.e., it is reduced by two orders of
magnitude as compared to free water. Equation (1) does not
take into account multiple scattering and possible interference
and diffraction. Therefore Eq. (1) gives the attenuation coef-
ficient for irregular structure consisting of single scatterers if
the filling fraction f is not very small, L0 ∼ a0. The problem
of acoustic scattering at a single elastic cylinder in a viscous
fluid environment was solved in Ref. [10]. The value of the
attenuation coefficient at 50 kHz extracted from Fig. 8 of
Ref. [10] is approximately 6 × 10−4 dB/cm. For free water it
is 7 × 10−6 dB/cm, i.e., two orders of magnitude less. Thus,
Eq. (1) estimates correctly the enhanced viscous losses in a
phononic crystal in a simple case of isotropic lattice and non-
interacting scatterers. Square-root scaling of the attenuation
coefficient with frequency was measured for a periodic array
of narrow slits in air [11]. The exact solution obtained in
Ref. [10] and Eq. (1) confirm that dissipative losses within
the viscous boundary layer significantly exceed the losses in
the bulk of fluid and, therefore, the latter can be neglected.
Here we develop an analytical approach, for exact calculations
of the attenuation coefficient in a two-dimensioonal (2D)
phononic crystal in the low-frequency limit. The exact results
show that due to multiple scattering and particular shape of the
cross section of the cylinders the dissipative losses get further
enhancement. In a periodic structure the decay coefficient
may exceed by one-two orders of magnitude the enhancement
predicted by Eq. (1) and obtained in Ref. [10] for a single
scatterer.

Dissipation of acoustic energy around a hard scatterer.
Exact analytical results for γph can be obtained in the low-
frequency limit when the field of pressures and velocities
produced by sound can be calculated explicitly. In the long-
wavelength limit a phononic crystal behaves, in many cases,
like a homogeneous medium with effective parameters. The
effective parameters for different types of phononic crystals
have been calculated in a series of recent publications [12–25].
Deformation of photonic and phononic crystal spectra and, in
particular, the band-gap width under the influence of weak
dissipation was studied in Refs. [26–30]. The dissipation
was introduced phenomenologically by adding a frequency-
dependent imaginary part to the dielectric or elastic coeffi-
cients.

In phononic crystals of solid-fluid constituents the dissipa-
tion of sound of frequencies less than 1 MHz occurs mainly
in the viscous fluid. Viscous losses depend on the distribu-
tion of velocities in the fluid, which is very sensitive to the
shape and mutual orientation of the scatterers. The velocities
vi(r) generated in the fluid by a propagating sound wave are
calculated from the Navier-Stokes equation. Then, the rate
of dissipation of acoustic energy is obtained by integration
of velocity gradients (∂vi/∂xk )2 over the whole volume of
occupied be viscous fluid [1]. In this microscopic approach
the dissipative losses in the bulk and near the solid-fluid inter-
faces are correctly accounted for. Homogenization theory for
phononic crystals of circular cylinders with low filling fraction
in a viscous fluid was developed in Ref. [7]. It was shown that

in the lowest approximation the effective mass density and
bulk modulus are independent of viscosity. However, viscosity
strongly reduces the scattering cross section of a homogenized
cluster of solid cylinders.

Here the decay coefficient γph for a 2D phononic crystal is
calculated in the low-frequency limit ω, k → 0. In this limit
the dispersion of sound is linear, ω = ceffk. The effective
speed of sound ceff (k̂) is obtained by calculating small (over
ka0 � 1) corrections originating due to weak modulation of
the plane wave solution by periodic scatterers [13]. It is rep-
resented by infinite sum over the reciprocal lattice vectors G.
In general case, ceff depends on the direction of propagation
k̂ = k/k.

