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Homogeneous holographic viscoelastic models and quasicrystals
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We show that the field theories dual to the homogeneous holographic models with spontaneously broken
translations display several distinctive properties of quasicrystals, aperiodic crystals with long-range order
(e.g., incommensurate charge density waves). This interpretation suggests that the longitudinal diffusive
mode, observed in the spectrum of excitations of these systems, is the diffusive Goldstone boson typical of
quasicrystals—the phason. Moreover, following this idea, and using the effective field theory formalism for
Goldstone modes in dissipative systems, we are able to derive the universal phase relaxation found in these
holographic models in the presence of a small source of explicit breaking (pseudospontaneous regime).
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I. INTRODUCTION

In the current literature, there are several types of holo-
graphic models which break translational invariance while
retaining a homogeneous geometry. We can summarize them
into three classes: massive gravity [1–4], Q lattices [5,6],
and helical lattices [7,8]. All of them rely on some sort
of global symmetry, usually a U (1) shift or a more exotic
combination of translations and rotations [9]. These setups
appear interesting because of their potential toy model role
to understand strange metals and strongly correlated solids
[10–13].

Regardless of the intense activity on every front, most
of the fundamental questions are still open. As a concrete
example, the correct hydrodynamic description [14] of those
models has been confirmed only recently [15], in contrast to
the previously accepted framework [16] which was clearly in
tension with the holographic results [17,18].

An even more fundamental question is left. Which phase of
matter are these holographic models describing?

The confusion in the literature is manifest: Wigner crystals
[11], metallic density waves [11], viscoelastic solids [19,20],
charge density waves [6], amorphous solids [21], strange
insulators [8], scale invariant solids [22], spontaneous helices
[7], homogeneous lattices [23], strange metals with slowly
fluctuating translational order [11], states with dynamical de-
fects [24], and holographic lattices [25]. Probably the only in-
disputable statement is that these phases break spontaneously
translations, as suggested in the title of [26].

Most of this confusion arises because of the pres-
ence of the aforementioned global symmetries within the
gravitational bulk dynamics. From this perspective, global
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symmetries come as unfamiliar and odd for several reasons.
First, global symmetries are believed to be absent in a con-
sistent and UV complete theory of quantum gravity [27].
Nevertheless, here we are taking a fully low energy bottom-up
approach, in which this point should not be considered as an
impediment. The global symmetries in these models could
just be accidental—emergent symmetry of the IR dynamics.
The problem of embedding these setups into UV complete
constructions goes far beyond the scope of this paper and
moreover it is not clear how relevant it is in order to apply
these frameworks to condensed matter systems. Second, and
most importantly, the holographic dictionary is based on the
slogan that global symmetries at the boundary correspond to
gauge symmetries in the bulk [28]. What global symmetries
in the bulk correspond to at the boundary? To the best of
our knowledge, no convincing solution to this problem has
been presented so far. Nevertheless, there are explicit holo-
graphic constructions [29] which analyze this problem and
surprisingly found that the features of the boundary Goldstone
dynamics is independent of whether the symmetry is gauged
or global in the bulk. Finally, connecting to the previous point,
the work of [30] noticed that keeping the internal symmetries
global in the bulk does not correspond to have the standard
symmetries of solids (as envisaged in the EFT framework
of [31]) at the boundary, for which on the contrary those
internal symmetries should be gauged in the bulk as done in
[30].

Once the previous points are accepted, one possibility is to
think about these global bulk symmetries as spurious artifacts
of these simplified toy models and just discard all the features
coming from their presence (existence of extra longitudinal
diffusive mode, phase relaxation �, etc.). Our approach is
somehow opposite, and it is more into the direction of trying
to give them physical meaning from a condensed matter point
of view.

In this work we propose that a viable interpretation for
these holographic models is that of quasicrystals. To motivate
this picture more precisely, let us consider the following
features shared by all the holographic models and compatible
with our interpretation.
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(1) Space-time translations are not broken to a discrete
subgroup; there is no unit cell. The systems are not periodic.

