PHYSICAL REVIEW RESEARCH 2, 022019(R) (2020)

On-demand thermoelectric generation of equal-spin Cooper pairs
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Superconducting spintronics is based on the creation of spin-triplet Cooper pairs in ferromagnet-

superconductor (F-S) hybrid junctions. Previous proposals to manipulate spin-polarized supercurrents on
demand typically require the ability to carefully control magnetic materials. We, instead, propose a quantum
heat engine that generates equal-spin Cooper pairs and drives supercurrents on demand without manipulating
magnetic components. We consider a S-F-S junction, connecting two leads at different temperatures, on top of
the helical edge of a two-dimensional topological insulator. Heat and charge currents generated by the thermal
bias are caused by different transport processes, where electron cotunneling is responsible for the heat flow to
the cold lead and, strikingly, only crossed Andreev reflections contribute to the charge current. Such a purely
nonlocal Andreev thermoelectric effect injects spin-polarized Cooper pairs at the superconductors, generating a
supercurrent that can be switched on-off by tuning their relative phase. We further demonstrate that signatures
of spin-triplet pairing are facilitated by rather low fluctuations of the thermoelectric current for temperature

gradients smaller than the superconducting gap.

DOLI: 10.1103/PhysRevResearch.2.022019

Introduction. The field of superconducting spintronics has
emerged since the creation of spin-triplet Cooper pairs in ex-
periments [1-3]. The development of spintronics had already
benefited from the use of superconducting materials, resulting
in longer spin lifetimes and energy-efficient components [4,5].
Now, triplet supercurrents formed by spin-polarized Cooper
pairs add the possibility of transporting a net spin component
at zero resistance and thus pave the way for spintronic devices
that are less liable to overheat [6—16]. The key challenge in
the field is the nonequilibrium and on-demand generation of
equal-spin Cooper pairs in a viable fashion [17-21], desirably
avoiding the complicated manipulation of magnetic compo-
nents.

In this Rapid Communication, we propose a thermoelec-
tric engine that creates spin-polarized Cooper pairs driv-
ing a supercurrent on demand from a temperature gradi-
ent. We consider a superconductor—ferromagnetic-insulator—
superconductor (S-F-S) junction on top of the helical edge
state of a quantum spin Hall insulator (QSHI) [22-28] con-
necting hot and cold baths; cf. Fig. 1(a). Only two microscopic
transport processes couple the baths: quantum tunneling of
electrons, known as electron cotunneling (EC) and crossed
Andreev reflection (CAR). The QSHI edge states com-
prise one-dimensional Dirac fermions characterized by spin-
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momentum locking [29,30]. Therefore, while EC amounts to
a spin-polarized normal current, the peculiar transport prop-
erties of the helical edge states guarantee that CAR always
converts electrons into holes with the same spin, creating
equal-spin Cooper pairs at the superconductors [31-33]. Our
key finding is that the nonlocal current becomes dominated
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FIG. 1. Quantum heat engine generating equal-spin Cooper
pairs. (a) SES junction on the helical edge of a QSHI connecting hot
(L) and cold (R) baths. (b) Lowest order contributions to equal-spin
CAR. (c) Transmission probabilities for electrons (7gf) and holes
(T ©) and difference in Fermi distributions éf with 6 =T./4 at Ty =
T./2. (d) Unequal distance between F and SL (dy.) and SR (dngr)
results in an Andreev-dominated thermoelectric current Iz ().
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by CAR processes, with almost complete suppression of the
EC contribution. This is only possible due to a unique inter-
ference effect for CAR processes in our setup. As sketched
in Fig. 1(b), CAR requires a spin-flip process at the central
ferromagnet and an Andreev reflection at either the left or
right superconductors. In an asymmetric junction, the dif-
ferent phases acquired in each path constitute interference,
making CAR transmission strongly asymmetric in energy and
thus creating an Andreev-dominated thermoelectric current in
the right lead; cf. Figs. 1(c) and 1(d).

Harvesting waste heat by quantum thermoelectric effects
has become essential in modern nanoscale devices [34]. While
tackling this problem in S-F hybrid junctions can lead to
potentially strong thermoelectric effects [35-44], it requires
a careful control of magnetic elements and usually features
a low heat-to-supercurrent conversion. In this proposal, the
unique interference of CAR processes, together with the spin
polarization induced by the helical edge state, creates a strong
spin-polarized thermoelectric current that can be controlled
by tuning the phase difference between the superconducting
leads and does not rely on manipulating the ferromagnetic
domain. We further demonstrate that the thermoelectric cur-
rent is enhanced over its fluctuations for temperature gradi-
ents comparable to the superconducting gap, facilitating the
experimental realization of our proposal by thermovoltage
[40,45] or thermophase measurements across the junction
[46,47].

Setup. The spin polarization of nonlocal transport and the
absence of backscattering at the helical edge of a QSHI is of
great interest for traditional spintronics. Moreover, proximity-
induced superconductivity and ferromagnetism can confine
the helical edge states, opening new scattering channels
[31-33] that can lead to the emergence of Majorana bound
states [48—51] or exotic odd-frequency superconducting pair-
ing [32,33,52,53]. Given recent advances in the experimental
realization of helical edge states [26-28], hybrid structures
like the one sketched in Fig. 1(a) are within reach: Super-
conductors [54-57] have been successfully coupled to QSHIs
[58,59], and monolayer QSHIs provide a new promising plat-
form to induce ferromagnetic order [28,57]. The observation
of Majorana modes in helical hinge states of Bi(111) films
under the influence of superconductivity and magnetic iron
clusters has recently been reported in Ref. [60].

