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Anderson localization in two-dimensional topological insulators takes place via the so-called levitation and
pair annihilation process. As disorder is increased, extended bulk states carrying opposite topological invariants
move towards each other in energy, reducing the size of the topological gap, eventually meeting and localizing.
This results in a topologically trivial Anderson insulator. Here, we introduce the anomalous levitation and
pair annihilation, a process unique to periodically driven, or Floquet, systems. Due to the periodicity of the
quasienergy spectrum, we find it is possible for the topological gap to increase as a function of disorder strength.
Thus, after all bulk states have localized, the system remains topologically nontrivial, forming an anomalous
Floquet-Anderson insulator (AFAI) phase. We show a concrete example for this process, adding disorder via
on-site potential “kicks” to a Chern insulator model. By changing the period between kicks, we can tune which
type of (conventional or anomalous) levitation and annihilation occurs in the system. We expect our results
to be applicable to generic Floquet topological systems and to provide an accessible way to realize AFAIs
experimentally, without the need for multistep driving schemes.

DOI: 10.1103/PhysRevResearch.2.022048

Introduction. In fully coherent systems, disorder leads to a
loss of metallic conduction and a transition to a localized state:
the Anderson insulator (AI) [1,2]. In three dimensions, this is a
gradual process. For small disorder, each energy band is split
by so-called mobility edges to a middle part with extended
states and outer parts with localized states, whose localization
length diverges at the mobility edges. As disorder is increased,
the central, extended part of each band shrinks, and eventually
the two mobility edges meet and the bands become localized.
In contrast, in generic one- and two-dimensional systems,
already an arbitrarily weak disorder is enough to localize all
bulk states.

Shortly after the discovery of the quantum Hall effect [3],
it was realized that two-dimensional Chern insulators also
require a finite amount of disorder to localize, but through a
different type of transition [4]. In bands with a nonzero Chern
number, although almost all bulk eigenstates can be (and are)
exponentially localized, the localization length diverges at
isolated energies: Extended states “carry the Chern number”
[5–7]. As found by Laughlin [4], the extended bulk states
carrying opposite Chern numbers “levitate” towards each
other in energy when disorder is gradually increased, and
eventually “annihilate” pairwise, so Anderson localization
sets in [8]. Since the topological edge states only occur within
the mobility gap between the extended bulk states, the pair
annihilation leads to a topologically trivial system.
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In the last decade, it was found that robust extended edge
states and complete bulk Anderson localization can coexist
in periodically driven systems, so-called anomalous Floquet-
Anderson insulators (AFAIs) [9–11]. Even if all quasienergy
bands have zero Chern numbers, Floquet insulators can have
topologically protected chiral edge states, which wind in
quasienergy [11–20]. Since the bands are trivial, arbitrarily
weak disorder leads to a fully localized bulk, while leaving the
chiral edge states extended [9–11]: There is no levitation and
annihilation in such anomalous Floquet topological insulators.

In this Rapid Communication, we revisit Laughlin’s result
on Anderson localization in the context of Floquet Chern
insulators [21–33]. The quasienergy bands of these systems
carry Chern numbers, and hence we expect a levitation-and-
annihilation scenario [34]. However, even in the simplest
two-band models, there are two different ways in which ex-
tended states carrying opposite Chern numbers can meet and
annihilate. Due to the periodic spectrum, the extended states
can levitate towards each other by reducing the size of the
topological gap (the conventional scenario) or by increasing
it instead (see Fig. 1). Thus, disorder can induce a transition
from a Floquet Chern insulator not only to an AI, but also to an
AFAI. We show this in the following using a toy model for a
Floquet Chern insulator, in which both scenarios of levitation
and annihilation happen, and find a simple rule of thumb for
when to expect either scenario.

System. We consider a tight-binding model on a square
lattice, with Hamiltonian [36]
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FIG. 1. When increasing disorder, the extended states separat-
ing topological and trivial quasienergy gaps levitate towards each
other, eventually annihilating pairwise (white star). The conventional
form of this process leads to the elimination of the topological
gap, resulting in a trivial Anderson insulator (AI, left panel). The
anomalous levitation and pair annihilation, in which the trivial gap
shrinks, leaves behind an anomalous Floquet-Anderson insulator
(AFAI, right panel). The background colors are numerically obtained
by computing the transmission, as explained in the main text [35].

where |Ar〉 and |Br〉 denote sites on the A and B sublattice in
the unit cell (see Fig. 2) with coordinates r = Nxax + Nyay,
with Nx, Ny ∈ Z. We measure energy in units of v, time in
units of 1/v (h̄ = 1 throughout), and distance along x and y
in units of |ax| and |ay|. The two energy bands are symmetric
around E = 0 because tr Ĥ0(k) = 0. For most of this Rapid
Communication we will use v1 = v, where the bands have
Chern numbers ±1, and thus the gap separating them is topo-
logical, i.e., hosts one branch of chiral edge states. Here, as
Fig. 2(b) shows, the bands are relatively flat: Their bandwidths
1.17v are much smaller than the band gap � = 5.66v.

