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Allotropes of carbon, including one-dimensional carbon nanotubes and two-dimensional graphene sheets,
continue to draw attention as promising platforms for probing the physics of electrons in lower dimensions.
Recent research has shown that the electronic properties of graphene multilayers are exquisitely sensitive to the
relative orientation between sheets and in the bilayer case exhibit strong electronic correlations when close to a
magic twist angle. Here we investigate the electronic properties of a carbon nanotube deposited on a graphene
sheet by deriving a low-energy theory that accounts for both rotations and rigid displacements of the nanotube
with respect to the underlying graphene layer. We show that this heterostructure is described by a translationally
invariant, a periodic, or a quasiperiodic Hamiltonian, depending on the orientation and the chirality of the
nanotube. Furthermore, we find that, even for a vanishing twist angle, rigid displacements of a nanotube with
respect to a graphene substrate can alter its electronic structure qualitatively. Our results identify a promising
direction for strong correlation physics in low dimensions.
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Introduction. Carbon nanotubes and graphene sheets are,
respectively, one- and two-dimensional carbon allotropes.
Both systems have been extensively studied for several
decades because of their unique electrical, optical, and me-
chanical properties [1,2] and their wide range of potential
applications spanning from electric circuits to solar cells
and exciton-polariton lasers [3–6]. They have proven to be
valuable platforms for investigating new physics in reduced
dimensions, leading, for instance, to the first experimental
observation of the integer quantum Hall effect at room tem-
perature [7]. Graphene bilayers share many properties with
their monolayer counterparts [8], but exhibit fascinating new
phenomena as well [9]. Notably, Cao et al. and others have
recently observed a correlated insulator state [10] and un-
conventional superconductivity [11] in graphene bilayers that
have a relative orientation close to a magic [12] angle near
1.1◦, sparking excitement in the physics community. Although
they have not yet attracted wide attention, nanostructures
formed between graphene and carbon nanotubes also hold
promise since they might bring the sensitivity to orientations
discovered in bilayers to one-dimensional physics.

In this Rapid Communication we establish a low-energy ef-
fective theory for hybridized nanotube-graphene heterostruc-
tures. We focus specifically on single-wall metallic nanotubes
placed on a graphene layer, as illustrated in Fig. 1. We
derive a Hamiltonian describing electron tunneling between
a graphene layer and a nanotube deposited at a generic twist
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angle. We find that, even for vanishing twist angle, rigid dis-
placements of the nanotube with respect to the graphene sheet
strongly alter the nanotube electronic properties, leading, e.g.,
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FIG. 1. Single-wall carbon nanotube on a graphene substrate.
The nanostructure geometry can be characterized by starting from
Bernal AB stacking between a graphene sheet and an unrolled
nanotube with general chirality and then displacing the nanotube
or changing the orientation of its axis. In Bernal stacking, atoms
located at the B sites of the carbon nanotubes are above A sites of
the graphene layer. (a) Structure of an unrolled carbon nanotube,
which is specified by a primitive translation vector �T along the
nanotube axis and a perpendicular chiral vector �L. Both vectors can
be written as linear combinations of the primitive lattice vectors �a and
�b. (b) �G2 and �G3 are reciprocal lattice vectors that connect equivalent
graphene Brillouin-zone corners. The momentum states near K and
its equivalent corners together host the Dirac point of valley K .
Momenta near the other three Brillouin-zone corners host valley K ′,
the time-reversed counterpart of valley K . (c) AB stacking between
graphene and the unrolled nanotube applies when the orientation of
the nanotube axis matches its chirality angle η.
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to valley-dependent differences between the Dirac veloci-
ties of left and right movers, similar to the spin-dependent
velocities induced in quantum wires by Rashba spin-orbit
interactions [13]. For some magic displacements, nanotube
group velocities in the vicinity of the Dirac points are strongly
reduced, suggesting that strong interaction regimes and possi-
bly [14] superconducting transitions might be made accessible
by simple mechanical displacements.

