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The recently discovered material Co3Sn2S2 shows an impressive behavior of the quantum anomalous Hall
(QAH) conductivity driven by the interplay between ferromagnetism in the z direction and antiferromagnetism
in the xy plane. Motivated by these facts, first we build and study a spin-1/2 model to describe the magnetism
of Co atoms on the kagome planes. Then, we include conduction electrons which are coupled to the spin-1/2’s
through a strong Hund’s coupling. The spin-orbit coupling results in topological low-energy bands. For 2/3
on-site occupancy, we find a topological transition from a QAH ferromagnetic insulating phase with Chern
number one to a quantum spin Hall (QSH) antiferromagnetic phase. The QAH phase is metallic when slightly
changing the on-site occupancy. To account for temperature effects, we include fluctuations in the direction of
the Hund’s coupling. We show how the Hall conductivity can now smoothly evolve when spins develop a 120o

antiferromagnetism in the xy plane and can synchronize with the ferromagnetic fraction.
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I. INTRODUCTION

When applying a magnetic field, the quantum Hall effect
gives rise to an insulating behavior in the bulk of a material
and is characterized by chiral edge states [1–3] which show
a quantized Hall conductance. Bulk properties are described
through a topological invariant, the Chern number [4]. The
quantum anomalous Hall (QAH) effect, as originally intro-
duced by Haldane [5], corresponds to a generalization of the
quantum Hall effect on the honeycomb lattice with tunable
Berry phases. It opens a gap for the Dirac fermions and breaks
time-reversal symmetry, such that a unit cell yet shows a zero
net flux. This model finds applications in quantum materials
[6,7], light [8,9] and cold atom systems [10,11], and was
developed in other geometries such as the kagome lattice
[12,13]. For practical realizations, it is important to find intrin-
sic ferromagnetic QAH systems with topologically nontrivial
band gaps produced by spin-orbit coupling (SOC) mecha-
nisms [14]. The Weyl-semimetal quantum material Co3Sn2S2

has recently attracted a lot of attention experimentally in rela-
tion with the QAH effect [15,16]. The pure cobalt is known
to have a Curie temperature of around 1388 K associated
to ferromagnetism. Here, a layered crystal structure with a
Co-kagome lattice in this material develops a perfectly out-
of-plane ferromagnetic phase (along the z direction) and an
almost quantized Hall conductivity under 90 K. Between 90 K
and 175 K, the ferromagnetic fraction smoothly decreases
while an in-plane antiferromagnetism (related to the xy plane)
progressively develops [15]. The anomalous Hall conductivity
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then evolves with the ferromagnetic fraction along the z
direction [15,16].

Within our approach to magnetic topological kagome sys-
tems, the magnetism of Co atoms is described through local-
ized spins [17], reflecting the strong Hubbard interaction, and
the low-energy bands are in agreement with ab initio calcu-
lations on Co3Sn2S2 established in the ferromagnetic phase
[15,18,19]. The magnetic transition is described through the
localized spins and itinerant electrons will develop topological
energy bands as a result of the SOC. While Kondo lattices
have been shown to induce topological phases [20], here
itinerant and localized electrons (the latter forming core spin-
1/2’s on each atom) are coupled through a strong Hund’s
ferromagnetic mechanism, as also suggested in Ref. [21].
The presence of a Hund’s coupling generally plays a key
role in these multiorbital electronic systems [13,22]. In our
model, this coupling is along the z direction. It induces an
Ising Jz ferromagnetic interaction between nearest-neighbor
localized spins [23–26], reproducing the ferromagnetism of
the Co atoms below 90 K [15]. We also introduce an in-
plane antiferromagnetic correlation Jxy between the core spins
which is produced by Mott physics and electron-mediated
interactions between the half-filled orbitals (associated to the
localized spins) [27]. This model produces an antiferromag-
netic transition with a 120o spin ordering in the xy plane when
J∗

xy = 2Jz (see Fig. 1), as observed [15].
From a spin-wave analysis, a flatband touches the clas-