Propagating sound waves generate vibrations of pres-
sure p(r) exp(−iωt ) and velocity v(r) exp(−iωt ). Within the
boundary layer δ, velocity in a viscous fluid decays exponen-
tially from its value in the bulk to zero at the interface of a
motionless hard scatterer. The acoustic power (per unit length
of a cylinder) dissipated around a hard scatterer is given by
the following contour integral [1]:

Q̇ = 1

2
√

2

√
ρωη

∮
l0

|v(r)|2dl. (2)

Integration runs over contour l0, which is the circumference
of the scatterer. This formula is applied for calculation of
dissipated power within a unit cell of 2D phononic crystal
provided that viscous losses in the bulk, associated with
viscosity coefficient ξ , are neglected. It is valid if the interface
can be considered as flat within the lengths ∼δ, i.e., δ �
L0, where L0 is the length of the contour l0 that separates
fluid from solid. This inequality, together with the condition
of homogenization, k a0 � 1, defines the frequency interval
where the proposed theory is valid,

η

ρL2
0

� ω � ceff

a0
. (3)

For solid rods with L0 � 1 mm in water environment (η =
0.01 g/cm s) this inequality is satisfied starting from fre-
quency ∼1 Hz. Since Q̇ ∝ √

η, and keeping in mind the
lowest approximation over viscosity η, the integrand v2(r)
can be calculated for ideal (inviscid) fluid. The energy losses
due to temperature oscillations are omitted in Eq. (2) since for
liquids like water they are negligible.

The decay coefficient for a wave propagating in a homoge-
neous dissipative medium is given by the ratio

γph = Q̇

2ceffEc
. (4)

For the case of a homogenized phononic crystal Ec is the
acoustic energy within the unit cell

Ec = 1

2

∫
Ac

ρ(r)|v(r)|2da ≈ ρ

2

∫
A f

|v(r)|2da. (5)

The first integral in Eq. (5) is taken over the unit cell Ac =
As + A f , containing the areas As = f Ac and A f = (1 − f )Ac

occupied by solid and fluid, respectively. In the second in-
tegral the contribution of solid is neglected since Eq. (2)
is already written in the approximation of hard scatterer. In
what follows, we assume that the conditions of high acoustic
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contrast are satisfied [31],

λs � λ, ρs � ρ. (6)

Here λ (λs) and ρ (ρs) are the elastic modulus and density of
the fluid (solid cylinder).

Pressure and velocity distributions in the low-frequency
limit. Pressure p(r) [and velocity v(r) = ∇p(r)/iωρ(r)] in a
periodic system is represented by a Bloch wave

p(r) = p0eik·r +
∑
G 	=0

pk (G)ei(k+G)·r. (7)

In the limit ω, k → 0 the first term is a homogenized plane
wave of amplitude p0 and the sum over G is a linear over ω

(and k) correction due to weak modulation by a periodic set of
scatterers. The set of linear equations for the Fourier compo-
nents pk (G) follows from the wave equation for pressure in an
inhomogeneous elastic medium [32]. In zero approximation
over viscosity the set is written as follows:∑

G′
ν(G − G′)(k + G) · (k + G′)pk (G′)

= ω2
∑
G′

β(G − G′)pk (G′). (8)

Here ν(G) and β(G) are the Fourier coefficients of the peri-
odic function 1/ρ(r) and 1/λ(r). In the limit ω, k → 0 one
obtains from Eq. (8) the following result for pk (G) [13]:

pk (G) = −p0

∑
G′

(k · G′)ν(G′)I (G, G′). (9)

Here I (G, G′) = [G · G′ν(G − G′)]−1 implies inversion of
the matrix which has the following elements:

(ρ−1
s − ρ−1)G · G′F (G − G′), G 	= G′,(
f
ρs

+ 1− f
ρ

)
G2, G = G′.

