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A cost-precision trade-off relationship, the so-called thermodynamic uncertainty relation (TUR), has been
recently discovered in stochastic thermodynamics. It bounds certain thermodynamic observables in terms of the
associated entropy production. In this Rapid Communication, we experimentally study the TUR in a two-qubit
system using an NMR setup. Each qubit is prepared in an equilibrium state, but at different temperatures. The
qubits are then coupled, allowing energy exchange (in the form of heat). Using the quantum state tomography
technique we obtain the moments of heat exchange within a certain time interval and analyze the relative
uncertainty of the energy exchange process. We find that generalized versions of the TUR, which are based
on the fluctuation relation, are obeyed. However, the specialized TUR, a tighter bound that is valid under specific
dynamics, is violated in certain regimes of operation, in excellent agreement with analytic results. Altogether,
this experiment-theory study provides a deep understanding of heat exchange in quantum systems, revealing
favorable noise-dissipation regimes of operation.
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Introduction. Obtaining universal bounds of experimen-
tally accessible physical observables has been a fundamental
topic in physics. Such bounds include the Heisenberg un-
certainty relation of quantum mechanics, the Carnot bound
for the efficiency of heat engines, and the Landauer erasure
principle stemming from the second law of thermodynamics.
Likewise, recent studies have shown that for systems that are
out of equilibrium, there exist trade-off relations between the
relative uncertainty of integrated currents (heat, charge) and
the associated entropy production [1–42]. These results are
now collectively referred to as thermodynamic uncertainty
relations (TURs). The specialized version of the TUR (S-
TUR) reads

〈Q2〉c

〈Q〉2
� 2

〈�〉 , (1)

where Q represents any integrated current, such as heat
or charge, and it is a stochastic variable. 〈Q〉, 〈Q2〉c are
the average integrated current and its noise, respectively,
and 〈�〉 is the net average entropy production in the heat
exchange process, characterizing irreversibility, or how far
the system is driven away from equilibrium. The S-TUR
was first conjectured for a continuous-time, discrete-state
Markov process in the steady state [1]. It was later proved
with the large deviation technique [2,6]. Since then, this
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relation has been generalized to discrete-time, discrete-
state Markov processes [8], finite-time statistics [6,7,16,17],
Langevin dynamics [5,16,26,28,32], periodically driven sys-
tems [20,24], multidimensional systems [16], molecular mo-
tors [9], biochemical oscillations [11], interacting oscilla-
tors [12], run-and-tumble processes [13], measurement and
feedback control [19,22], broken time-reversal symmetry sys-
tems [19,21,23,31,33], first-passage times [14,15], and quan-
tum transport problems [34–38,41]. Tighter bounds have also
been reported for some stochastic currents [3].

More recently, following the fundamental nonequilibrium
fluctuation relation [25], a generalized version of the TUR
(G-TUR1) was derived, where the right-hand side of Eq. (1)
was modified to 〈Q2〉c

〈Q〉2 � 2
exp 〈�〉−1 , which is a looser bound

compared to Eq. (1). In fact, a more tighter version of the
generalized bound had been obtained following a slightly
different approach by Timpanaro et al. [39] as 〈Q2〉c

〈Q〉2 � f (〈�〉),

where f (x) = csch2[g(x/2)] and g(x) is the inverse func-
tion of x tanh(x). We refer to this bound as the G-TUR2.
Interestingly, in the small dissipation limit, 〈�〉 → 0, both
these generalized bounds reduce to the S-TUR of Eq. (1).
Other weak generalized bounds resulting from the fluctuation
theorem were discussed in Ref. [40].

Even with the discovery of the G-TUR, there are com-
pelling reasons to continue and investigate the S-TUR. (i) First
and foremost, since the S-TUR is a tighter bound than the
G-TUR, once satisfied it offers more definite information on
performance. (ii) The S-TUR was proved for different classes
of models, in particular, discrete-state Markov processes.
However, several quantum transport models [35–37] illustrate
its validity in certain parameter regimes—albeit the underly-
ing quantum dynamics cannot be simply uniquely classified

2643-1564/2020/2(2)/022044(6) 022044-1 Published by the American Physical Society

https://orcid.org/0000-0002-8027-8920
https://orcid.org/0000-0002-8590-1953
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.022044&domain=pdf&date_stamp=2020-05-20
https://doi.org/10.1103/PhysRevResearch.2.022044
https://creativecommons.org/licenses/by/4.0/


SOHAM PAL et al. PHYSICAL REVIEW RESEARCH 2, 022044(R) (2020)

by its degree of Markovianity (for quantum systems, there
is no agreement on the definition of non-Markovianity [43]).
(iii) Notably, the S-TUR can be assessed from a fundamental
nonequilibrium viewpoint, by studying its perturbative expan-
sion, with the equilibrium value as the reference point [35,36].
This series expansion approach does not rely on the notion
of Markovianity, thus it allows a broader perspective on the
validity of the S-TUR.