We add disorder to the hopping model in the form of
periodic on-site potential kicks,

Ĥ (t ) = Ĥ0 + wĤdis

∑
n∈Z

δ(t − nT ). (2)

FIG. 2. (a) The model Hamiltonian: One unit cell (gray square)
contains two sites, belonging to the A and B sublattice (solid and open
circle, respectively). Bravais vectors ax,y are indicated as blue arrows.
Nearest-neighbor hopping amplitudes along and against the arrows
are v1(1 + i) and v1(1 − i), respectively. Next-nearest-neighbor hop-
ping amplitudes are +v along the dashed lines and −v along the
dotted lines. (b) Dispersion relation computed for v1 = v in a ribbon
geometry, infinite along ax , and consisting of 20 unit cells in the ay

direction. Top and bottom edge modes are shown as dashed and solid
black lines, respectively.

The time period T separates the kicks, which have a strength
w ∈ R and are spatially random,

Ĥdis =
∑

r

(ξr,A|Ar〉〈Ar| + ξr,B|Br〉〈Br|), (3)

with ξr,A/B random numbers drawn independently for each
lattice site, uniformly distributed with −1 � ξ � 1. Note that
the delta function in Eq. (2) has units of inverse time, or
energy, such that both w and ξ are dimensionless.

The Floquet spectrum is the spectrum of the Floquet oper-
ator F̂ , the time evolution operator of one period,

F̂ = T e−i
∫ T

0 Ĥ (t ′ )dt ′ = e−iwĤdis e−iĤ0T , (4)

where T denotes time ordering. Eigenstates of F̂—the
Floquet eigenstates—pick up phase factors of e−iεT dur-
ing each period, where the quasienergy ε takes values in
[−π/T, π/T ]—the Floquet zone, in analogy with the Bril-
louin zone. In the limit of maximal disorder, w = π , the
kicks randomize quasienergy completely, meaning that all
disorder-averaged properties of the model are independent of
quasienergy.

As a first step to understanding the effects of the periodic
kicks, we take the limit of vanishing kick strength w → 0,
similarly to the way lattice effects are treated in the nearly-
free-electron model of crystalline solids. This amounts to time
evolution using the static Hamiltonian Ĥ0 but calculating the
effects only at integer multiples of a time period T . In the
absence of kicks, the time period T does not change any
of the physical properties of the system, only the type of
information we can extract from it: Any eigenstate of Ĥ0,
with energy E , is also an eigenstate of F̂ . The corresponding
quasienergy is ε = E , projected into the first Floquet zone,
i.e., ε = [(ET + π ) mod (2π ) − π ]/T . As in the nearly-
free-electron model, we will use a repeated Floquet zone
description here, and for simplicity sometimes argue using the
“phase per period” εT , which is the same as the quasienergy
ε measured in units of 1/T .

Topology. Even in the limit of vanishing kick strength,
w → 0, the time period T can be used to tune the topological
invariants of the system, the winding numbers W [13] of
the quasienergy gaps. To see this, we follow the quasienergy
bands in a repeated Floquet zone scheme, in Fig. 3. For
T < 0.25π/v, all the energy spectrum of Ĥ0 fits in the first
Floquet zone, including edge states. Thus the quasienergy
spectrum consists of Floquet replicas of the lower and upper
band, together with the edge states between them, and the gap
around ε = 0 is topological, whereas the gap at the Floquet
zone boundary, ε = π/T , is trivial. As T is increased, the gap
at ε = 0 grows relative to the gap at ε = π/T , and eventually
overtakes it at a critical period time,

Tc = π

2E1/2
= π

(4 + 2
√

2)v
≈ 0.15π

v
, (5)

where E1/2 is the band center, the average of the minimum
and maximum energies of the upper band [37]. At around
T ≈ 2Tc the bands cross the Floquet zone boundaries: The
ε = π/T gap closes, and when it reopens, hosts edge states
coming from the first as well as from the second Floquet
zones. Thus, the winding number of this gap changes from
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FIG. 3. Floquet spectrum of Eq. (4) with v1 = v in the clean
limit, w = 0, in a repeated Floquet zone scheme. Tuning the time
period T has no physical effects here, as it only changes our de-
scription of the same physics, described by the constant Hamiltonian
Ĥ0—as in the first step of the nearly-free-electron approximation of
crystalline solids. Hatching indicates the presence of edge states in
a gap. Increasing the period T , bands cross over between Floquet
zones, delimited by thick horizontal lines. This results in a sequence
of topological phase transitions: Gaps are closed and reopened (even
if in this undriven case no transitions between bands happen), with
the number of edge states in them increasing by 2 each time [37].
Vertical dashed lines indicate periods for which the gaps are equal,
T = nTc with n = 1, 3, 5.

0 to 2. Further increasing T leads to a sequence of similar
transitions at T = 2nTc, at ε = 0 for even n and ε = π/T for
odd n.