(10)

Substitution of Eq. (9) into Eq. (7) gives the distribution
of pressure p(r). Then the distribution of velocity v(r) =
∇p(r)/iωρ(r) can be easily calculated

v(r) = 1

ρ(r)

[
p0eik·rk̂

ceff (k̂)
+ 1

ω

∑
G

Gpk (G)eiG·r
]
. (11)

Here ceff (k̂) = limk→0(ω/k) is the speed of low-frequency
sound calculated in Ref. [13]

c2
eff (k̂)

= 1

β̄

⎡
⎣ν̄−

∑
G,G′ 	=0

(k̂ · G) (k̂ · G′)ν(G)ν(−G′)I (G′, G)

⎤
⎦,

ν̄ = f

ρs
+ 1 − f

ρ
, β̄ = f

λs
+ 1 − f

λ
. (12)

Note that while this result is obtained in the low-frequency
limit, the periodicity of the structure is strongly manifested
through the sums over the reciprocal-lattice vectors G. Appli-
cation of Eq. (12) to a medium without periodicity (a set of
disordered scatterers or porous medium) is not justified and
may lead to essential error.

Distributions of pressure and velocity given by Eqs. (7) and
(11) calculated in the low-frequency limit are principally dif-
ferent. Pressure, being a continuous function at the fluid-solid
interface, is reduced to a plane wave with wavelength 2π/k �
a0 weakly modulated by a function having the period of the
lattice, Eqs. (7) and (9). Unlike this, the velocity (11) does not
homogenize. Both terms in Eq. (11) exhibit periodicity of the
lattice. Since the velocity distribution is calculated for inviscid
fluid its tangential component does not match the velocity of
vibrating solid inclusion. The discontinuity of the tangential
component of v(r) does not allow homogenization of velocity
as a vector. At the same time, exactly this discontinuous com-
ponent which does not vanish at the fluid-solid boundary gives
the contribution to the the integral (2). The continuous normal
component becomes negligible at the boundary, provided the
condition of high acoustic contrast (6) is satisfied. Note, that
in a viscous fluid, the vector of velocity homogenizes due to a
no-slip boundary condition.

Homogenization of pressure occurs for any elastic material
of the cylinders with density ρs except ρs = ∞. Sound waves
do not penetrate in a material with infinite density. Therefore,
p(r) = 0 inside or on the surface of hard scatterers. At the
same time for any point in the fluid pressure remains constant,
p(r) ≈ p0, if k → 0. Thus, pressure suffers a discontinuous
jump at each interface. Since the discontinuous jumps have the
periodicity of the lattice, the Fourier coefficients pk (G) do not
vanish in the limit k → 0. According to Eq. (9) pk (G) ∼ k.
For this Fourier coefficients to remain finite at k → 0 the
matrix I (G, G′) must be singular in the limit ρs → ∞ [33].
To avoid singularity in numerical inversion of the matrix
[G · G′ν(G − G′)] the density ρs must significantly exceed ρ

but remain finite. For any strong but finite acoustic contrast,
the pressure is a continuous function allowing homogeniza-
tion. However, the acoustic energy accumulated inside the
solid cylinders can be neglected due to inequality (6).

Once the distribution of velocity is known from Eqs. (11)
and (9), the dissipated power Eq. (2) and acoustic energy
within the unit cell Eq. (5) can be calculated. Then the decay
coefficient is obtained from Eq. (4). Simple but cumbersome
calculations lead to the following result:

γph(k̂) = L0

2Acceff (k̂)

√
ωη

2ρ

M(k̂)

N (k̂)
. (13)

Here the quantities M(k̂) and N (k̂) are complicated function-
als of the form factors F (G) and L(G),

M(k̂) = 1 + 2

ρ

∑
G,G′

L∗(G)(k̂ · G)(k̂ · G′)F (G′)I (G, G′)

+ 1

ρ2

∑
G1,...,G4

L∗(G1 + G3)(G1 · G3)(k̂ · G2)(k̂ · G4)

× F (G2)F (G4)I (G1, G2)I (G3, G4), (14)

N (k̂) = 1 − f − 2

ρ

∑
G,G′

k̂ · G k̂ · G′F ∗(G)F (G′)I (G, G′)