Specifically, for a heat exchange problem in a steady state
the cumulants can be expanded close to equilibrium in terms
of the thermal affinity �β = β1 − β2 around a fixed inverse
temperature β,

〈Q〉 = G1�β + G2
(�β )2

2!
+ G3

(�β )3

3!
+ · · · ,

〈Q2〉c = S0 + S1�β + S2
(�β )2

2!
+ · · · , (2)

〈Q3〉c = R1�β + · · · .

Here, G1 is the linear transport coefficient and S0 is the
equilibrium noise. G2, G3, . . . (S1, S2, . . .) are higher-order
nonequilibrium transport (noise) coefficients. As a conse-
quence of the exact fluctuation symmetry, the following re-
lations hold [44]: S0 = 2G1, S1 = G2, 3S2 − 2G3 = R1, and
so on. This leads to [36] (〈�〉 = �β〈Q〉),

〈�〉 〈Q
2〉c

〈Q〉2
= 2 + (�β )2

6

R1

G1
+ O(�β )3. (3)

While the linear coefficient for the average heat exchange G1

is always positive, the skewness R1 does not take a definite
sign; when R1 � 0, the S-TUR is valid to that order, while
R1 < 0 indicates S-TUR violations.

In this Rapid Communication, we examine experimentally
and analytically the S-TUR based on the perturbative expan-
sion (3), beyond the classical, Markovian scenario. Despite
intense theoretical efforts dedicated to derive and analyze the
TUR, experimental studies of this trade-off relation are still
limited to a kinetic-network analysis of biological molecular
motors [9] and charge transport in atomic-scale junctions [10].
Nevertheless, both studies are concerned with problems that
obey the S-TUR.

We focus on the problem of quantum heat exchange be-
tween two initially thermalized qubits in a NMR setup, in the
transient regime. Moments of heat exchange are obtained by
performing quantum state tomography (QST) for the qubits.
As expected, G-TURs are valid throughout. This agreement,
while fundamentally important, does not offer any practical
input for system performance or in the design of quantum heat
machines. More interestingly, we identify regimes of validity
for the S-TUR in this quantum system, and quantify its viola-
tion, thus pinpointing favorable regimes of operation, with an
excellent agreement between theory and measurements.

Cumulants of heat exchange. Consider two systems with
their Hamiltonians H1 and H2 that are initially (t < 0) de-
coupled and separately prepared at their respective thermal
equilibrium state. The initial composite density matrix is
thus given as a product state, ρ(0) = ρ1 ⊗ ρ2, with ρi =
exp [−βiHi]/Zi, i = 1, 2, the Gibbs thermal state with in-
verse temperature βi = 1/kBTi (kB is the Boltzmann constant)
and Zi = Tr[e−βiHi ] the corresponding equilibrium partition

function. The coupling between the systems is suddenly
switched on at t = 0 for a duration τ (total Hamiltonian
H), which allows energy exchange between the two systems.
Due to the randomness of the initial thermal state and the
inherent probabilistic nature of quantum mechanics, the ex-
changed energy is not a deterministic quantity, but rather
quantified with a probability distribution function (PDF). In
the quantum regime, this PDF is constructed by following a
two-point projective measurement scheme [45–47]: The first
projective measurement of the energy of the two systems
is performed before they are coupled. A second projective
measurement is done at the end of the energy exchange pro-
cess (after the systems are separated). This procedure respects
the fundamental Jarzynski and Wöjcik exchange fluctuation
symmetry [48]. For the bipartite setup considered here, the
joint PDF corresponding to energy change (�Ei, i = 1, 2)
between the systems, during a coupling interval τ , is denoted
by pτ (�E1,�E2). It can be shown that [49,50]

〈(e−β1�E1−β2�E2 )z〉τ
=

∫
d (�E1)d (�E2)pτ (�E1,�E2)e−zβ1�E1−zβ2�E2

= Tr[ρ(0)z ρ(τ )1−z], (4)

with ρ(0) the combined density matrix of the two systems at
the moment they are coupled, and ρ(τ ) their density matrix
at the end of their coupled evolution. We now consider the
case �E1 ≈ −�E2, which is justified when the two systems
are only weakly coupled. Alternatively, this approximation
becomes an exact equality if there is no energy cost involved
in turning on and off the interaction between the two systems.
Interpreting the energy change for individual systems as heat,
�E1 = −�E2 = Q, we directly get from Eq. (4) an expres-
sion for the moments of heat exchange [50],