(2) The systems are rotationally invariant and can be also
scale invariant. As we will see, most quasicrystals are invari-
ant under discrete rotational groups (e.g., fivefold symmetry
[32]) and some of them (e.g., Penrose tilings [33]) are self-
similar—invariant under discrete scale symmetries. Penrose
tiling have been indeed already considered as discrete models
of conformal geometries [34].

(3) The longitudinal spectrum contains a diffusive Gold-
stone mode, which does not generate from the breaking of
space-time translations [35]. Moreover, its diffusion constant
goes to zero with the temperature, confirming its dissipative
nature. This is the phason of the quasicrystal.1

(4) There are no commensurability effects in these sys-
tems [23], in contrast to the inhomogeneous (and periodic)
holographic lattices [36,37]. Incommensurate density waves
are indeed one of the most common examples of quasicrystals
[38].

(5) Most of these holographic systems are metastable—
not thermodynamically favored states. More precisely, at the
present time, all the homogeneous holographic models which
are dynamically stable are not thermodynamically stable [15].
It is tempting to think about the existence of a physical reason
behind this fact. Simultaneously, the stability of quasicrystals
is still a controversial topic and most of them are believed to be
metastable phases of matter [39]. This connection might give
a physical meaning to the metastability of the holographic
models as well.

Using this new understanding, (I) we are able to explain the
physical nature of the longitudinal diffusive mode observed in
the spectrum [11,17,35,40] as the common phason mode of
quasicrystals; and (II) we are able to prove in the decoupling
limit the universal relation for the phase relaxation proposed
in [11], and confirmed in [21,35,40–42], using effective field
theory methods for diffusive goldstone bosons in dissipative
environments [43–45]. Moreover, we provide strong evidence
for its validity beyond the decoupling limit.

II. QUASICRYSTALS AND PHASONS, A BRIEF PRIMER

Before 1984 [46], everyone was assuming that all solids are
crystals composed of a periodic arrangement of identical unit
cells. In other words, there was no distinction between two
fundamental concepts: long-range order and periodicity. The
discovery of [46] introduced the concept of quasicrystal [47],
as a totally new kind of long-range order (for more details see
[48–50]).

The differences between crystals and quasicrystals can be
visually understood thinking of tilings. It is simple to imagine
a kitchen floor with square tiles; it is harder to think about
nonperiodic tessellations of the plane. The distinction is man-
ifestly visible in Fig. 1: aperiodic tilings lack completely any
form of discrete translational invariance and very often enjoy
discrete rotational invariance. Even more curiously, some
of them—Penrose tilings [33]—are self-similar; the same

1This interpretation was already contemplated in the context of
incommensurate charge density waves in [35].

FIG. 1. A periodic tiling (crystal) versus an aperiodic Penrose
tiling (quasicrystals) versus a disordered tiling (amorphous crystal).

patterns occur at larger and larger scales. In our language,
those nonperiodic structures are scale invariant, exactly as the
holographic models which we will discuss.2

The fundamental point of the experimental discovery of
quasicrystals [46] was the lack of (discrete) translational
symmetry in their Bragg diffraction patterns. Nevertheless, the
diagrams displayed sharp Bragg peaks, signaling the presence
of long-range order. In this regard, quasicrystals are definitely
different with respect to glasses and amorphous systems,
where long-range order is absent. Notice that quasicrystals,
despite breaking translational invariance, might possess dis-
crete rotational symmetries (e.g., fivefold symmetry), which
furthermore may be incompatible with periodicity.

Interestingly enough, the differences between crystals and
quasicrystals are not limited to their diffraction patterns but
are also evident in their dynamics, even in the hydrody-
namic regime, intended as small frequency and momentum
with respect to the temperature. More precisely, quasicrystals
display new hydrodynamic modes (which can be thought
as additional Goldstone modes) known as phasons [48–50],
whose dispersion relation is diffusive:

ω = −iDphasonk2 + · · · . (1)

These modes do not come from the spontaneous breaking of
translational invariance; they are fundamentally different from
phonons, to which they are nevertheless coupled. Phasons and
their diffusive nature can be experimentally observed [51–53].
Ultimately, phasons are related to specific rearrangements of
the atomic structure and they have an activated nature, namely
their diffusion constant vanishes at zero temperature.

