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Spreading of granular suspensions on a solid surface
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We examine the spreading of a suspension of non-Brownian spheres suspended in a Newtonian liquid on a
solid substrate. We show that the spreading dynamics is well described by the classical Cox-Voinov law provided
the value of the fluid viscosity that arises in the capillary number of the problem is adjusted to a value that depends
on particle size and volume fraction in a nontrivial way. We demonstrate that this behavior is a signature of the
ability of the particles to approach the contact line close enough to affect dissipation.
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The control of wetting of liquids on surfaces is a topic
of crucial importance to many industrial and natural systems
over a large range of length scales, from protein folding and
ion channel gating [1] to fibrous materials such as textiles
and feathers [2,3] via inkjet printing [4]. As a consequence,
wetting has attracted a lot of attention from both fundamental
[5,6] and engineering perspectives [7]. One of the main chal-
lenges in this field is to understand how a liquid spreads on a
surface, i.e., how the contact line between the liquid, the solid,
and the surrounding fluid relaxes to equilibrium [Fig. 1(a)].

An essential feature of spreading flows is that their size
decreases to zero at the contact line. This vanishing of length
scale has fascinating physical consequences. First, macro-
scopic theories of spreading for simple liquids indicate that
viscous stresses diverge at the contact line and prevent its mo-
tion, contrary to daily experience [8]. This latter observation
leads to the conclusion that the no-slip boundary condition at
the interface between the liquid and the wall is violated at the
contact line. Second, complex fluids have spreading properties
that are hardly predictable based on their bulk properties.
For example, the spreading of suspensions of nanoparticles,
nanofluids, is enhanced because of particle layering at the
contact line and the resulting disjoining pressure gradient
[9,10]. In these cases, confinement close to the contact line
plays a significant role in setting the spreading dynamics.

Much less is known on the spreading of suspensions
when the disjoining pressure is irrelevant and the size of the
particles dp � 1 μm, e.g., for granular suspensions. Studies
characterizing thin films deposited on plates extracted from
baths of these fluids show that particles are entrained when
the thickness of the film is commensurate with the particle
diameter [11–14]. Only very few studies have focused on
the contact-line motion during the spreading of granular sus-
pensions [15–18] despite its relevance to many cutting-edge
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technologies [11,19,20]. Strong confinement effects are ex-
pected. In such a situation, the effective suspension viscosity
is a nontrivial function of confinement [21] and particle order-
ing may be observed [11–14]. The effective-medium approach
that describes well the suspension bulk flow [22] breaks down
and the discrete nature of the suspension must be accounted
for.

The present Rapid Communication addresses the motion of
the triple-phase contact line surrounding a droplet of granular
suspension on a silicon wafer. The two main findings are
that (i) the apparent contact angle depends on the capillary
number in the same way as for a pure liquid, but with an
apparent viscosity which depends on both concentration and
particle size unlike what is observed in bulk suspension rheol-
ogy, and (ii) this discrepancy between the apparent viscosity
extracted from wetting experiments and that obtained using
bulk rheology results from the existence of a particle-depleted
region at the contact line. We propose a model that extends
the Cox-Voinov law to the case of granular suspensions using
geometrical arguments and discuss its validity. In particular,
it is found that the experimental observations cannot be ratio-
nalized on mere geometrical grounds.

The suspending fluid is polyethylene glycol-ran-propylene
glycol monobutyl ether (PEG-ran-PPG ME, Sigma
Aldrich, molecular weight Mw = 3900 gmol−1, density
ρ0 = 1056 kgm−3, surface tension γ0 = 35 mNm−1). Since
the experiments were performed under ambient conditions
(temperature 20 � T � 30 ◦C), the dependence of its shear
viscosity η0 on temperature has been accounted for in
the data analysis. The particles are spherical polystyrene
beads (Microbeads Dynoseeds TS, average particle diameter
10 � dp � 550 μm, density ρp = 1050 kgm−3). They are
dispersed in PEG-ran-PPG ME in a beaker to obtain
homogeneous neutrally buoyant suspensions having volume
fractions varying in the range 20 � φ � 40%. The surface
tension of these suspensions has been found to be equal to
that of the suspending liquid [23]. Their rheology is also
well documented [23–25]. In the range of volume fractions
φ investigated, their bulk shear viscosity ηs increases with
increasing φ while being independent of shear rate and
particle size dp, before diverging at a maximum volume
fraction φc. The dependence of ηs on φ is well represented by
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FIG. 1. (a) Sketch of the experimental setup. (b) Comparison
between experimental results for the apparent dynamic contact angle
θ 3