Model. We consider a single-wall metallic nanotube de-
posited on top of a graphene layer, as illustrated in Fig. 1.
The nanotube geometry is uniquely determined by the trans-
lational vector �T = ma�a + mb�b, oriented along the nanotube
axis, and the chiral vector �L = na�a + nb�b, with L = |�L| the
nanotube circumference. Here �a and �b are the primitive vec-
tors of the graphene sheet’s triangular lattice illustrated in
Fig. 1. The sets of integers [na,b, ma,b] are constrained by the
orthogonality condition �L · �T = 0. Metallic nanotubes occur
when the condition na + nb = 3N + 1 is satisfied, with N
an integer. For nanotubes with diameter larger than a few
nanometers, we can safely neglect the effects of curvature of
its wrapped graphene sheet [2,15]. In this case, the nanotube
electronic states can be obtained by imposing the bound-
ary condition ψ (�r) = ψ (�r + �L) on the graphene wave func-
tions, resulting in the momentum quantization condition px ≡
px( j) = 2π j/L [2], with j an integer. We focus on the limit in
which the interlayer tunneling strength is weaker than the en-
ergy separation between nanotube minibands, allowing us to
truncate the low-energy Hilbert space to the j = 0 subspace.

We consider an AB-stacked arrangement, as shown in
Fig. 1, which can be achieved when the nanotube orientation
on the graphene sheet matches the tube chirality angle η. The
atomic positions in the graphene layer and the nanotube can be
written, respectively, as �R and �R′ = M(θ )( �R − τ ) + �d , where
the matrix M(θ ) describes left-handed rotation of angle θ , τ

is a vector connecting the two atoms in the unit cell, and �d
is a translation vector. In our coordinate system, the nanotube
axis is oriented along the y direction. With these assumptions,
the Dirac Hamiltonians of the carbon nanotube, h(py), and the
graphene layer, hg(�k, η, θ ), can be written as

h(py) = −v

[
0 ipy

−ipy 0

]
,

hg(�k, η, θ ) = −v

[
0 k+e−i(η−θ )

k−ei(η−θ ) 0

]
, (1)

where �k (with k± = kx ± iky) and py are momenta measured
with respect to the respective Dirac points and v is the Dirac
velocity.

Here we assume that the overlap between the π orbitals
of the two subsystems can be represented by a function t (�r)
that is smooth on the scale of the lattice spacing [12]. For
the explicit calculation, we adopt a two-center approximation
for the interlayer hopping amplitude [12] and account for the
finite transverse size of the nanotube by assuming that the

hopping amplitude varies with position in the �L direction.1

For definiteness, we take t (x) ∝ e−x2/2R2
.2

The tunneling matrix element describing a process in
which an electron in valley K with momentum py residing
on sublattice β of the nanotube hops to momentum state �k and
sublattice α in the same valley of the graphene layer is then
[16]

T αβ

�k,py
= t√

2π

3∑
j=1

T αβ
j exp

[
−L2

2
(kx − q jx )2

]
δky−py,q jy , (2)

where t ≡ t (kD) is the Fourier transform of the tunneling
amplitude t (�r) and kD is the magnitude of the Brillouin-zone
corner wave vector. Here we have introduced the vectors
�q j = kθ (sin(χ j + θ ),− cos(χ j + θ )), with kθ = 2kD sin(θ/2)
and χ j = 2π ( j − 1)/3, and the tunneling matrices Tj , i.e.,

T1 =
(

1 1
1 1

)
,

T2 = e−i �G2· �d
(

e−iφ 1
eiφ e−iφ

)
,

T3 = e−i �G3· �d
(

eiφ 1
e−iφ eiφ

)
. (3)

