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Conserved quantities such as energy or the electric charge of a closed system, or the Runge-Lenz vector
in Kepler dynamics, are determined by its global, local, or accidental symmetries. They were instrumental
in advances such as the prediction of neutrinos in the (inverse) beta decay process and the development of
self-consistent approximate methods for isolated or thermal many-body systems. In contrast, little is known
about conservation laws and their consequences in open systems. Recently, a special class of these systems,
called parity-time (PT ) symmetric systems, has been intensely explored for their remarkable properties that
are absent in their closed counterparts. A complete characterization and observation of conserved quantities in
these systems and their consequences is still lacking. Here, we present a complete set of conserved observables
for a broad class of PT -symmetric Hamiltonians and experimentally demonstrate their properties using a
single-photon linear optical circuit. By simulating the dynamics of a four-site system across a fourth-order
exceptional point, we measure its four conserved quantities and demonstrate their consequences. Our results
spell out nonlocal conservation laws in nonunitary dynamics and provide key elements that will underpin the
self-consistent analyses of non-Hermitian quantum many-body systems that are forthcoming.
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Introduction. In Lagrangian dynamics, conservation laws
are tied to symmetries of a system through Noether’s theo-
rem [1,2]. They give rise to global constraints that must be
satisfied by approximate methods that are used to model the
dynamics. Their influence is ubiquitous in the perturbative,
variational, and computational methods for interacting (many-
body) systems: Only approximations that satisfy conservation
laws [3,4] are physically meaningful and computationally
stable. In traditional quantum theory, an observable O is called
conserved if it commutes with the Hermitian Hamiltonian H0

of the system. Due to the equivalence between conservation
and commutation, a unitary symmetry transformation on the
quantum state space is generated by each conserved observ-
able O, thereby reducing the complexity of the eigenvalue
problem as the transformation block-diagonalizes the Hamil-
tonian. A complete set of conservation laws for a system is
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obtained by identifying all linearly independent observables
that commute with the Hamiltonian. In particular, the norm of
a quantum state is conserved under the unitary time evolution
by any Hermitian Hamiltonian because the operator O = 1
trivially commutes with any Hamiltonian.

PT -symmetric systems [5–25] are open systems with bal-
anced gain and loss. They are described by a Hamiltonian
HPT that is invariant under the combined operation of parity
and time reversal, and undergoes a time evolution that does not
conserve the state norm [26]. The spectrum of HPT changes
from real into complex-conjugate pairs when the gain-loss
strength is increased. This PT -symmetry breaking transi-
tion occurs at an exceptional point (EP) where eigenvalues
and the corresponding eigenmodes coalesce [27]. Nonunitary
dynamics of this transition have been observed in classical
systems [5–14] and noninteracting quantum systems com-
prising single photons [15–22], ultracold atoms [23], single
spins [24], and superconducting qubits [25].

A complete characterization of conservation laws in such
systems is an outstanding question. What are the conserved
quantities in PT -symmetric open systems? How do they
constrain the (approximate methods used to model the) dy-
namics, particularly in the PT -broken region where am-
plifying eigenmodes occur? With an approach inspired by
early works on pseudo-Hermiticity [28–30], we conclusively
address these questions. For a broad class of PT -symmetric
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Hamiltonians encompassing all experimentally relevant
models, we analytically construct a complete set of linearly
independent observables whose expectation values do not
change with time. We demonstrate our construction with a
four-site PT -symmetric Hamiltonian by encoding the four
sites in the path and polarization of a single photon and
simulating its nonunitary dynamics. We track four constants
of motion across the PT transition, and demonstrate the con-
sequences of these nonlocal, conserved quantities through the
dynamics of adjacent-site phase differences and conserved-
observable eigenstates.