〈Qn〉τ = 1

(�β )n
Tr{ρ(τ )Tn[ln ρ(τ ) − ln ρ(0)]n}, (5)

where n = 1, 2, . . . corresponds to the order of the heat ex-
change moment and �β = β1 − β2. Tn is the time-ordering
operator; it places operators at the latest time to the left.
This powerful expression offers a unique way to gather
moments of heat exchange, simply by performing quantum
state tomography based on NMR experiments. Alternatively,
cumulants of heat exchange can be obtained by implement-
ing an ancilla-based interferometric technique [51–54]. This
method gives direct access to the characteristic function (CF)
of heat [55,56], defined using the two-point measurement
protocol,

χτ (u) =
∫

dQ eiuQ pτ (Q)

= Tr[U†(τ, 0)(eiuH1 ⊗ 12)U (τ, 0)(e−iuH1 ⊗ 12)ρ(0)].

Here, u is the variable conjugate to Q, and U (t, 0) = e−iHt/h̄

is the unitary propagator with the total Hamiltonian H. In
the language of the CF, the exchange fluctuation symmetry
translates to χτ (u) = χτ (−u + i�β ) [48,56–59].

Theoretical analysis. We now describe a specific case,
the so-called XY model consisting of two qubits with the
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Hamiltonian

HXY = hν0

2
σ z

1 ⊗ 12 + 11 ⊗ hν0

2
σ z

2

+ hJ

2

(
σ x

1 ⊗ σ
y
2 − σ

y
1 ⊗ σ x

2

)
. (6)

Here, H1 = hν0
2 σ z

1 ⊗ 12, H2 = 11 ⊗ hν0
2 σ z

2 , with ν0 the fre-
quency of the qubits, and σi, i = x, y, z, are the standard
Pauli matrices. The last term, denoted by H12, represents the
interaction between the qubits, with J the coupling parameter.
An important feature of this model is that [H12, H1 + H2] = 0.
This commutation implies that the change of energy for one
qubit is exactly compensated by the other qubit, as there is
no energy cost involved in turning on or off the interaction
between the qubits. For such an “energy-preserving” Hamil-
tonian, �E1 = −�E2 = Q is exact and the average entropy
production simply reduces to 〈�〉 = (β1 − β2) 〈Q〉.

Cumulants of heat exchange can either be computed from
the composite density matrix [50], or directly from the CF
χτ (u) of heat, following Eq. (6). We take the latter approach
for the XY model; algebraic manipulations of the Pauli matri-
ces yield [54]

χτ (u) = [1 + sin2(2πJτ ){ f1(ν0)[1 − f2(ν0)](e−ihuν0 − 1)

+ f2(ν0)[1 − f1(ν0)](eihuν0 − 1)}], (7)

where fi(ν0) = (eβihν0 + 1)−1, i = 1, 2. For compactness, be-
low we identify these functions as f1,2. It is easy to verify that
the above CF satisfies the exchange fluctuation symmetry for
arbitrary values of J , τ , β1, β2, and ν0. Expressions for the
average heat current and the associated noise are derived by
taking successive derivatives of ln χτ (u) with respect to iu. We
write down the first three cumulants, useful for the analysis of
the TUR,

〈Q〉τ = hν0Tτ (J )[ f2 − f1],

〈Q2〉c
τ = (hν0)2[Tτ (J )[ f1(1 − f2) + f2(1 − f1)]

− T 2
τ (J )( f2 − f1)2],

〈Q3〉c
τ = (hν0)3 Tτ (J )( f2 − f1)

[
1 − 3 Tτ (J )( f1(1 − f2)

+ (1 − f1) f2) + 2 T 2
τ (J )( f1 − f2)2]. (8)

Here, Tτ (J ) = sin2 (2πJτ ).
In the weak-coupling limit. i.e., Jτ � 1, T 2

τ (J ) � Tτ (J ),
the S-TUR bound is satisfied, even far from equilibrium [60].
This weak-coupling limit corresponds to a Poisson process,
missing cotunneling energy transfer processes, which are
quadratic in the transmission coefficient T 2

τ (J ). Since the
tight S-TUR bound is valid in our model at weak cou-
pling, it is meaningful to examine it beyond this regime
and identify its violations, which essentially correspond to
non-Markovianity.