sical ferromagnetic state when approaching the transition,
destabilizing the ferromagnetic alignment and stabilizing the
antiferromagnetic 120o spin ordering in the xy plane. The
flatband then moves to higher energy because the azimuthal
angle φi associated to each spin on the Bloch sphere is
now only a global quantity, since we fix φi − φ j = 2π/3 in
radians (or 120o), and the polar angle of each spin jumps
to θi = π/2. The magnetization along the z direction jumps
discontinuously to zero. It becomes continuous if we apply a
small magnetic field. Then, we describe temperature effects
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FIG. 1. (a) Kagome lattice. Here, � is the phase accumulated by
an electron hopping counterclockwise inside a triangle. a1 and a2

are the two vectors characterizing a unit cell and their norm is set
to unity, |a1| = |a2| = 1. (b) Magnetization for the core spins mz =
cos θ along the z axis when neglecting fluctuations in the direction of
the Hund’s coupling, for a (very) small magnetic field ha. (c) Sketch
of the magnetic transition when increasing the XY coupling if we fix
Jz = 1.

in Co3Sn2S2 below 175 K by decreasing the ferromagnetic Jz

coupling or, equivalently, by increasing the antiferromagnetic
coupling Jxy if we set Jz = 1. Taking into account fluctuations
in the direction of the Hund’s coupling produces a (Gaussian)
distribution on the value of Jz. At finite temperatures, the
formation of magnetic domain walls, as recently observed
with imagery analysis [28], could also justify this statistical
view. Interestingly, we then find that the (average) system’s
magnetization in the z direction smoothly reduces to zero after
the transition, producing the progressive canting of the spins,
such that the statistically averaged Chern number follows the
ferromagnetic fraction.

II. MODEL

The mechanism leading to the anomalous Hall effect in
our model is the intrinsic SOC, which may originate from
the presence of Sn2 atoms [29]. Kane and Mele showed that
the SOC can produce a quantum spin Hall (QSH) phase
on the honeycomb lattice [30]. This phase (called a Z2 topo-
logical insulator) is characterized by spin-up and spin-down
electrons at the edge moving in opposite direction, producing
a vanishing Hall conductance. A QSH effect was also pre-
dicted and observed in two-dimensional mercury [31,32] and
in three-dimensional bismuth [33] quantum materials. In the
Kane-Mele model, strong interaction effects in the Mott phase
favor an in-plane antiferromagnetic phase [34], justifying that
we choose an antiferromagnetic XY spin coupling for the core
spins in addition to Jz. A link between SOC and QAH effect
was also studied for Cs2LiMn3F12 [14] and in relation with
chiral spin states [13,21].

FIG. 2. (a) Energy dispersion relation and topological edge
modes computed for a lattice cylinder geometry. Vectors q1 and q2

are dual to vectors a1 and a2 in Fig. 1. (b) Local density of states ρ for
a Fermi energy at EF = 0.95 (in units of t) with associated cylinder
geometry and with flux inside each triangle of the lattice � = 3π/4.
Here, x refers to the number of Co atoms along the cylinder direction.

Below, we include the effect of the competition between
the two magnetic channels Jxy and Jz onto the probabilities
of occupancies P↑ and P↓ for the spin-up and spin-down
itinerant electrons in the canonical ensemble, assuming a
strong Hund’s coupling,

Hc = −hc

2

∑
i

Sz
i (c†

i↑ci↑ − c†
i↓ci↓), (1)

where Sz
i refers to the z magnetization of the localized spin-

1/2 at site i and c†
iα creates a conduction electron at site i with

spin polarization α =↑,↓. The Jz spin coupling is induced by
the Hund’s coupling hc.

We address the case where the on-site occupancy for
itinerant electrons is 2/3 and close to 2/3. If the system is spin
polarized with one electron species, when the Fermi energy
lies in the gap between the middle and the upper energy bands
in Fig. 2, the system will show a quantized Hall response.
Slightly changing the on-site occupancy, it is also possible to
observe a metallic ferromagnetic topological phase [35,36].
To tackle the ferromagnetic-antiferromagnetic transition, we
may introduce the number of particles associated to up and
down species as N↑ = P↑Ne and N↓ = P↓Ne, with the number
of electrons Ne = N↑ + N↓ satisfying Ne = 2

3 Na and Na being
the number of atomic sites. When the number of up and down
electrons is equal, then the lowest energy band associated to
each spin species is filled.