In order to understand precisely what a phason is, it is
convenient to adopt the superspace picture introduced by
Bohr [54].3 More specifically, aperiodic crystals can be ob-
tained from the section of a periodic crystal of higher dimen-
sion cut at an irrational angle. See Fig. 2 for a 2D → 1D
representation. Phonon displacements modify the position of
the lattice points in “real” space; on the contrary, phasons
change the position with respect to the quasicrystal structure
and the (irrational) cut that determines it. In other terms,
phonon modes are excitations of the real (also called parallel
or external) space, whereas phasons are excitations of the
perpendicular (or better internal) space. This extra-dimension
picture will reappear in the homogeneous holographic setups.

2As already emphasized, the scale invariance of Penrose tilings is
discrete and not continuous as in the holographic constructions.

3Not to be confused with the superspace formalism of super-
symmetric theories nor the mini superspace of quantum gravity
frameworks.
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FIG. 2. The superspace representation of a periodic lattice and an
aperiodic lattice in 1D. The higher dimensional lattice (in this case
2D) is always periodic. In the first case the cut is rational, while in
the second one is irrational.

In order to gain some intuition, it is helpful to think about
the simplest incommensurate structure given by two lattices
superimposed with a modulation.4 The free energy of the
system is invariant under a phase shift of the modulation; that
is the origin of the phason [56].

III. THE STRUCTURE OF THE HOLOGRAPHIC MODELS

Let us be more precise about the symmetry structure of the
holographic models which we are after. For simplicity we will
focus on two specific classes, defined by the following bulk
scalar fields:

(a) φI = αxI , (b) φ = eik·xϕ, (2)

which break the invariance under space-time translations of
the dual field theory. Depending on the boundary condi-
tions [6,14,57], the breaking can be explicit [2], spontaneous
[19,20,22,57], or pseudospontaneous [7,21,40,58]. In the first
class [3,4], a finite value of α breaks two different set of sym-
metries: space-time translations (and rotations) xI → xI + bI

and internal global translations φI → φI + aI . More pre-
cisely, both symmetries are broken to the diagonal subgroup
aI = −bI , exactly in the same way as in the EFTs of [31].
In the second class [5] the SSB is induced by the formation
of a finite vacuum expectation value (vev) 〈ϕ〉 and one can
engineer two different symmetry breaking patterns, which are
now separable [11,35]. When k is zero, only the global U (1)
symmetry is broken; while for k �= 0 space-time translations
and the global U (1) are broken again to the diagonal group.

The important thing to notice is that in both models trans-
lations is not the only broken symmetry. There is always a
broken global symmetry in the dual field theory; and most
importantly new Goldstone modes associated exclusively to
that [35]. This is related to the existence of an additional
internal direction, “transversal” to the real space-time, which
is shown in Fig. 3 for model (a). Because of the shift invari-
ance of the model, shifts in the internal space of the scalars

4Typical examples are incommensurate charge density waves, ex-
perimentally observed in cuprates [55]. This is exactly the physical
picture behind the hydrodynamic theory of [16] and the holographic
discussions in [35].

FIG. 3. A superspace description of our holographic setup. The
shift in the internal space of the scalar fields φI can be thought
as a standard translation in a space-time with higher number of
dimensions—the superspace.

φI do not cost energy. This picture is totally analogous to
the superspace description of quasicrystals in the previous
section. The dynamics in that “extra dimension” is exactly
what gives rise to the extra Goldstone mode—the phason.
Interestingly, also quasicrystals are left invariant by a com-
bination of phason and phonon displacements at which lattice
points are not moving. This combination is referred to as the
characteristic displacement and it corresponds exactly to the
lattice vector of the hypercrystal living in the superspace. In
summary, it is tempting to associate the scalar shifts to the
phason displacements and the diagonal preserved group to the
characteristic one.