Conserved observables for HPT . Consider a PT -
symmetric system described by a d-dimensional Hamiltonian
HPT with an energy scale J (h̄ = 1). An observable η̂ is called
an intertwining operator [29,30] for HPT , if it satisfies

η̂HPT = H†
PT η̂. (1)

It follows that the nonunitary time evolution operator
G(t ) = exp(−iHPT t ) keeps the observable η̂ unchanged, i.e.,
G†(t )η̂G(t ) = η̂. An expectation value of η̂ in an arbitrary
quantum state is therefore a conserved quantity. The equiv-
alence between conservation and commutation breaks down
for a non-Hermitian Hamiltonian. In principle, the complete
set of conserved observables can be obtained by numerically
solving the set of d2 linear equations (1) [31,32].

Instead, we analytically obtain the complete set of inter-
twining operators for all PT -symmetric Hamiltonians that
are also transpose symmetric, i.e., HPT = HT

PT . This broad
class includes all experimentally investigated PT -symmetric
systems in the classical [5–14] and quantum [15–25] do-
mains, and most of the tight-binding models [33]. The re-
cursive construction is as follows: The transpose symmetry
implies T HPT T = H†

PT , where the time-reversal operator T
is given by complex conjugation. It follows from the PT
symmetry of the Hamiltonian that the parity operator P is
a conserved observable, i.e., η̂1 = P . We then construct a
sequence of linearly independent, dimensionless observables
η̂i = η̂i−1HPT /J (i = 2, . . . , d). The intertwining nature of
η̂i−1 implies that η̂i is also an intertwining operator or, equiv-
alently, a conserved observable. This sequence terminates
with η̂d because the characteristic equation for HPT is a
polynomial of order d . Thus, η̂d+1 is a linear combination
of lower-order conserved observables. By expressing η̂ and
HPT in the biorthogonal eigenbasis of HPT [30], there are no
additional intertwining operators when the spectrum of HPT
is nondegenerate. Our procedure yields a set of d linearly
independent conserved observables for a d-dimensional PT -
symmetric system.

Nonunitary dynamics of a four-site PT -symmetric system.
For an experimental demonstration of conserved observables
under nonunitary dynamics, we use the Hamiltonian

HPT (γ ) = 1

2

⎛
⎜⎜⎜⎝

3iγ −√
3J 0 0

−√
3J iγ −2J 0

0 −2J −iγ −√
3J

0 0 −√
3J −3iγ

⎞
⎟⎟⎟⎠, (2)

which is compactly written as HPT (γ ) = −JSx + iγ Sz,
where Sx and Sz are spin-3/2 representations of the
SU(2) group [34]. It describes a four-site system

with mirror-symmetric tunneling, a linear gain-to-loss
profile, and the parity operator P = antidiag(1, 1, 1, 1).
Four equally spaced eigenvalues are given by
{−3/2,−1/2,+1/2,+3/2}

√
J2 − γ 2, which give rise to

a fourth-order EP at the PT -breaking threshold γ = J
[Fig. 1(a)]. The single energy gap

√
J2 − γ 2 in the spectrum

of (2) leads to dynamics with period T (γ ) = 2π/
√

J2 − γ 2

for γ < J .
We encode four sites of the system in the path and

polarization degrees of freedom of a single photon, and
label them as |1〉 = |UH〉, |2〉 = |UV 〉, |3〉 = |DH〉, |4〉 =
|DV 〉. Here, {|H〉, |V 〉} are horizontal and vertical polariza-
tions, and {|U 〉, |D〉} denote upper and lower paths, which
undergo gain and loss, respectively. Mapping HPT into
a Hamiltonian with site-selective loss HL(γ ) = HPT (γ ) −
3iγ1/2, we implement the operator GL(t ) = exp(−iHLt )
via a lossy linear optical circuit, which is related to G(t )
through G(t ) = GL(t ) exp(3γ t/2) [15]. Such a transforma-
tion adds an overall gain to experimental measurements,
which enables the experimental system with passive PT
symmetry to simulate ideal PT -symmetric models [15–22].
By projecting the time-evolved state |ψ (t )〉 = G(t )|ψ (0)〉
onto the site modes |k〉 (k = 1, . . . , 4), time-dependent state
norms are obtained [Fig. 1(b)]. To probe conserved quantities
ηi(t ) ≡ 〈ψ (t )|η̂i|ψ (t )〉, quantum state tomography is carried
out on time-evolved states [Fig. 1(c)]. We reconstruct the
time evolution over multiple timescales and a wide range of
γ for four initial states given by |ψ1〉 = |1〉, |ψ2〉 = (|1〉 +
|2〉 + |3〉 + |4〉)/2, |ψ3〉 = (|1〉 + √