app/9 as a function of the capillary number Ca0 for PEG-ran-PPG
monobutyl ether and the Cox-Voinov solution, Eq. (2).

the Eilers empirical correlation [22],

ηs(φ) = η0[1 + (5φ/4)/(1 − φ/φc)]2. (1)

A drop of suspension of typical volume 300 μL is de-
posited on the surface of a silicon wafer (diameter dw =
50mm) using a steel needle (inner diameter di = 4.58 mm)
connected to a syringe mounted on a syringe pump [Fig. 1(a)].
The surface of the wafer is successively cleaned with acetone,
ethanol, and de-ionized (DI) water prior to each experiment
using a clean-room cloth. Side-view movies of suspension
spreading are captured with a digital camera with a spatial
resolution of 30 μm px−1. As the resolution of the camera is
the same for all experiments, we measure the angles at the
same location on the interface. Contact angles are measured
with the software package FIJI [26,27] by adjusting manually
a straight line to the air/liquid interface in the vicinity of the
contact line. We run at least three experiments for each set
of parameters and we find good reproducibility: The resulting
uncertainty is smaller than the size of the marker in the graphs
of Figs. 1 and 2. We measure contact angles for axisymmetric
drops. Top-view pictures or movies allow us to enforce the
latter constraint and they are also used to characterize the
suspension close to the contact line. Studying the wetting of
granular suspensions requires a prior characterization of the
spreading of the pure suspending fluid (PEG-ran-PPG ME) on
the silicon wafer. The prediction for the shape of the interface
of the spreading drop in the vicinity of the contact line, known
as the Cox-Voinov solution, can be written as

θ3
app = θ3

m + 9 Ca ln (h/�), (2)

(a)

(b)

FIG. 2. Dependence of θ3
app/9 on the solvent capillary number

Ca0 for suspensions with particle volume fraction (a) φ = 40% and
(b) φ = 20%. Yellow dashed line: Cox-Voinov solution for the pure
solvent (φ = 0), Eq. (2) with Ca = Ca0. Analysis of suspension
spreading is restricted to 4 × 10−4 � Ca0 � 2 × 10−2 as reaching
values out of this interval proved to be difficult.

with θapp the apparent dynamic contact angle, θm the micro-
scopic contact angle at h = �, Ca = ηUCL/γ the capillary
number of the system based on the kinematic viscosity η and
the surface tension γ of the liquid as well as the contact-line
velocity UCL, � a nanoscopic cutoff scale that acts as a slip
length and that is meant to circumvent issues with stress
singularity, and h the height inside the droplet where θapp

is measured. [Note that, following the original derivation of
Voinov [28], Eq. (2) provides the h dependence of θapp but
the more common x dependence [5] can be recovered by
assuming h ≈ θmx, x = 0 being the location of the contact
line.] We define Ca0 as the capillary number obtained using
the properties of PEG-ran-PPG ME and the experimental
velocity of the contact line UCL. As the apparent equilibrium
contact angle of PEG-ran-PPG ME on silicon is θeq ∼ 6◦ and
we assume that θm = θeq, we are almost in a situation of total
wetting. Thus we expect the θ3

app(Ca0) curve for the suspend-
ing liquid to be a line of slope 1 in log-log representation.
Figure 1(b) shows that this expectation is fulfilled and that
Eq. (2) reproduces well the present observations with a value
for ln(h/�) ≈ ln(θeqx/�) ∼ 13.76.