IV. THE LONGITUDINAL DIFFUSIVE
MODE AS A PHASON

In all the homogeneous holographic models, the longi-
tudinal spectrum contains a diffusive mode with dispersion
relation [14]:

ω = −iD‖k2 + · · · , D‖ = ξ
(B + G − P )χππ

s′T 2v2
‖

, (3)

where s is the entropy density, s′ ≡ ds/dT , B is the bulk
modulus, G is the shear modulus, χππ is the momentum
susceptibility, P is the configuration pressure, and v‖ is the
speed of longitudinal phonons. Equation (3) has been recently
tested explicitly in a large class of models [15]. The agreement
with hydrodynamics confirms that this mode is connected to
mass motion and the thermally activated rearrangement of the
atomic structure [59].5 Most importantly, the diffusion con-
stant crucially depends on the dissipative parameter ξ , which
is derived from the Green function of the scalar operators

 as

ξ = − lim
ω→0

lim
k→0

ω Im GR


. (4)

This clarifies that such a diffusive mode can exist only in
dissipative systems at finite temperature; this is the reason
why it was never discussed in the EFT framework of [31].6

5Nevertheless, it is not related to the motion of vacancies, disloca-
tions or defects which are clearly absent in the holographic picture.

6In [60–63], the possibility of having additional and independent
Goldstone modes, because of the breaking of the global U (1)
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From a symmetry perspective, it was shown in [11,35]
that such a mode comes from the spontaneous breaking of
the internal global symmetry of these models. Moreover,
this diffusive mode can be obtained in the decoupling limit
[11,17,28,64], in which the momentum operator plays no
role. A possible simple way to understand the nature of this
diffusive mode is by thinking that a “real” solid should enjoy
ISO(d ) global symmetry [31]. According to the holographic
dictionary, this means that ISO(d ) should be gauged in the
bulk, as done in [30]. If one proceeded with the gauging,
the diffusive modes would be simply associated with the
corresponding conserved currents.

V. THE UNIVERSAL PHASE RELAXATION
FROM EFFECTIVE FIELD THEORY

In the presence of a small explicit breaking 〈EXB〉, stan-
dard propagating Goldstone bosons acquire a mass gap (or in
condensed matter language, a pinning frequency) ω0, which
obeys the famous Gell-Mann-Oakes-Renner (GMOR) relation
[65], namely

ω2
0 ∼ 〈EXB〉〈SSB〉. (5)

This mechanism, well know in particle physics because of
the pions, it is reproduced in a standard way in the holo-
graphic models [8,11,21,66], even for space-time symme-
tries. Additionally, the longitudinal diffusive mode acquires
a finite relaxation rate � [35], appearing in its dispersion
relation and entering its Josephson relation [16]. This term
is fundamentally different with respect to that induced by
elastic defects, such as dislocations, and relevant for the
discussions of [13,16], because it depends crucially on the
explicit breaking scale. More importantly, in the context of
holography, it has been conjectured [11], and verified numer-
ically [8,11,18,21,35,40–42], that such relaxation rate obeys
the universal relation

� = ω2
0ξχππ . (6)

As a matter of fact, no fundamental explanation for this
expression appeared so far.

Here we use the EFT methods presented in [43,44] to show
that Eq. (6) is a standard result for diffusive Goldstone modes
in the presence of an explicit breaking source.

Let us start by using the notations of [44] and by defining
the most general structure for the Goldstone modes (matricial)
Green function:

[
G−1


 (k)
]ab = Cab − iCab;μkμ + Cab;μνkμkν + · · · , (7)

where kμ = (ω, 
k) is the four momentum.
In the absence of explicit breaking Cab = 0, while in

the absence of dissipation (e.g., T = 0 field theories) Cab;0

reduces to the Watanabe-Brauner matrix ρab in the EFT
description of [67,68]. In any case, a nontrivial Cab;μ matrix
(with rank different from zero) is needed to obtain type B

symmetry, was already proposed. Nevertheless, because of the ab-
sence of dissipation, the diffusive nature was not revealed.