To identify and quantify S-TUR violations, we turn to the
perturbative expansion (3), which was derived for steady state
transport [35]. However, since in the present model the role of
the coupling time is simply to scale the interaction strength,
the exchange fluctuation symmetry holds for arbitrary time τ ,
and as a result, Eq. (3) is valid—albeit with time-dependent
cumulants, G1(τ ), S0(τ ), G2(τ ), G3(τ ), . . .. Specifically, for

X 

-X 

-X 

 X 

 X  X 
(b) 

(a) 

Y 

Y 

FIG. 1. (a) Molecular structure of the two-qubit NMR spin sys-
tem, sodium fluorophosphate. The NMR active spin-1/2, 19F and 31P
nuclei in the molecule, labeled as qubit 1 and qubit 2, respectively,
are coupled by the Hamiltonian (11) with the coupling strength
J12 = 868 Hz. (b) Pulse sequence to realize heat exchange coupling
Hamiltonian HXY in Eq. (6). The pulses are applied on qubits 1 and
2 in a time ordered manner from left to right. The black and white
narrow solid bars represent π and π/2 pulses, respectively, with the
phases mentioned above them. 1/2J12 represents the free evolution
delay. The white box represents the θ (in rad) angle pulse about the
y axis.

the XY model, we get [ f (ν0) is evaluated at β],

G1(τ ) = (hν0)2 Tτ (J ) f (1 − f ) � 0,

R1(τ ) = (hν0)4 Tτ (J ) f (1 − f )[1 − 6Tτ (J ) f (1 − f )]. (9)

To order (�β )2, Eq. (3) simplifies to

�β
〈Q2〉c

τ

〈Q〉τ = 2 + (�βhν0)2

[
1

6
− Tτ (J ) f (1 − f )

]
. (10)

The S-TUR is violated when R1(τ ) < 0, that is, Tτ (J ) f (1 −
f ) > 1/6. However, since 0 � f (1 − f ) � 1/4, the S-TUR
is violated once Tτ (J ) > 2

3 . Interestingly, already in the
quadratic order of �β, the TUR can drop below the value of 2
if Tτ (J ) crosses a critical value. We assess the perturbative for-
mula (10) in Ref. [50]. However, in the weak-coupling limit,
i.e., Jτ � 1, T 2

τ (J ) � Tτ (J ), and R1(τ ) is always positive.
Moreover, it can be shown that in this limit the S-TUR bound
is always above 2, even far from equilibrium [60].

Experimental setup and results. To study heat exchange
between two qubits we use liquid-state NMR spectroscopy of
the 19F and 31P nuclei in the molecule sodium fluorophosphate
dissolved in D2O. Experiments are performed in a 500-MHz
Bruker NMR spectrometer at ambient temperature. As shown
in Fig. 1(a), 19F and 31P are identified as the two qubits, 1 and
2, exchanging heat under the desired coupling Hamiltonian,
Eq. (6). As the sample is in the liquid state, the molecules
can be considered identical with intermolecular interactions
averaged out due to motional averaging. All the experimental
procedures, initialization of the system and the heat exchange,
are completed in timescales much shorter than the relaxation
time of the nuclei. The internal Hamiltonian Hint of the
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FIG. 2. (a) First three cumulants of heat exchange, along with a
measure for the S-TUR, as a function of the inverse temperature of
qubit 1 β1; β2 = 0. Measurements (square, cross, diamond, and circle
symbols) are constructed with the help of Eq. (5), and are compared
to the theory (solid, dark-dashed, light dashed-dotted, and dotted
lines), Eq. (8). (b) Comparison between different bounds, showing
that the S-TUR (experiment: cross; theory: dashed line) provides the

tightest lower bound to 〈Q2〉c
τ

〈Q〉2
τ

(experiment: square; theory: solid line).
Experimental results are obtained from state tomography, yielding
〈Q〉τ , which is used to calculate the entropy production. Theoretical
results are based on Eq. (8). Parameters are Jτ = 1/8 and ν0 = π/20
(ω0 = 2πν0). Error bars are obtained by repeating the experiments
eight times.

two spins—in the rotating frame of the radio-frequency (rf)
pulses—can be written as

Hint = π

2
J12σ

z
1σ z

2 , (11)

where J12 = 868 Hz is the scalar coupling between the 19F
and 31P nuclei, as explained in Fig. 1(a). The desired coupling
Hamiltonian HXY under which the spins exchange heat is
realized from the internal Hamiltonian Hint with the rf pulses
displayed in Fig. 1(b). The net effect of the pulse sequence is
that the two spins evolve under the coupling Hamiltonian HXY

for a duration τ that is specified by the θ angle rotation about
the y axis, as shown. For the duration of 1/(2J12), the system
evolves under the Hamiltonian Hint.