− 1

ρ2

∑
G1,...,G4

F ∗(G1+G3)(G1 · G3)(k̂ · G2)(k̂ · G4)

× F (G2)F (G4)I (G1, G2)I (G3, G4). (15)
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Numerical, COMSOL Analytical, Eq. (13)
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FIG. 1. Normalized decay coefficient of sound propagating in
isotropic square lattice with square cross section of the cylinders
in viscous water background as a function of filling fraction f =
(a/a0 )2, a0 = 5.5 mm. Left inset: Speed of sound (in m/s) given by
Eq. (12). Right inset: Blowup of the region of low f , where γph ∼√

f . The decay coefficient calculated from Eq. (13) with 2028 plane
waves is shown by red curve. The parameters of the scatterers are
selected to be 103 of those of aluminum: ρs = 103 × 2.7 g/cm3, λs =
103 × 51 GPa, and cs = √

λs/ρs = 4346 m/s. Numerical results
obtained by COMSOL for the same elastic parameters are shown by
green dots. Black line shows the results obtained by COMSOL for
hard scatterers, i.e., applying the condition of zero velocity, v(r) = 0,
for the cylinders. Blue curve is the decay coefficient of stainless steel
calculated by COMSOL.

The linear form factor L(G) is defined as the integral over the
circumference of the solid scatterer,

L(G) = 1

L0

∮
l0

e−iG·rdl. (16)

The exact result (13) confirms the estimate (1) up to
the dimensionless factor M(k̂)/N (k̂). This factor takes into
account the microstructure of the phononic crystal and the
details of the formation of the boundary layer. It turns out that
depending on geometry of the unit cell this numerical factor
can be as big as ∼10–103. While the scaling of the decay
coefficient (1) with ω and η is valid for a nonperiodic set of
cylinders, the exact result (13) is applicable only for a periodic
structure.

Decay coefficient for isotropic and anisotropic lattices. We
apply the obtained results for phononic crystal with square
lattice. If the scatterers have the same or higher symmetry,
then this structure is isotropic in the long-wavelength limit.
If, however, the scatterers are of lower symmetry, then the
structure exhibits anisotropy. Two lattices with square and
rectangular cross sections of the scatterers will be considered
in this section.

The decay coefficient given by Eq. (13) is plotted in
Fig. 1 versus filling fraction for a square lattice with a square
cross section of the scatterers at frequency ω/2π = 50 kHz,
which is well below the fundamental band gap. The results
obtained from Eq. (13) are compared to the decay coefficient
numerically calculated by COMSOL. The decay coefficient
γph is obtained as imaginary part of the numerically calculated
k = k(ω) for the lowest transmission band, assuming that
ω is real. For this isotropic lattice γph is independent of k̂.

Black line is obtained by COMSOL for the structure of cylin-
ders in viscous water which do not vibrate under a passing
sound wave (hard scatterers). The limit of hard scatterers
is well-approximated by green dots obtained by COMSOL
for an elastic material with ρs = 103ρAl and λs = 103λAl.
This hypothetic material possesses practically infinite acoustic
impedance, Z = 103ZAl, i.e., it behaves like a hard scatterer.
At the same time, speed of longitudinal sound in it is the
same as for aluminum, cs = √

λs/ρs = 4346 m/s. Therefore,
the effective speed of sound in the phononic crystal must
approach 4346 m/s in the limit f → 1. As seen in the left
insert the effective speed of sound gradually decreases with f
but near f = 1 there is a sharp turn toward the value of 4346
m/s (red curve). This sharp turn becomes a singularity in the
limiting case of hard scatterers (black curve). The speed of
sound and the decay coefficient calculated from Eq. (13) for
the same material parameters (red curve) are close to the nu-
merical result obtained by COMSOL. Right insert shows the
region of low filling fractions. At f � 1, the decay coefficient
grows fast. The square-root dependence, γph ∼ √

f predicted
by Eq. (1) is reproduced. Since the numerical and analytical
results obtained for phononic crystal of hard scatterers are in
excellent agreement we may conclude that the approximations
made in derivation of the decay coefficient (13) are justified.