Goldstone modes [69]. The novelty of [43,44] is noticing that,
in dissipative environments, the type B Goldstone can be not
only propagating (ω = Ak2) but also diffusive (ω = −iDk2).7

Continuing, in the absence of EXB, the Green func-
tion of the scalar operator at zero momentum reads
[11]

G

(ω) = 1

χππω2
− ξ

i

ω
+ · · · (8)

and has been checked numerically in various holographic
models [11,17,21,41,42]. Working in the decoupling limit
[where the first term in (8) is absent] [11,17,35], and using the
diffusive dispersion relation ω = −iDk2, we can fix uniquely
the coefficients appearing in Eq. (7) as

C0 = 1/ξ, Cxx = D/ξ, (9)

where we have omitted the indices a, b, since for simplicity
we are considering a single Goldstone. When the 
 operator
couples to all the other excitations, as in [18], the dynam-
ics is modified, but only at higher order in the frequency.8

Therefore, from now on we will consistently truncate our
expressions to order O(ω).

It is now straightforward to add a pinning frequency ω0 to
the Green function in (8):

C = −ω2
0χππ , (10)

which appears as a result of a small explicit breaking
(GMOR). Now, from the Green function in Eq. (7) and using
the parameters in (9) and (10), we can obtain the dispersion
relation for the (now) pseudodiffusive mode, in the presence
of a small EXB, as

ω = −ξω2
0χππ + · · · . (11)

Finally, the latter implies that the phase relaxation rate is
given exactly by Eq. (6)—the universal value discussed
in [11]. In summary, this universal expression, which fol-
lows directly from [44], is not surprising and it is just
a consequence of the Goldstone nature of the diffusive
mode.

Notice that also the other terms entering in Eq. (7) would
get corrected by the explicit breaking scale, but only at
order 〈EXB〉2 (e.g., the momentum relaxation rate ). At
leading order, these corrections can therefore be neglected
with respect to ω2

0 ∼ 〈EXB〉. In summary, our results are
valid only at order O(ω) and O(〈EXB〉); fortunately, this is
sufficient to identify the relaxation rate �. Let us stress that,
because of the lock-in between internal shifts and space-time
translations, and the necessity of having explicit breaking (to
have a finite �), the decoupling approximation does not hold
generally. This means, for example, that we do not expect the
dispersion relation of the pseudodiffusive phason to be simply

7Similar results have been recently achieved in [45] using Coset
techniques.

8Notice also how Eq. (8), which is valid only in the coupled system,
cannot be reproduced by a single field Green function of the type (7).
Moreover, taking the decoupled Green function as in (8) would give
rise to an unphysical pole ω = −iχ/ξ .
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ω = −i� − iDk2, but rather to show a complicated interplay
with the other modes as already discussed in [18,40]. As a
concrete example, it is known [11,21,42] that the pseudodif-
fusive mode in the transverse sector collides with the Drude
pole ω = −i , creating the expected gapped pseudophonons.
Nonetheless, the relation for the relaxation rate �, which
can be extracted numerically from the dynamics of the pseu-
dophonons,9 is going to be, at leading order (〈EXB〉 � 1),
totally insensitive to those couplings and in agreement with
our results.

VI. CONCLUSIONS

In this work we suggest that the homogeneous holographic
models with broken translations and with global symmetries
might be described as quasicrystals. We show consistent
evidence for this statement using the symmetry structure of
the models and their hydrodynamic modes. In particular, we
propose that the diffusive extra mode present in the lon-
gitudinal spectrum is a phason, i.e., a diffusive Goldstone
mode as shown in [35], which is typical of quasicrystals.
Using this interpretation, and the methods of [44], we are

9More precisely, at zero momentum k = 0 and small explicit
breaking, this dynamics is described by the zeros of the following
expression:

(� − iω)( − iω) + ω2
0 = 0, (12)

where  is the momentum relaxation rate.

able to show directly the universal relation (6) between the
phase relaxation rate, the Goldstone diffusion constant, and
the explicit breaking scale [11]. Importantly, our interpretation
implies that the longitudinal diffusive mode should be absent
in the periodic and nonhomogeneous holographic lattices of
[36,37,70–74]. This could serve as a definitive confirmation of
our ideas (in contrast to the proposal that such mode is related
to the diffusion of vacancies).