We now turn to the spreading of granular suspensions. As-
suming Eq. (1) valid and � identical to the value found for the
suspending liquid, we anticipate a shift of the θ3

app(Ca0) curves
towards higher values of θapp for suspensions when compared
to the case of the pure suspending liquid. Equation (1) also
suggests that the shift should be independent of particle size
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FIG. 3. (a) Top-view images in the vicinity of the moving contact line for suspensions with two particle sizes, dp = 20 and 80 μm, and
for two volume fractions, φ = 20% and φ = 40% (scale bar = 100 μm). The brighter gray region between the contact line and the beads
contains only the suspending liquid. (b) Sketch of the region around the contact line. The beads stay at a distance L from the contact line.
Inset: Schematic of the geometry used to compute Lgeo, Eq. (3). (c) ,(d) L vs θapp for dp = 20, 40, 80, and 550 μm in dimensional (respectively
nondimensional) form. φ = 20% (�), φ = 30% (�), φ = 40% (◦). In (d), black dashed line: Minimal distance of a sphere of diameter dp to
the contact line, Eq. (3).

dp. Figure 2 shows that the situation is more complex than
expected. For all the suspensions that were tested, the data
align along lines parallel to that obtained for the solvent.
There is a conspicuous shift for suspensions with the largest
particle volume fraction φ = 40% [Fig. 2(a)]. However, the
shift decreases as the size of the particles increases, in contrast
with our initial expectation. The suspension data even collapse
on the curve for the pure suspending fluid for the largest
particles at a volume fraction φ = 20% [Fig. 2(b)].

Top-view imaging of the moving contact line sheds light on
the reason behind the particle-size dependence of the apparent
shear viscosity of suspensions during spreading. Figure 3(a)
shows that the beads remain at a finite distance L from the
contact line. There is a pure-fluid region devoid of particles in
the vicinity of the contact line [Fig. 3(b)]. A striking feature
is that the first layers of beads outside the depleted region are
crystallized for drops with the largest volume fraction φ =
40%, much as what is observed for nanofluids [9]. A similar
ordering is also observed at lower volume fractions with an
extent decreasing with decreasing φ. As the height of the
air/liquid interface increases further, the beads switch from
a crystal-like to a disordered structure. These observations
show that the particle concentration field is singular at x = L,
∇φ(x = L) → ∞.

The extent of the depleted region L decreases with in-
creasing θapp but increases with increasing dp [Fig. 3(c)].
The dependence on φ is weak. Rescaling L by dp leads to a
good, albeit imperfect, collapse of the data sets [Fig. 3(d)].
The demixing in the vicinity of the contact line seems thus
to be linked to the inability of particles to flow inside the

contact-line corner for heights typically smaller than their
particle diameter. A geometric description of the depletion
in particles is then tempting. For the sake of simplicity, we
assume that the air/suspension interface is rigid and we ne-
glect its curvature [inset in Fig. 3(b)]. The minimal geometric
distance Lgeo that a sphere can reach in a corner having an
angle θapp is

Lgeo/dp = 1
2 {[tan (θapp)−1 + sin (θapp)−1] − 1}. (3)

This scaling captures the intuitive results that Lgeo → ∞ as
θapp → 0 and Lgeo → 0 as θapp → π/2. The prediction of
Eq. (3) provides a lower bound to the experimental data sets
[Fig. 3(d)]. The observations reported in Fig. 3 show the
crucial importance of the discrete nature of the suspension and
of the confinement of particles in the vicinity of the contact
line.