2|4〉)/
√

3, |ψ4〉 = (|1〉 +
|4〉)/

√
2. Conserved quantities ηi(t ) can also be directly

probed via projective measurements [35].
Figures 1(d)–1(f) exemplify the nonunitary dynamics gen-

erated by HPT (γ ) through a time-dependent state norm
N (t ) = 〈ψ (t )|ψ (t )〉. Constant in the Hermitian limit (γ = 0),
N (t ) oscillates with a period T (γ ) in the PT -symmetric
region [Fig. 1(d)]. State norms do not oscillate around unity,
due to the nonorthogonality of eigenvectors of the non-
Hermitian Hamiltonian HPT (γ ) [35]. At the fourth-order
EP, the state norm N (t ) grows algebraically with time as t6

[Fig. 1(e)]. Such a scaling is dictated by the order of the
exceptional point: At the EP, H4

PT = 0 and the power-series
expansion of G(t ) terminates at the third order, giving rise
to the t6 dependence for the norm. In the PT -symmetry
broken region, the measured norm grows exponentially with
time [Fig. 1(f)].

Measurement of four nonlocal conserved quantities. For our
four-site system, the recursive procedure gives four conserved
observables. Expressing the time-evolved state in the site basis
|ψ (t )〉 = ∑4

k=1 ak (t )|k〉, the expectation value of η̂1 is given
by [28–30]

η1(t ) =
4∑

k=1

a∗
5−k (t )ak (t ), (3)

with similar, nonlocal expressions for the remaining three
conserved observables η̂2, η̂3, and η̂4 [35]. Therefore, the
global conservation of ηi(t ) does not translate into local
densities that obey continuity equations. This is in stark
contrast with the Hermitian or thermal cases where a globally
conserved quantity, such as the momentum, gives rise to a

022039-2



CONSERVED QUANTITIES IN PARITY-TIME SYMMETRIC … PHYSICAL REVIEW RESEARCH 2, 022039(R) (2020)

(a) (c)(b)

(d) (e) (f)

FIG. 1. Nonunitary dynamics of a four-site PT -symmetric system. (a) Schematic of a four-site system with nearest-neighbor tunneling,
gain for sites |1〉 and |2〉, and corresponding loss for sites |4〉 and |3〉. Spectrum of HPT . (b) Schematic of the optical circuit used to measure
the state norm and the inner product between the initial and final states. BS: beam splitter; HWP: half-wave plate; QWP: quarter-wave plate;
APD: avalanche photodiode; PBS: polarizing beam splitter; CC: compensated crystal; GL(t ): lossy time evolution circuit [35]. (c) Schematic
of quantum state tomography used to reconstruct the time-evolved state |ψ (t )〉 [35]. (d) In the Hermitian limit with γ = 0, the measured state
norm N (t ) is conserved and remains unity (open symbols). In the PT -symmetric region with γ = 0.2J , N (t ) oscillates with a period T (γ )
(solid symbols). (e) At the PT transition point γ = J , the state norm grows algebraically, N (t ) ∝ t6. (f) In the PT -symmetry broken region
with γ = 1.2J , the state norm grows exponentially with time. Experimental errors are due to photon-counting statistics; when not shown, the
error bars are smaller than the symbol size.

local continuity equation involving the momentum density
and the corresponding stress tensor [1].