In conclusions, in this work we provided a viable answer to
the fundamental question of what all the homogeneous holo-
graphic models with broken translations are and we showed
how several existing puzzles could be solved using this in-
terpretation. At this time, we cannot exclude the possibility
of explaining these features using a different interpretation.
Nevertheless, we are not aware of any able to pass all the
nontrivial tests presented in this paper.
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[48] M. Jarić, Introduction to Quasicrystals, Aperiodicity and Order

(Academic Press, New York, 1988).
[49] T. Janssen, G. Chapuis, and M. de Boissieu, Aperiodic Crystals:

From Modulated Phases to Quasicrystals, International Union
of Crystallography Monographs on Crystallography (Oxford
University Press, Oxford, 2007).

[50] T. Janssen, Aperiodic Crystals: A Contradiction in Terminis?
Physics Reports (North-Holland, Amsterdam, 1988).

[51] J. A. Kromer, M. Schmiedeberg, J. Roth, and H. Stark,
Phys. Rev. Lett. 108, 218301 (2012).

[52] T. C. Lubensky, J. E. S. Socolar, P. J. Steinhardt, P. A. Bancel,
and P. A. Heiney, Phys. Rev. Lett. 57, 1440 (1986).

[53] M. de Boissieu, Isr. J. Chem. 51, 1292 (2011).
[54] H. Bohr, Acta Math. 45, 29 (1925).
[55] D. H. Torchinsky, F. Mahmood, A. T. Bollinger, I. Bozovic, and

N. Gedik, Nat. Mater. 12, 387 (2013).
[56] S. van Smaalen, Incommensurate Crystallography, Interna-

tional Union of Crystallography Monographs on Crystallogra-
phy (Oxford University Press, Oxford, 2007).

[57] L. Alberte, M. Ammon, M. Baggioli, A. Jiménez-Alba, and O.
Pujolàs, Phys. Rev. Lett. 120, 171602 (2018).

[58] L. Alberte, M. Ammon, M. Baggioli, A. Jiménez, and O.
Pujolàs, J. High Energy Phys. 01 (2018) 129.

[59] P. D. Fleming and C. Cohen, Phys. Rev. B 13, 500 (1976).
[60] M. Nitta, S. Sasaki, and R. Yokokura, Eur. Phys. J. C 78, 754

(2018).
[61] D. Musso and D. Naegels, Phys. Rev. D 101, 045016 (2020).
[62] D. Musso, Eur. Phys. J. C 79, 986 (2019).
[63] S. B. Gudnason, M. Nitta, S. Sasaki, and R. Yokokura,

Phys. Rev. D 99, 045011 (2019).
[64] M. Baggioli, Applied Holography, Springer Briefs in Physics

(Springer, Berlin, 2019).
[65] M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175,

2195 (1968).
[66] A. Amoretti, D. Areán, R. Argurio, D. Musso, and L. A. Pando

Zayas, J. High Energy Phys. 05 (2017) 051.
[67] H. Watanabe and H. Murayama, Phys. Rev. Lett. 108, 251602

(2012).
[68] H. Watanabe and H. Murayama, Phys. Rev. X 4, 031057

(2014).
[69] H. Watanabe, Annu. Rev. Condens. Matter Phys. 11, 169

(2020).
[70] A. Donos and J. P. Gauntlett, J. High Energy Phys. 01 (2015)

035.
[71] A. Donos and J. P. Gauntlett, J. High Energy Phys. 03 (2016)

148.
[72] S. Cremonini, L. Li, and J. Ren, J. High Energy Phys. 08 (2017)

081.
[73] S. Cremonini, L. Li, and J. Ren, Phys. Rev. D 95, 041901(R)

(2017).
[74] A. Krikun, J. High Energy Phys. 12 (2018) 030.