If the condition of high acoustic contrast (6) is weakened,
then the decay coefficient becomes smaller due to partial
penetration of acoustic energy inside scatterers. Also near
vibrating solid surface the gradients of velocity within the
viscous boundary layer are reduced that leads to lower viscous
dissipation. Blue curve in Fig. 1 represents COMSOL result
obtained for stainless steel cylinders. For this structure the
decay coefficient turns out to be essentially less than for hard
scatterers. The ratio of impedances Zsteel/Zwater ≈ 30 is not
sufficiently large to justify hard scatterers approximation. The
difference between the results obtained for hard scatterers
(black curve in Fig. 1) and stainless steel scatterers (blue
curve) strongly increases for f > 0.8. The spacings between
the cylinders become narrow and in the case of hard scatterers
sound propagates through narrow fluid channels. Strongly
enhanced viscosity of air in narrow slits formed by aluminum
plates was recently observed in Ref. [6]. Aluminum objects in
air behave like hard scatterers since ZAl/Zair ∼ 104. Therefore,
the observed enhancement of thermoviscous dissipation of
sound is of the same nature as fast grows of the decay
coefficient shown in Fig. 1. This effect was explored in design
of phononic black hole [34].

The proposed approach becomes invalid if the viscous
boundary layers of two neighboring scatterers overlap. This
occurs near f = 1. In water the thickness δ ≈ 3 micron at
frequency 50 kHz. For the lattice in Fig. 1 with period a0 =
5.5 mm the viscous layers overlap for f > 0.98. Within the
region of fillings corresponding to practical applications of
phononic crystals, 0.1 < f < 0.8, the decay length of sound
is reduced by 103–104 times as compared to that in free water.

It is known that phononic crystals with anisotropic unit
cell behave like metafluids with anisotropic dynamic mass
[18–22,35,36]. Viscosity, being a dynamical property also
turns out to be anisotropic. Using Eq. (13) the parameters
of a structure with desired anisotropy of viscous losses can
be calculated. A metamaterial with anisotropic viscosity is
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Analytical

Numerical, COMSOL
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FIG. 2. The same as in Fig. 1 for a square lattice of anisotropic
hard scatterers with rectangular cross section. The parameters of
the scatterers are 103ρs and 103λs. COMSOL results are in good
agreement with the proposed theory for θ = 0◦ and θ = 45◦. A
noticeable difference for the direction θ = 90◦ is explained by much
higher dissipation.

necessary for engineering of a recently proposed hydrody-
namic cloak [37]. Anisotropy of viscous losses was experi-
mentally demonstrated in Refs. [36,38].

Figure 2 shows the decay coefficient calculated for
phononic crystal with square unit cell and anisotropic scatter-
ers. Each scatterer has a rectangular cross section with sides
in the ratio 1:2, as shown in the insert. The decay coefficient
is calculated using formula (13) (solid curves) at ω/2π =
50 kHz and confirmed by numerical COMSOL simulations
(dashed curves) for three directions of propagation. The re-
sults can be easily rescaled for other frequencies since in the
region of homogenization γph ∼ √

ω.
Higher losses are obtained for sound wave propagating

along the shorter side of the rectangle (θ = 90◦). This result
sounds counterintuitive since the longer viscous boundary
layer is formed for sound propagating along the longer side
(θ = 0◦). However, the length of this layer is not the only
factor. Local dissipation is defined by velocity gradients which
strongly enhanced near sharp corners. The number of corners
the wave meets per unit of length is larger for θ = 90◦ than
for θ = 0◦. Another important factor is the effective speed of
sound ceff that appears in the denominator of Eq. (13). Left
insert to Fig. 2 shows much lower speed of sound for θ =
90◦. Slower sound is in line with previously reported [21,35]
higher inertia along the direction θ = 90◦. Note that for 1D
layered system the factor of long viscous layers dominates and
the factor of multiple corners along the sound path is absent.
This leads to higher dissipation of sound propagating along
the layers [36].