Figure 2 shows measured expectation values ηi(t ) for the
symmetric initial state |ψ2〉. While generically dependent on
γ , the expectation values ηi(t ) remain constant regardless
of whether the system is Hermitian (γ = 0), in the PT -
symmetric region (γ = 0.2J), at the fourth-order EP (γ =
J), or deep in the PT -symmetry broken region (γ = 1.2J).
While η1(t ) is positive for all γ due to the symmetric nature
of |ψ2〉, it is not positive-definite over the entire quantum state
space.

Results in Fig. 2 clearly demonstrate that despite their
nonunitary evolution, open systems governed by PT -
symmetric Hamiltonians support nonlocal, conserved quan-
tities. Their constancy at the EP and in the PT -symmetry
broken region, where the state norm increases with time al-
gebraically or exponentially, leads to surprising consequences
that we now discuss.

Consequences of conservation laws. First, the constancy
of conserved quantities at the EP or in the PT -symmetry
broken region gives rise to a phase-locking phenomenon.
Writing the time-evolved state in terms of site amplitudes
rk (t ) and phases φk (t ) as |ψ (t )〉 = ∑4

k=1 rkeiφk |k〉, we track
the phase difference between adjacent sites, θk (t ) ≡ φk (t ) −
φk−1(t ) (k = 2, 3, 4) for the four initial states. Figures 3(a)–
3(d) show that irrespective of the initial state, the phase
differences θk (t ) reach the steady-state value of π/2 at the EP

[Figs. 3(a) and 3(b)] and in the PT -symmetry broken region
[Figs. 3(c) and 3(d)]. Steady-state values are determined by
the site distribution of gain and loss, but are independent
of the initial state [36]. The phase locking is the result of
an exponential separation between the time dependence of
〈ψ (t )|η̂|ψ (t )〉 and state norm 〈ψ (t )|ψ (t )〉. Thus, it is also a
generic feature of quantum (and classical) systems with site-
selective loss, where the PT -symmetry breaking transition is
signaled by the emergence of slowly decaying eigenmodes.

Second, since equivalence between conservation and com-
mutation breaks down for a PT -symmetric system, conserved
observables η̂i and the Hamiltonian HPT cannot be simulta-
neously diagonalized (except at γ = 0). Thus, the nonorthog-
onal eigenmodes |Ej (γ )〉 ( j = 1, . . . , 4) of the Hamiltonian,
and orthogonal eigenstates |v j〉 of a conserved observable
have qualitatively different dynamics.

Figures 3(e)–3(g) show the measured expectation values
of the four conserved observables η̂i for different γ , with
the system initialized in different eigenmodes |Ej (γ )〉. The
experimental result (colored boxes) is obtained by averaging
the measured values ηi(t ) over all time points [35]; theo-
retical predications are represented by open boxes. At the
fourth-order EP, all expectation values ηi for the only eigen-
state of HPT vanish [Fig. 3(f)]. Deep in the PT -symmetry
broken region (γ = 1.2J), ηi are zero for each of the four
nonorthogonal eigenmodes |Ej (γ )〉. In a Hermitian system,
energy eigenmodes can have multiple nonzero constants of
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(b)(a)

(d)(c)

FIG. 2. Nonlocal, conserved observables across the PT transition. (a)–(d) For a symmetric initial state |ψ (0)〉 = |ψ2〉, the measured
expectation values ηi(t ) of the four dimensionless observables depend on γ , but remain time invariant. The symmetry of the initial state is
responsible for the γ -independent behavior of the positive η1(t ) and negative η2(t ). Error bars are smaller than the symbol size and not shown.
Conserved quantities ηi(t ) for t < 1.2 and t > 4 in the unitary and PT -symmetric cases, and that for t < 1.2 in the PT -broken case (and
at the exceptional point) are obtained by direct measurement [35]. By contrast, ηi(t ) for 1.2 < t < 4 are measured through state tomography.
The experimental results of conserved quantities obtained from both methods are consistent with each other, and match well with theoretical
predictions.

motion. In contrast, nonlocal conserved quantities for a PT -
symmetric system vanish identically for all eigenmodes that
participate in the PT -symmetry breaking transition.