022022-6

https://doi.org/10.1007/JHEP07(2013)108
https://doi.org/10.1007/JHEP07(2013)108
https://doi.org/10.1007/JHEP07(2013)108
https://doi.org/10.1007/JHEP07(2013)108
https://doi.org/10.1007/JHEP12(2017)113
https://doi.org/10.1007/JHEP12(2017)113
https://doi.org/10.1007/JHEP12(2017)113
https://doi.org/10.1007/JHEP12(2017)113
https://doi.org/10.1007/JHEP06(2015)155
https://doi.org/10.1007/JHEP06(2015)155
https://doi.org/10.1007/JHEP06(2015)155
https://doi.org/10.1007/JHEP06(2015)155
https://doi.org/10.1073/pnas.93.25.14271
https://doi.org/10.1073/pnas.93.25.14271
https://doi.org/10.1073/pnas.93.25.14271
https://doi.org/10.1073/pnas.93.25.14271
https://doi.org/10.1103/PhysRevX.10.011009
https://doi.org/10.1103/PhysRevX.10.011009
https://doi.org/10.1103/PhysRevX.10.011009
https://doi.org/10.1103/PhysRevX.10.011009
https://doi.org/10.1007/JHEP10(2019)218
https://doi.org/10.1007/JHEP10(2019)218
https://doi.org/10.1007/JHEP10(2019)218
https://doi.org/10.1007/JHEP10(2019)218
https://doi.org/10.1007/JHEP03(2017)168
https://doi.org/10.1007/JHEP03(2017)168
https://doi.org/10.1007/JHEP03(2017)168
https://doi.org/10.1007/JHEP03(2017)168
https://doi.org/10.1038/s41567-018-0217-6
https://doi.org/10.1038/s41567-018-0217-6
https://doi.org/10.1038/s41567-018-0217-6
https://doi.org/10.1038/s41567-018-0217-6
https://doi.org/10.1080/14786430500419411
https://doi.org/10.1080/14786430500419411
https://doi.org/10.1080/14786430500419411
https://doi.org/10.1080/14786430500419411
https://doi.org/10.1007/JHEP10(2019)235
https://doi.org/10.1007/JHEP10(2019)235
https://doi.org/10.1007/JHEP10(2019)235
https://doi.org/10.1007/JHEP10(2019)235
https://doi.org/10.1007/JHEP01(2020)058
https://doi.org/10.1007/JHEP01(2020)058
https://doi.org/10.1007/JHEP01(2020)058
https://doi.org/10.1007/JHEP01(2020)058
https://doi.org/10.1007/JHEP10(2019)068
https://doi.org/10.1007/JHEP10(2019)068
https://doi.org/10.1007/JHEP10(2019)068
https://doi.org/10.1007/JHEP10(2019)068
https://doi.org/10.1103/PhysRevE.97.012130
https://doi.org/10.1103/PhysRevE.97.012130
https://doi.org/10.1103/PhysRevE.97.012130
https://doi.org/10.1103/PhysRevE.97.012130
https://doi.org/10.1093/ptep/ptaa005
https://doi.org/10.1093/ptep/ptaa005
https://doi.org/10.1093/ptep/ptaa005
https://doi.org/10.1093/ptep/ptaa005
http://arxiv.org/abs/arXiv:1912.12301
https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.2477
https://doi.org/10.1103/PhysRevLett.53.2477
https://doi.org/10.1103/PhysRevLett.53.2477
https://doi.org/10.1103/PhysRevLett.53.2477
https://doi.org/10.1103/PhysRevLett.108.218301
https://doi.org/10.1103/PhysRevLett.108.218301
https://doi.org/10.1103/PhysRevLett.108.218301
https://doi.org/10.1103/PhysRevLett.108.218301
https://doi.org/10.1103/PhysRevLett.57.1440
https://doi.org/10.1103/PhysRevLett.57.1440
https://doi.org/10.1103/PhysRevLett.57.1440
https://doi.org/10.1103/PhysRevLett.57.1440
https://doi.org/10.1002/ijch.201100131
https://doi.org/10.1002/ijch.201100131
https://doi.org/10.1002/ijch.201100131
https://doi.org/10.1002/ijch.201100131
https://doi.org/10.1007/BF02395468
https://doi.org/10.1007/BF02395468
https://doi.org/10.1007/BF02395468