Dissipation always slows down propagation of sound. This
can be seen in the insert to Fig. 2. For the directions of 0◦ and
45◦ the dissipation is low, therefore the difference in the speed
of sound calculated from Eq. (12) for inviscid fluid and using
COMSOL for viscous water is relatively small. However,
dissipation is essentially increased for the direction of 90◦ that
leads to noticeable reduction of the effective speed of sound.
It can be seen that two red curves in the insert linearly diverge
with filling fraction, i.e., the correction to the dispersion law

caused by dissipation is proportional to f . It is well known that
pure imaginary perturbation to Hamiltonian leads to quadratic
correction in the dispersion law (or to quadratic shift of energy
levels in quantum system, while the broadening is linear).
Since according to Eq. (1) the relative dissipative perturbation
	E/E ∼ √

f , the corresponding quadratic correction to the
dispersion law grows linearly with f .

Calculated decay coefficient for the arrays of hard scatter-
ers in Figs. 1 and 2 represents the maximum possible for a
given lattice (and fluid viscosity) level of sound absorption.
For the same structures of real solid scatterer the decay
coefficient is lower due to vibration of the scatterers.

Viscous losses in free water grow quadratically with fre-
quency, γ0 ∼ ω2. In phononic crystals, the losses grow as
γph ∼ √

ω. At frequency ω� ∼ (c2/a)2/3( f ρ/η)1/3 viscous
losses in the bulk and in the boundary layers become com-
parable. For a phononic crystal with a0 = 5.5 mm and f =
0.5 embedded in water this frequency is about 1 MHz. Of
course, at such high frequency the phononic crystal cannot be
considered as a homogeneous medium, therefore the formula
for ω� is only a rough estimate.

Any inhomogeneities at the circumference of the scat-
terers, like bumps, indents, or angles produce strong gra-
dients in distribution of fluid velocities that increase vis-
cous losses. High losses strongly limit observation of res-
onances leading to negative effective mass and/or elastic
modulus. Recently, the role of viscothermal losses in periodic
elastic structures has been experimentally studied in Refs.
[5,6,11,39]. It was demonstrated that losses do not allow
observation of some effects predicted in the approximation
of inviscid medium. In particular, negative refraction pre-
dicted for 2D periodic structure in the lossless limit [40]
and resonant transmission through an array of narrow slits
[6] are suppressed by thermoviscous damping. On the other
hand, viscous losses bring new properties to acoustic meta-
materials which can be useful if appropriately tailored and
explored.

Conclusions. In conclusion, we have developed a mi-
croscopic theory of sound decay due to viscous losses in
a phononic crystal of rigid cylinders embedded in viscous
fluid. Analytic result is derived for the decay coefficient of
sound propagating in the low-frequency limit when phononic
crystal behaves like a homogeneous fluid. This homogeneous
fluid exhibits anisotropic viscous losses if the unit cell is
asymmetric. The level of anisotropy and decay coefficient
grow fast with filling fraction. Formation of viscous boundary
layers around solid cylinders leads to enhancement of viscous
losses by two to four orders of magnitude as compared to
free water. Analytical results are obtained for arbitrary 2D
Bravais lattice with rigid cylinders. Comparison with numer-
ical COMSOL calculations demonstrates good agreement for
phononic crystals with high acoustic contrast between the
constituents. Decay coefficient is reduced for lower acoustic
contrast. Continuously varying anisotropy of viscous losses
represents a new property of phononic crystal as a viscous
metamaterial. This property will find new applications, for
example in engineering of dissipative hydrodynamic cloak
and acoustic black hole.
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