When Jxy � Jz, the spins of the electrons adiabatically
follow the polarization of the core spins due to the strong hc

coupling, such that ci↑ = ci, and one can build an effective
spin-polarized electron model with only spin-up electrons.
The tight-binding model for the spin-up electrons takes the
form HQAH = ∑

〈i; j〉 −(t + iνi jλ)c†
i c j , where t (real) is the

nearest-neighbor hopping amplitude on the kagome lattice
and λ the intrinsic SOC projected onto the spin-up electronic
states [14]. Here, νi j = +1(−1) if the electron jumps coun-
terclockwise (clockwise) inside the triangle of the kagome
lattice containing sites i and j, and the symbol 〈i; j〉 refers
to a coupling between nearest neighbors. We observe that
the ferromagnetism should not modify the hopping amplitude
of spin-up electrons compared to the case where 〈Sz

i 〉 = 0,
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implying that t↑ = t = t〈χi|χ j〉, with |χi〉 representing a spin
eigenstate at site i with θi = 0.

To make a link with the Haldane model on the kagome
lattice, we can then rewrite −(t + iνi jλ) = −rei�νi j/3 with
r = √

t2 + λ2 and � = 3arg(t + iλ). In Fig. 1, in a triangle
there is a flux � breaking time-reversal symmetry and in an
hexagon (honeycomb cell) there is a flux −2� such that glob-
ally on a parallelogram unit cell represented by the vectors
a1 and a2 the total net flux is zero. In wave-vector space, for
2/3 on-site occupancy, we then check the presence of a QAH
effect for an illustrative value of � = 3π/4, see Fig. 2(a);
see Supplemental Material in Ref. [37] for methodology. The
three energy bands reflect the three distinct sites A, B, C in
Fig. 1. The lowest energy band is described by a Chern num-
ber Cl = sgn(sin �) = +1, the middle band has a total Chern
number zero, and the upper band shows a Chern number
Cu = −Cl . It is an important reminder that the middle band
becomes perfectly flat for � = π/2 and it touches the bottom
of the lowest band for � = 0, suppressing the QAH effect
when λ = 0. In Fig. 2(b), the local density of states for on-site
occupancy close to 2/3 shows a ferromagnetic topological
phase with a metallic bulk and with a Chern number almost
equal to 1, as observed [15,19].

III. MAGNETIC TRANSITION

Now we study quantitatively the magnetic properties of
the system in the presence of the couplings Jz and Jxy. The
localized spins are described by the Hamiltonian,

HS =
∑
〈i; j〉

[ − JzS
z
i Sz

j + Jxy
(
Sx

i Sx
j + Sy

i Sy
j

)]
, (2)

with (Jz, Jxy) > 0, such that the classical energy on the Bloch
sphere representation is

E = 1

4

∑
〈i; j〉

[−Jz cos θi cos θ j + Jxy sin θi sin θ j cos(φi − φ j )].

(3)

To minimize the magnetic energy, we find that θi = θ for
all values of Jxy/Jz and in the antiferromagnetic phase φi −
φ j = 2π/3. Therefore, the classical energy takes the simple
form E = 1

4

∑
〈i; j〉[(−Jz + 1

2 Jxy) cos2 θ − Jxy

2 ]. For 2Jz > Jxy,
the energy reaches its minimum for θ = 0 or θ = π , corre-
sponding to E = −NaJz and to a ferromagnetic state of the
spins along z direction. For 2Jz = Jxy, the ground-state energy
takes the value E = −Na

2 Jxy for all the values of θ . For Jxy >

2Jz, the ground-state energy keeps the same value −Na
2 Jxy

if the spins now point in the xy plane with θi = θ = π/2.
Then, we study the effect of a small applied magnetic field ha

along z direction which favors the classical minimum θ = 0
when 2Jz + ha � Jxy, corresponding to an energy E (θ = 0) =
−Na(Jz + ha). If Jxy > 2Jz + ha, then E is minimum for θ

such that

cos θ = ha

−2Jz + Jxy
, (4)

resulting in E = −Na
2 ( h2

a
−2Jz+Jxy

+ Jxy). This behavior associ-
ated to the magnetization along z direction is shown in Fig. 1

FIG. 3. Spectrum of the spin waves in the harmonic approxima-
tion in (a) the ferrromagnetic phase (Jxy/Jz = 1.9) and in (b) the
antiferromagnetic phase (Jxy/Jz = 2.1). Energies are defined in units
of the Jz coupling for s = 1/2, and we show the spectrum of the free
branches of the spin-wave excitations.