https://doi.org/10.1007/BF02395468
https://doi.org/10.1038/nmat3571
https://doi.org/10.1038/nmat3571
https://doi.org/10.1038/nmat3571
https://doi.org/10.1038/nmat3571
https://doi.org/10.1103/PhysRevLett.120.171602
https://doi.org/10.1103/PhysRevLett.120.171602
https://doi.org/10.1103/PhysRevLett.120.171602
https://doi.org/10.1103/PhysRevLett.120.171602
https://doi.org/10.1007/JHEP01(2018)129
https://doi.org/10.1007/JHEP01(2018)129
https://doi.org/10.1007/JHEP01(2018)129
https://doi.org/10.1007/JHEP01(2018)129
https://doi.org/10.1103/PhysRevB.13.500
https://doi.org/10.1103/PhysRevB.13.500
https://doi.org/10.1103/PhysRevB.13.500
https://doi.org/10.1103/PhysRevB.13.500
https://doi.org/10.1140/epjc/s10052-018-6235-9
https://doi.org/10.1140/epjc/s10052-018-6235-9
https://doi.org/10.1140/epjc/s10052-018-6235-9
https://doi.org/10.1140/epjc/s10052-018-6235-9
https://doi.org/10.1103/PhysRevD.101.045016
https://doi.org/10.1103/PhysRevD.101.045016
https://doi.org/10.1103/PhysRevD.101.045016
https://doi.org/10.1103/PhysRevD.101.045016
https://doi.org/10.1140/epjc/s10052-019-7498-5
https://doi.org/10.1140/epjc/s10052-019-7498-5
https://doi.org/10.1140/epjc/s10052-019-7498-5
https://doi.org/10.1140/epjc/s10052-019-7498-5
https://doi.org/10.1103/PhysRevD.99.045011
https://doi.org/10.1103/PhysRevD.99.045011
https://doi.org/10.1103/PhysRevD.99.045011
https://doi.org/10.1103/PhysRevD.99.045011
https://doi.org/10.1103/PhysRev.175.2195
https://doi.org/10.1103/PhysRev.175.2195
https://doi.org/10.1103/PhysRev.175.2195
https://doi.org/10.1103/PhysRev.175.2195
https://doi.org/10.1007/JHEP05(2017)051
https://doi.org/10.1007/JHEP05(2017)051
https://doi.org/10.1007/JHEP05(2017)051
https://doi.org/10.1007/JHEP05(2017)051
https://doi.org/10.1103/PhysRevLett.108.251602
https://doi.org/10.1103/PhysRevLett.108.251602
https://doi.org/10.1103/PhysRevLett.108.251602
https://doi.org/10.1103/PhysRevLett.108.251602
https://doi.org/10.1103/PhysRevX.4.031057
https://doi.org/10.1103/PhysRevX.4.031057
https://doi.org/10.1103/PhysRevX.4.031057
https://doi.org/10.1103/PhysRevX.4.031057
https://doi.org/10.1146/annurev-conmatphys-031119-050644
https://doi.org/10.1146/annurev-conmatphys-031119-050644
https://doi.org/10.1146/annurev-conmatphys-031119-050644
https://doi.org/10.1146/annurev-conmatphys-031119-050644
https://doi.org/10.1007/JHEP01(2015)035
https://doi.org/10.1007/JHEP01(2015)035
https://doi.org/10.1007/JHEP01(2015)035
https://doi.org/10.1007/JHEP01(2015)035
https://doi.org/10.1007/JHEP03(2016)148
https://doi.org/10.1007/JHEP03(2016)148
https://doi.org/10.1007/JHEP03(2016)148
https://doi.org/10.1007/JHEP03(2016)148
https://doi.org/10.1007/JHEP08(2017)081
https://doi.org/10.1007/JHEP08(2017)081
https://doi.org/10.1007/JHEP08(2017)081
https://doi.org/10.1007/JHEP08(2017)081
https://doi.org/10.1103/PhysRevD.95.041901
https://doi.org/10.1103/PhysRevD.95.041901
https://doi.org/10.1103/PhysRevD.95.041901
https://doi.org/10.1103/PhysRevD.95.041901
https://doi.org/10.1007/JHEP12(2018)030
https://doi.org/10.1007/JHEP12(2018)030
https://doi.org/10.1007/JHEP12(2018)030
https://doi.org/10.1007/JHEP12(2018)030