Here φ = 2π/3 and �G2,3 are the reciprocal lattice vectors
depicted in Fig. 1. For a vanishing twist angle, the tunnel-
ing Hamiltonian (2) is translationally invariant along the y
direction and the y component of the momentum is a good
quantum number. For a twist angle θ = arctan(q/

√
3), with

q a rational number, the y component of the momentum is
a good quantum number up to a reciprocal lattice vector
[16]. The corresponding Hamiltonian is then periodic along
the y direction and can be diagonalized in terms of one-
dimensional Moiré bands using a plane wave expansion.3 For
other twist angles, the spectrum is quasiperiodic: The corre-
sponding wave functions are quasilocalized and tunneling is
suppressed [17].

In this Rapid Communication we focus on the translation-
ally invariant case, i.e., θ = 0, showing that even a rigid dis-
placement can strongly affect nanotube electronic properties.
Below we characterize how the hybridization between the
nanotube and the graphene sheet alters the nanotube electronic
properties by evaluating full momentum- and frequency-
resolved spectral function of the nanotube [18]

A(py, ω) = − 1

π

∑
γ

ImGR
γ γ (py, ω), (4)

1In practice, the falloff of the tunneling strength as a function of
distance from the center of the nanotube-graphene contact region will
depend on nanotube shape deformation, but these details do not alter
our results in an important way.

2We have tested the opposite tunneling limit, i.e., a tunneling
amplitude between nanotube and graphene across the contact area
between the two subsystems that falls off abruptly, and our results
are not qualitatively modified (see the Supplemental Material [16]).

3We note that, in contrast to the graphene bilayer case, in our model
there is only one good momentum even in the periodic limit.
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FIG. 2. Electronic structure of a carbon nanotube on a graphene sheet. Spectral function A(py, ω) of the carbon nanotube for rigid
displacements (a) along the direction transverse and (b) parallel to the nanotube axis. (c) Dependence of the (absolute value of) conduction
(|〈c|T |c〉|) and valence (|〈v|T |v〉|) band hybridization matrix elements (7) at the graphene momentum kx = 0 on displacement transverse to
the nanotube axis. For the dimensionless displacements x⊥ �= 0, 1/2, the two matrix elements have different values, explaining the asymmetry
of the spectral function (a). (d) For displacements along the nanotube axis, the valence and conduction bands experience the same interaction
strength, explaining the symmetry of the spectral function (b). The spectral densities, frequencies, momenta, and tunneling strength are plotted
in dimensionless units, i.e., A → (v/a)A, py → apy, ω → ω(a/v), and t → t (a/v).

where GR
γ γ is the γ γ th matrix element of the nanotube re-

tarded Green’s function, i.e.,

GR(py, ω) = lim
ε→0

[(ω + iε)I − h(py) − �(py, ω)]−1. (5)

Here I is the 2 × 2 identity matrix, while

�i j (py, ω) =
∫

dkx[T †(py)GR
g (kx, py, η, ω)T (py)]i j (6)

is the i jth matrix element of the carbon nanotube self-energy
due to hybridization with the graphene sheet. Here GR

g is the
retarded Green’s function of the unperturbed graphene sheet
[16].

Results. In this section we present the results of a nu-
merical evaluation of the spectral density (4) as function
of a rigid displacement �d of the nanotube. We distinguish
translations transverse �d⊥ and parallel �d‖ to the nanotube
axis and define dimensionless translations x⊥ (‖) by �d⊥ =√

3ax⊥(0, 1) and �d‖ = ax‖(1, 0), with a the lattice constant
of graphene.4 The electronic structure is a periodic func-
tion of x⊥ (‖) with period 1. Results for several different
values of x‖ (⊥) at t = 100 meV,5 L = 10π nm, and η = 0
are summarized in Figs. 2(a) and 2(b). Figure 2(a) shows
the dependence of the spectral density (4) on translations
transverse to the nanotube axis. The isolated bands illustrate
the strong influence of hybridization on the nanotube band

4In the absence of twist, the unit cell is defined by the honeycomb
lattice of graphene.