(top right). While the SU(2) Heisenberg antiferromagnetic
Hamiltonian shows a quantum spin liquid on the kagome
lattice [38], here magnetic ordered phases are classically
stable through the form of HS .

To study quantum effects, we analyze the spin-wave spec-
trum in both phases, adapting the calculation of Ref. [39] for
the present situation. In the ferromagnetic phase, we check the
presence of a quadratic dispersion relation in the vicinity of
|k| = 0 with an energy of 2sJz(2 − γF + γF

2 |k|2) where γF =
Jxy/Jz. This dispersive branch approaches the classical energy
when Jxy ∼ 2Jz and corresponds to adiabatic deformations
of the phase difference φi − φ j for nearest neighbors around
zero. In addition, we check the presence of a flatband corre-
sponding to alternating 0 and π values of the phases φi for the
six sites forming a honeycomb cell [39]. The flatband energy
also meets the classical energy at the phase transition. Taking
into account the entropy at finite temperature, corresponding
to degenerate states associated to the (free) angles φi, then the
free energy of this flatband should be lowered compared to
the classical ferrromagnetic state when Jxy = 2Jz, justifying
that the ferromagnetic ground state is not the correct classical
ground state. The spin system rotates in the xy plane, forming
an antiferromagnetic phase where spin vectors order at 120o.
In the antiferromagnetic phase, the spins lock in the xy plane
according to φi − φ j = 2π/3 in radians, and the flatband now
moves at higher energy as shown in Fig. 3. In this case, the
flatband would rather correspond to out-of-plane staggered
spin excitations. The energy of the spin waves for the lowest
dispersive band, for |k| � 1, is given by 2Jxys

√
1 − 2γAF|k|

with Jz = γAFJxy and γAF = 1/γF. The linear dispersion of the
spin waves corresponds to adiabatic deformations of φi − φ j

for nearest neighbors around the value 2π/3 in Eq. (3).
We have checked the robustness of our results when includ-

ing a coupling between two successive kagome layers [40];
see Supplemental Material in Ref. [37].

IV. TOPOLOGICAL TRANSITION

Here, we describe the effect of the magnetic transition on
the conduction electrons for 2/3 on-site occupancy, first as-
suming that the fluctuations in the Hund’s coupling direction
are small. If the amplitude of hc is sufficiently large compared
to t , we can write 〈sz

i 〉 = 〈Sz
i 〉 [27], where sz

i = (c†
i↑ci↑ −
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FIG. 4. (a) Fractions of the ferromagnetism F = 〈mz〉(Jz0 ) and
antiferromagnetism (1-F), and (b) averaged Chern number as a
function of Jxy/Jz0, taking into account fluctuations in the Hund’s
coupling. The ratio λ/t is set to 0.1 and the standard deviation σ of
the Jz distribution is set to 0.05Jxy.

c†
i↓ci↓)/2 represents the conduction electron’s magnetization.

Writing 〈sz
i 〉 = (P↑ − P↓)/2 with P↑ + P↓ = 1, in that case

we predict P↑ = 1 and P↓ = 0 if Jxy < 2Jz, corresponding to
the ferromagnetic order along z direction and P↑ = P↓ = 1/2
if Jxy > 2Jz in the antiferromagnetic phase. When the spins
align in the xy plane, they do not modify the motion of the
itinerant electrons when 〈Sz

i 〉 = 0 in Eq. (1). This produces
a QAH-QSH transition at the magnetic transition associated
with a change of band topology. In the ferromagnetic case,
as studied above, the lowest and middle bands associated
with spin-up particles are filled, whereas in the QSH phase
the lowest band associated to each spin species is completely
filled, whereas middle and upper bands are empty (see Fig. 2).
The QSH phase occurs because the spin-down particles are
described by an opposite phase −� compared to the spin-up
particles on a triangle if we generalize the form of the SOC as
in the Kane-Mele model, iλ

∑
〈i; j〉 νi j (c

†
i↑c j↑ − c†

i↓c j↓), which
is reminiscent of an atomic SOC Lzsz, with L being the
angular momentum of electrons on a lattice. The spin-up
and spin-down electrons are described by the same nearest-
neighbor hopping amplitude in the antiferromagnetic phase
such that t↑ = t↓ = t . The core spins act as a local magnetic
field which breaks time-reversal symmetry if the net mag-
netization on a triangle is nonzero. In the antiferromagnetic
phase, the sum of the three arrows describing the spins in
a triangle is zero, therefore time-reversal symmetry is pre-
served if 〈Sz

i 〉 = 0 and a Z2 topological order can develop,
where the Chern number of each lowest band is equal to
C↑

l = −C↓
l = +sgn(sin �).