As a first attempt at capturing these observations, we pro-
pose a model based on the confinement-induced depletion of
the particles close to the contact line. We assume that the flow
in this region results from the matching of two corner flows
[Fig. 3(b)], one in the depleted region (i.e., h � dp) and the
other in the suspension region (i.e., h � dp). Two microscopic
cutoff lengths appear in this treatment, � in the pure-liquid
corner and dp in the particle-dense region. The slope of the
air/liquid interface in both regions can then be written as

θ3
app = θ3

eq + 9 Ca0 ln (h/�) for h � dp, (4)

θ3
app = θ3

dp
+ 9 Cas ln (h/dp) for h � dp, (5)
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FIG. 4. Dependence of the relative effective viscosity of gran-
ular suspensions during spreading ηs,app/η0 on particle diameter
dp. Dashed lines: Fits of the experimental data by Eq. (7). The
fitting parameters are [h = 168 μm, ηs(φ) = 4.3η0] for φ = 20%,
(799 μm, 4.6η0) for φ = 30%, and (138 μm, 16η0) for φ = 40%.
Dotted-dashed line: Physical bottom limit to the relative viscosity.

with Cas = ηs(φ)UCL/γ = Ca0ηs(φ)/η0 and θdp in Eq. (5)
the angle at h = dp. Imposing continuity of the slope of the
air/liquid interface at h = dp leads to

θ3
app = θ3

eq + 9

[
ln

(
h

�

)
+ ηs(φ) − η0

η0
ln

(
h

dp

)]
Ca0. (6)

The quantity within the square brackets contains two terms
that account for dissipation between scales h, �, and dp.

The model provides a prediction for the amplitude of
the size-dependent translation of the curves θ3

app/9 vs Ca0

observed for suspensions in Fig. 2. While the slope is ln(h/�)
for the pure PEG-ran-PPG ME, it is (ηs,app/η0) ln (h/�) for
suspensions with an apparent viscosity of the suspension ηs,app

inferred from Eq. (6) to be

ηs,app

η0
= 1 + ηs(φ) − η0

η0

ln (h/dp)

ln (h/�)
. (7)

Equation (7) indicates that ηs,app → η0 if θapp is measured at a
height h → dp. However, when h � dp, the h-dependent term
on the right-hand side becomes unphysical as the particle term
decreases the apparent viscosity down to negative values that
can become infinite.

We attempted at testing the model against experiments
using values of viscosity given by Eq. (1). However, as the
fits were completely unsatisfactory, we resolved to leave the

suspension viscosity as a free parameter. The values of
ηs,app/η0 extracted from the data were then fitted by Eq. (7)
in Fig. 4, leaving the height h at which the angle is measured
and the bulk apparent shear viscosity ηs(φ) as adjustable
parameters. The obtained fits happen to capture well the trends
of the data sets and indicate that h = O(150) μm, except at
φ = 30% for which h = 799 μm. This order of magnitude
for h is sensible since we measure the angle over a few
pixels. However, other severe disagreements are found. First,
ηs,app/η0 differs from 1 for h/dp 	 1 (in particular, for large
φ). Second, and most importantly, the values obtained for
ηs, and as a consequence for φc, are unrealistic. While the
maximum flowable volume fraction is φc ≈ 54%–58% for the
present suspensions [25], the fits point to different values of
φc for each φ, from 47% for φ = 40% down to 25% for 20%.

In conclusion, the investigation of the spreading of granular
suspensions on a solid surface indicates that the apparent vis-
cosity of these suspensions in the vicinity of the triple-phase
contact line is dependent on particle size. This observation
results from the existence of a particle-depleted region at
the contact line from which beads have been expelled due
to confinement. A simple model attempting at a geometrical
description of the particle depletion is, however, not suffi-
cient to encompass the spreading dynamics. Further modeling
would need to consider the transition region between the
particle-depleted region and the dense region where ordering
can occurs and how the viscosity of the suspension varies as a
function of the height of the flow. The complex dependence on
the confinement parameter that has been seen, e.g., between
two plates [21] may also play some role even though here
one of the confining walls is a free deformable surface.
Accounting for the strong particle displacement correlations
and particle contact forces when suspensions become dense
[22] may also be important. Finally, we would like to point out
that the logarithmic term ln (h/dp) plays a crucial role here,
as these two length scales are of comparable magnitude. This
situation differs from that of simple fluids, as h � � and the
log term has almost constant magnitude given the accessible
spatial resolution. Therefore the height at which the contact
angle is measured in the case of granular suspensions must be
carefully reported.
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