5Our results do not qualitatively depend on the tunneling strength
t , as long as the latter is weaker than the energy separation between
nanotube minibands (∼1 eV for our parameters). A higher (weaker)
tunneling strength would result in an increased (decreased) intensity
of the spectral density.

dispersion, while the continuous spectra reflect leakage of
the graphene sheet orbitals onto the nanotube. We observe
that the nanotube Dirac velocities are generically reduced by
level repulsion with graphene sheet orbitals and that the linear
dispersion of isolated nanotubes can be strongly distorted.
For a general translation x⊥ ∈ (0, 1) �= 0, 1/2, the nanotube
spectrum displays an asymmetry between right goers and left
movers (i.e., corresponding to valley-projected time-reversal
symmetry breaking) and the graphene spectral weight shows
a corresponding asymmetry. On the other hand, as illustrated
in Fig. 2(b), symmetric spectra and spectral weight are main-
tained for any translation along the nanotube axis.

Most features of Figs. 2(a) and 2(b) can be understood
by examining the hybridization matrix elements between the
nanotube and graphene conduction and valence bands, while
setting the x component of the graphene momentum kx → 0.
This suffices to capture the largest contribution to the spectral
density, which is due to energy-conserving processes in which
electrons tunnel from the nanotube to the graphene layer and
vice versa. Since the hopping term (2) preserves the y com-
ponent of momentum, energy is conserved during tunneling
only when kx = 0. The hybridization matrix elements between
graphene and nanotube conduction and valence bands at
kx = 0 are

Tcc ≡ 〈c|T |c〉 = 1
2 [T AA + T BB + i(T AB − T BA)],

Tvv ≡ 〈v|T |v〉 = 1
2 [T AA + T BB + i(T BA − T AB)] (7)

for py > 0, while for py < 0 Tcc ↔ Tvv . Here we have
dropped the momentum subscripts for the sake of brevity,
i.e., T αβ = T αβ

�k,py
[Eq. (2)]. Figures 2(c) and 2(d) illustrate the

variation of the matrix elements in Eq. (7) upon transverse and
parallel displacement, respectively. Considering, for instance,
x⊥ = 3/4 and py > 0, one finds that the repulsive interac-
tion between conduction bands is much larger than the one
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FIG. 3. Four-band model and valley-dependent spectral functions. (a) Energy spectrum of the 4 × 4 Hamiltonian (8) for graphene
momentum kx = 0 and different values of dimensionless displacement x⊥. Far from the Dirac point, the spectrum displays the same features
observed in the spectral function [see Fig. 2(a)]. However, in contrast with the spectral function, the four-band spectrum exhibits an energy
gap. (b) Energy spectrum of the 4 × 4 Hamiltonian (8) for a finite kx and x⊥ = 1/4. For kx > 0 (<0), the gap closes at the left (right) of the
Dirac point. The total contribution of electronic states with finite kx gives rise to a gap closing at the Dirac point, which is displayed by the
spectral density in Fig. 2(a). (c) Nanotube spectral density A(py, ω) at the valleys K and K ′, which are related by time-reversal symmetry. A
valley-projected time-reversal symmetric spectrum is degenerate for K and K ′ (top panels). When valley-projected time-reversal symmetry is
broken (bottom panels), a right-going state at momentum py in one valley still has a left-going degenerate Kramers partner at momentum −py

in the other valley. The spectral densities, frequencies, momenta, and tunneling strength are plotted in dimensionless units, i.e., A → (v/a)A,
py → apy, ω → ω(a/v), and t → t (a/v).

between valence bands, i.e., |Tcc| � |Tvv|. As a result, the
velocity renormalization of the nanotube conduction band is
larger than for the valence band. Larger velocity reductions
also lead to smaller amplitudes for the graphene sheet orbitals
on the nanotube.