For Co3Sn2S2, it is important to emphasize that the
ferromagnetic fraction varies smoothly with temperature
or here the ratio Jxy/Jz, which breaks time-reversal sym-
metry. In our approach, it produces a QAH conductance
at the edges which is proportional to 2(e2/h)〈sz

i 〉(Jz0) =
2(e2/h)〈Sz

i 〉(Jz0) = (e2/h)〈cos θ〉(Jz0); here, h corresponds to
the Planck constant and e is the charge of an electron.
Here, we include the effect of fluctuations in the direction
of the Hund’s coupling. Such fluctuations induce a slightly
disordered distribution of Jz parameters that we study glob-
ally, with the same mean Jz0 and with the same variance
σ at each site. The symbol 〈...〉(Jz0) refers to an ensemble-
averaged value, for instance, on different sample realizations.
These variations on the value of hc could be produced by

temperature effects generating a random (noisy) Hund’s cou-
pling along z direction. This variance could also be stabilized
by a Dyaloshinskii-Moriya term Di jSi × S j producing weak
ferromagnetism along z direction in the antiferromagnetic
120o phase [21,41].

Then, we study the effect of such fluctuations on bulk prop-
erties. We take the distribution of Jz couplings as Gaussian,
P(Jz; Jz0) = 1√

2πσ
e−(Jz−Jz0 )2/2σ 2

, with a variance σ � Jz0 (or
much smaller than kBT for Co3Sn2S2). For 2Jz0 = Jxy, now
the system can show a coexistence between ferromagnetism
along the z direction and antiferromagnetism in the xy plane.
Introducing mz = 2〈Sz

i 〉 = cos θ , then mz = +1 if Jxy < 2Jz

and mz = 0 if Jxy > 2Jz. The ensemble average value of mz

including the Gaussian fluctuations is given by

〈mz〉(Jz0) =
∫ +∞

0
dJzP(Jz; Jz0)mz(Jz )

= 1

2
erfc

[
1√
2σ

(
Jxy

2
− Jz0

)]
, (5)

where erfc corresponds to the complementary error function.
For the conduction electrons, if Jxy < 2Jz we have a (sample
with a) Chern number C = C↑

l = +1 corresponding to P↑ =
1 and P↓ = 0 and for Jxy > 2Jz we have C = C↑

l − C↓
l = 0

corresponding to P↑ = P↓ = 1/2. Therefore, we introduce the
averaged Chern number

〈C〉(Jz0) =
∫ +∞

0
dJzP(Jz; Jz0)C(Jz ) = 〈mz〉(Jz0). (6)

In Fig. 4, we show the behavior of the averaged Chern number
and averaged magnetization. Eq. (6) relates the progressive
evolution of the magnetization along z axis in the bulk with the
(averaged) Chern number, as observed in Refs. [15,16]. We
reproduce a bulk-edge correspondence where the conductance
at the edges takes the form (e2/h)〈C〉(Jz0). In Fig. 4, we draw
the evolution of the Chern number for 2/3 on-site occupancy
for the itinerant electrons. A transition from QSH to QAH
effect was also reported in HgTe materials when doping
with random magnetic Mn dopants [42] and in thin films of
(Bi,Sb)2Te3 doped with Cr atoms [43].

To summarize, we have built a model taking into account
both localized electrons giving rise to a magnetic transition
and conduction electrons producing topology of Bloch bands
on the kagome lattice. We hope that this may contribute to
the understanding of the quantum material Co3Sn2S2 and a
similar theoretical approach could be developed to describe
Fe3Sn2 kagome bilayer systems [44]. Changing the stochiom-
etry of a Co-atom kagome plane, open questions remain,
including the precise value of the Chern number [45].
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