Lastly, in a closed system, a coherent superposition of
eigenstates of a conserved quantity cannot be generated from a

single, initial eigenstate. In a PT -symmetric system, however,
the eigenstates of a conserved observable exhibit nontrivial
dynamics. As an example, we consider the dynamics of
orthonormal eigenstates |v j〉 of a conserved observable
η̂1. Starting with the initial state |ψ (0)〉 = |v1〉, the

(a) (b) (d)(c)

(f)(e) (g) (h)

FIG. 3. Consequences of nonlocal, conserved observables. (a), (b) At the EP, the adjacent-site phase differences θk (t ) reach a steady-steady
value π/2 irrespective of the initial state. (c), (d) The same phase locking occurs in the PT -symmetry broken region. The diverging state norm
and the constancy of ηi(t ) are responsible for this phenomenon. (e) Conserved quantities ηi measured in the PT -symmetric eigenstates |Ej〉
for γ = 0.2J . (f) At the fourth-order EP, γ = J , all conserved quantities ηi are zero for the sole eigenstate of HPT . (g) In the PT -symmetry
broken region, γ = 1.2J , all ηi vanish for each eigenstate |Ej (γ )〉. (h) Measured time evolution of the angle � j (t ) between |v j〉 and |ψ (t )〉.

022039-4



CONSERVED QUANTITIES IN PARITY-TIME SYMMETRIC … PHYSICAL REVIEW RESEARCH 2, 022039(R) (2020)

experimentally measured time evolution of the angle � j (t )
between |v j〉 and |ψ (t )〉 is shown in Fig. 3(h). Fixed, for
all times, at zero or π/2 in the Hermitian limit (γ = 0),
angles � j (t ) vary periodically with period T (γ ) in the PT -
symmetric region (γ = 0.2J), but reach a steady-state value
at the EP (γ = J) or in the PT -symmetry broken region (γ =
1.2J). These results also hold for quantum (and classical)
systems with mode-selective loss.

Outlook. Recent advances have led to the realization of PT
symmetry in minimal quantum systems such as a single spin
through Hamiltonian dilation [24] and a single superconduct-
ing transmon through postselection [25]. These systems are
integral to near-term [37] or well-established [38] large-scale
quantum simulators that will address fundamental, hard ques-
tions in strongly correlated, many-body systems. Modeling
the dynamics of such systems with PT symmetry is a chal-
lenging open question. Approximate methods such as tensor
networks [39], the density matrix renormalization group [40],
or the quantum Monte Carlo [41] are based on conservation
laws for unitary (or thermal) time evolution, and do not apply
to strongly correlated, many-body PT -symmetric systems.

By theoretically revealing and experimentally confirm-
ing nonlocal conservation laws in nonunitary dynamics, our
work provides the key elements for a self-consistent analysis
of quantum, many-body, open systems with PT symmetry,
which are forthcoming in the near future. Understanding con-
served observables in these systems offers useful insight into
the quantum dynamics therein, which stimulates the develop-
ment of alternative self-consistent approximation methods for
open systems in general.
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[9] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L.
Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity-time-
symmetric whispering-gallery microcavities, Nat. Phys. 10, 394
(2014).

[10] J. Doppler, A. A. Mailybaev, J. Bhm, U. Kuhl, A. Girschik,
F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter,
Dynamically encircling an exceptional point for asymmetric
mode switching, Nature (London) 537, 76 (2016).

[11] S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. G.
Makris, M. Segev, M. C. Rechtsman, and A. Szameit, Topolog-
ically protected bound states in photonic parity-time-symmetric
crystals, Nat. Mater. 16, 433 (2016).

[12] S. Assawaworrarit, X. Yu, and S. Fan, Robust wireless power
transfer using a nonlinear parity-time-symmetric circuit, Nature
(London) 546, 387 (2017).

[13] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R.
El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, En-
hanced sensitivity at higher-order exceptional points, Nature
(London) 548, 187 (2017).
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