Disorder. To investigate how disorder w affects the sys-
tem we calculate the two-terminal transmission G using the
KWANT code [37,38]. We consider a finite system of L × L
unit cells, with either periodic or open boundary conditions
in the ax direction, and semi-infinite leads attached at the top
and bottom, modeled as absorbing terminals at Ny = 1 and
Ny = L. The two-terminal scattering matrix Ŝ reads [39]

Ŝ(ε) = P̂[1 − eiεF̂ (1 − P̂T P̂)]−1eiεF̂ P̂T , (6)

where P̂ is the projection operator onto the absorbing termi-
nals. The total transmission G(ε) can be extracted from the
scattering matrix S(ε),

G = tr(t†t), S =
(
r t′
t r′

)
, (7)

where r(′) and t(′) are the blocks containing probability am-
plitudes for back-reflection, or transmission between the two
terminals, respectively, whose dependence on ε was sup-
pressed for readability. With periodic boundary conditions and
at maximal disorder, w = π , the transmission is quasienergy
independent, such that a vanishing transmission at any value
of ε indicates total localization of all bulk states. Chang-
ing to open boundary conditions, for an AFAI phase with
topological invariant W , topologically protected edge states
will appear, constitute completely open channels for transport,
and contribute integer values to the total transmission, with
G(ε) = |W| for all ε. Alternatively, the invariant W can be
obtained as the winding of the determinant of the reflection
part r of the scattering matrix [37,39,40].

FIG. 4. Phase diagram of the transmission G depending on disor-
der w and period T , at quasienergy (a), (b) ε = 0 and (c), (d) ε = π .
The boundary conditions along x are periodic in (a) and (c), and
open in (b) and (d). Transmissions are calculated for a system size of
20 × 20, with v1 = v, and by averaging over 50 disorder realizations.
Dashed lines show the analytically predicted phase transition points,
as described in the main text.

The calculated values of the transmission (see Fig. 4) show
that, depending on the period T , increasing disorder strength
can lead to a transition to an AI or an AFAI, with either the
usual or the anomalous levitation-and-annihilation scenarios
of Fig. 1. For T 	 0.25π/v, we find the first scenario: In
Fig. 4(a) the mobility gap at ε = 0 closes and reopens as
two extended states carrying the Chern numbers meet and
annihilate, while the winding number of this gap changes
from 1 to 0, as evidenced in Fig. 4(b). We show an example
in more detail, for T = 0.1π/v, in Fig. 1. For a range of
period times (0.15π/v < T < 0.45π/v), we find the second
scenario, a transition to AFAI via an anomalous levitation
and annihilation: In Fig. 4(c), the mobility gap closes and re-
opens at ε = π/T , and edge transmission indicates a winding
number of 1 in the w = π limit, in Figs. 4(b) and 4(d). An
example, with T = 0.2π/v, is shown in Fig. 1. For longer
drive periods we observe hints of transitions to AFAI phases
with higher winding numbers: around T ≈ 0.5π/v, of W =
2, and around T = 0.9π/v, possibly W = 3, although with
substantial finite-size effects.

We find a simple rule of thumb to predict whether maximal
disorder (w = π ) leads to an AI or an AFAI: The winding
number W of the fully localized phase at w = π is given
by the winding number of the dominant gap in the case
without disorder, w = 0. We thus expect phase transitions
between AI and AFAI to occur at T = (2m + 1)Tc, with
m ∈ N and Tc given by Eq. (5). This is already seen in the
data of Fig. 4, where the dashed lines showing the expected
transitions agree well with the data. However, it also holds
in the more general case, with v1 
= v in the Hamiltonian
of Eq. (1), as shown in Fig. 5. Here, we again find good
agreement between the numerically obtained phase transitions
and the condition T = (2m + 1)Tc, now with Tc depending on
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FIG. 5. Phase diagram of the transmission with maximal disor-
der, w = π . With (a) periodic boundary conditions, white regions
of low transmission, separated by ridges, are the AI and AFAI
phases. The phase boundaries are well approximated by the analyt-
ical predictions (dotted lines), where w = 0 gaps have equal sizes.
With (b) open boundary conditions, we can read off the topological
invariants of the Anderson localized phases via the quantized value of
transmission. The system size is 20 × 20, and each point is obtained
by averaging over 50 disorder realizations.

v1 in a piecewise linear fashion (see Supplemental Material
[37]).

Conclusion and discussion. We have shown that one can
realize the AFAI, i.e., full Anderson localization in the bulk
and topologically protected edge states, by adding disorder in

the form of on-site potential kicks to a Chern insulator. The
transition to the AFAI phase takes place via an anomalous
form of the levitation and annihilation of extended states
carrying the Chern numbers, different from previously studied
cases [9,41,42]. The winding number of the fully disordered
w = π system is simply given by the winding number of
the largest quasienergy gap at w = 0. It would be interesting
to explore whether this simple rule still holds in models
with more than two bands. It would also be interesting to
consider this process in different symmetry classes, where
weak antilocalization can lead to metallic phases, in higher-
order topological insulators [43–47], or in quantum walks
[48,49]. Finally, we believe that our approach of using on-site
potential “kicks” might offer an experimentally more viable
route towards AFAI phases than the ones relying on more
complicated, multistep driving protocols.
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