To start with, the two qubits are initialized in a pseudoequi-
librium state ρ1 ⊗ ρ2, where ρi = exp [−βiHi]/Zi is a Gibbs
thermal state with inverse pseudospin temperatures βi and Zi

the partition function. For simplicity, we set β2 = 0 in all
our measurements. Qubit 1 is prepared at a higher inverse
temperature β1 by initializing it in a pseudopure state (PPS)
of |0〉〈0|, followed by applying pulses between 0 and π/2,
and a pulse field gradient (PFG). The purpose of the PFG is
to destroy coherences produced by 0 to π/2 angle pulses. The
qubits—prepared at two different pseudoequilibrium states—
are made to exchange heat under the coupling Hamiltonian
HXY for different time intervals τ and different β1. Following
the coupling period, we perform QST of the final state (in ad-
dition to the QST of the initial pseudoequilibrium state) [50],
and from Eq. (5) achieve the cumulants of heat exchange.

In Figs. 2 and 3 we present two cases, displaying agreement
and violation, respectively, of the S-TUR. First, in Fig. 2,
we set Jτ = 1/8. According to the theoretical analysis, the

1 2 3
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0.2

0.3

0.4

0.5

1 1.5 2 2.5 3 3.5

1

3

10

FIG. 3. Same as Fig. 2 but at Jτ = 1/4 leading to Tτ (J ) > 2/3,
therefore the violation of the S-TUR.

S-TUR is valid (to the lowest perturabtive order) when the
skewness is positive, or Tτ (J ) = 1/2 < 2/3. Indeed, we find

in Fig. 2(a) that both R1(τ ) and �β
〈Q2〉c

τ

〈Q〉τ − 2 are positive for
all �β. In Fig. 2(b), we compare the different bounds on the

relative uncertainty 〈Q2〉c
τ

〈Q〉2
τ

, using experimental data as well as
theoretically, and show that the S-TUR provides the tightest
bound. Next, in Fig. 3(a) we display results for Jτ = 1/4,
for which, according to our theory, violations of the S-TUR
are expected to occur already in the quadratic order of �β,
as Tτ (J ) = 1 > 2/3. Indeed, we clearly see a violation for
0 < β1ω0 < 3.2. Furthermore, the third cumulant, 〈Q3〉c, is
negative in this region, which corroborates with Eq. (10).
The theoretically predicted lowest value for the S-TUR for

this model is �β
〈Q2〉c

τ

〈Q〉τ ≈ 1.86, and we experimentally reach a
value very close to this number. The violation of the S-TUR
can also be seen in Fig. 3(b): The S-TUR bound (2/〈�〉)
appears above the ratio 〈Q2〉c

τ

〈Q〉2
τ

, and it is greater than the other,

0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

FIG. 4. Cumulants of heat exchange and the S-TUR as a function
of Jτ for J = 1 Hz, β1ω0 = 2.02, and β2 = 0. Other parameters are
the same as in Fig. 2.
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looser bounds. Measurements again closely match the theo-
retical curves.

A complete analysis of the TUR as a function of the heat
exchange duration τ and for a fixed J = 1 Hz is presented in
Fig. 4. We display the first three cumulants and note that the
relative uncertainty is reduced (violation of S-TUR) within
a certain region of parameters: The minimum value of the
S-TUR precisely appears when the fluctuations of the heat
exchange are reduced, below the value of the first cumulant.
As expected, the skewness is found to be negative in this
region.

Summary. We experimentally examined the TUR for heat
exchange by realizing the XY model, performing quantum
state tomography, and extracting the heat exchange cumu-
lants. We found that the S-TUR provides a tight bound up
to a certain threshold value for the qubit-qubit coupling pa-
rameter sin2(2πJτ ), beyond which the bound is invalidated.
As predicted theoretically, the validity of the S-TUR crucially
depends on the sign of the third cumulant. Generalized ver-
sions of the TUR are satisfied throughout in our system, as

expected, since these (weak) bounds are derived from the
universal fluctuation relations, which is satisfied in our exper-
imental setup. Nevertheless, a most interesting observation is
that the tighter S-bound is in fact also satisfied over a wide
range of the coupling value Jτ . The S-TUR thus contains
practical information: The condition to invalidate it pinpoints
to regimes of favorable performance for heat machines, oper-
ating with high constancy and little dissipation.
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