Although the strongest trends in Fig. 2(a) can be under-
stood by examining level repulsion separately for conduction
and valence bands, the behavior near py = 0 involves all
four bands. The full four-band Hamiltonian of the coupled
bilayers is

H =

⎛
⎜⎜⎝

0 hg12 T11 T12

hg21 0 T21 T22

T ∗
11 T ∗

21 0 h12

T ∗
12 T ∗

22 h21 0

⎞
⎟⎟⎠. (8)

Figure 3(a) shows that diagonalizing Eq. (8) at kx = 0 explains
most of the behavior seen Fig. 2(a), although some gaps in the
four-band spectrum do not survive in the nanotube spectral
function. The absence of such gap can be explained by ac-
counting for graphene states with kx �= 0. Figure 3(b) shows
that diagonalizing Eq. (8) for a finite kx leads to a gap closing
to the left and right of the Dirac point for kx > 0 and kx < 0,
respectively. Adding these two contributions results in a gap
closing at the Dirac point, i.e., py = 0. Finite momentum con-
tributions lead also to a shift of the graphenelike conduction
and valence bands to higher energies (in absolute magnitude).
This is reflected by the spectral weight broadening we observe
in correspondence to the graphene Dirac cone.

Another interesting feature of our results is the broken
valley degeneracy of the spectrum, which we observe for any
transverse translation (with the exception of x⊥ = 0, 1/2),
but never when considering displacements parallel to the

nanotube axis. This property of the spectrum follows from the
symmetries of our model. Time-reversal symmetry constrains
the spectrum at momentum py in the K valley to equal the
spectrum in the K ′ valley at momentum −py, as can be seen
in Fig. 3(c). The valley-projected spectrum is particle-hole
symmetric for any displacement. When the valley-projected
spectrum is time-reversal symmetric, the two valleys are
degenerate at each py. When valley-projected time-reversal
symmetry is absent, on the other hand, the spectrum of the K
valley can be mapped into the K ′ valley by setting py → −py.

Discussion and outlook. In this work we have established
a low-energy effective model for a carbon nanotube on top
of a graphene layer, which is valid for any displacement
or rotation of the nanotube axis. Depending on tube orien-
tation and chirality, the heterojunction Hamiltonian can be
translationally invariant, periodic, or quasiperiodic. In the
translationally invariant case, we show that, even at a van-
ishing twist angle, rigid displacements of the nanotube with
respect to the graphene layer can strongly alter the electronic
properties of the former. For instance, a rigid displacement
of the nanotube can break particle-hole symmetry,6 lift the
degeneracy between the two valleys, and strongly alter the
carrier velocity.

These features, which can be explained through a four-
band model and symmetry considerations, might be probed
experimentally by nanospot angle-resolved photoemission
spectroscopy, Raman spectroscopy, or momentum- and

6Note that such particle-hole symmetry breaking does not lead
to any net charge transfer since the particle-hole symmetry of
the valley-projected spectrum is preserved (see the Supplemental
Material [16]).
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energy-resolved tunneling spectroscopy [19]. Controlled
growth or deposition of nanotubes on a substrate has been
already demonstrated [20,21] and nanotubes can be later-
ally displaced on top of a graphene layer by, e.g., atomic
force microscopy [22], allowing our predictions to be tested
experimentally.

Our work suggests that atomic force manipulation of car-
bon nanotubes on graphene substrates can radically alter elec-
tronic properties, leading in some cases to strong correlations
related to flattened nanotube bands, and to interesting modi-
fied electronic structures with radically different quasiparticle
velocities in different valleys.

Finally, the nanotube might experience radial or axial
deformation when lying on a substrate [23–27]. Following
Ref. [28], we have investigated the effects of strain relaxation
and concluded that our results are not qualitatively altered by
it [16]. While our model relies on Ref. [12], more accurate
descriptions of the interlayer tunneling should be investigated
in future work [29].
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