We theoretically describe the one-dimensional helical edge
states of a QSHI in proximity to superconducting and fer-
romagnetic order by a Bogoliubov—de Gennes Hamiltonian
in the Nambu basis W(x) = (Y, ¥y, WI, —w;) of the form
(h=vp=1)

Hpqc = Ho + Hs + Hp, (1

with Hy = pyT363 — u36p being the Hamiltonian of the
free helical edge, Hs =[A(x) cos ¢(x)T; + A(x) sin ¢ (x)T2]69
being the proximity-induced superconductivity, and Hg=
Tom(x) - 0 =7To(m) cos A & + m sin A 6, 4+ m;63) describing
the effect of the ferromagnetic barrier. Here, p,=—id, and
6; (%;) are Pauli matrices acting in spin (Nambu) space. We
consider a system with two S regions (named SL and SR)
separated by two normal regions (NL and NR) surrounding
one ferromagnetic insulator (F); their respective widths are dx
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FIG. 2. Thermoelectric effect through the S-F-S junction. Total
current as well as normal and Andreev contributions as a function of
(a) the temperature difference (phase difference ¢ in the inset) and
(b) the base temperature with 8 =T;/2 fixed. We use the parameters
ds. =dsg =&o, dp=0.68p, dn=0.480, dng =0.95, mo=1.5A,,
1o=0.5T., ¢ =1 /2, and T. = A unless specified otherwise.

for Xe{SL, NL, F, NR, SR}. The pair potential is assumed
equal for both superconductors and constant, A(x)=2A4, a
valid approximation as long as the Fermi wavelength in each
superconductor is much smaller than the proximity-induced
coherence length &y =1/A,. For simplicity, we take the phase
of the pair potential ¢(x)=¢ in SR and zero otherwise.
The F region is modeled by constant my(x)=mg within F,
and we choose m, =0 since its effect can be absorbed in the
phase difference ¢ between the superconductors [33,49,61].
Without loss of generality, the angle A is set to zero. Finally,
we assume that all regions reside at the same chemical poten-
tial, i.e., u(x)=0 everywhere.

In the following, we consider that all leads except L are at
the same temperature [62] (Tsp, =Tsg =Tr =Tp) and set Ty, =
To + 6, introducing the temperature difference 6. The electric
current in the right lead after a temperature bias is applied to
the left lead is given by I = Iﬁg + I5¢, where [63]

he * dE he

1 = 1o / T E), (2)
ee * dE ee

I = —Io / ) E). (2b)

with 7¢ being the CAR probability, 7 being the
EC probability, Ip=eAo/h, §f(E)=f[E,0, kg(To +0)] —
f(E,0,kgTy), and f(E, u, t)={1 + exp[(E — n)/t]}~" be-
ing the Fermi distribution function. The probabilities are
obtained by solving the scattering problem defined by the so-
lutions of Eq. (1) in every region [32,33,49,64—69]. Similarly,
the current at each superconductor S=SL, SR is given by
Is=(Js)+ [y dx(Ss), where Js=e(yrd, sy — ¥d, ¥s) is the
quasiparticle current operator and Sg=ieAq(e % l/fsT 1 wg t+
H.c.) the source term operator [63].

As we describe in detail below, an interference of CAR
processes depicted in Fig. 1(b) leads to a particular thermo-
electric effect, where the current can be completely dominated
by equal-spin Andreev processes; see Fig. 2. At the same time,
the energy current is only given by the symmetric part of the
transmissions; therefore, it can be dominated by EC processes.
Such a decoupling of transport processes for the heat and
charge currents is a special feature of this setup.
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FIG. 3. (a) Cooper pair polarization p,, computed at the SL-NL and NR-SR interfaces, as a function of the energy for fixed phase difference
¢=m /2 (¢ =0 for dashed lines). (b) Fano factor for selected temperature differences. (c) Supercurrent in SL (solid lines) and SR (dashed lines)
as a function of the magnetic field strength (inset: phase difference), calculated at equilibrium (blue) and for a thermal bias 6 =7, /4 (red). Rest

of parameters are the same as in Fig. 2.

Generation of equal-spin Cooper pairs. Helicity determines
that particles arriving to the right lead have the same spin
polarization as the injected particles on the left lead. While
this does not restrict the quantum tunneling of electrons
through the junction (EC), CAR processes are only possible
if injected electrons and transmitted holes have the same spin
[31-33]. By breaking time-reversal symmetry, the F region
facilitates equal-spin CAR processes. As sketched in Fig. 1(b),
incident electrons can be transmitted as holes through the
junction if at least one spin-flip process takes place at the
F region and one Andreev reflection occurs at either super-
conductor. Crucially, scattering events involving an Andreev
reflection at the right superconductor will acquire an extra
phase ¢ and a phase shift dyg E compared to the ones where
the reflection takes place at SL, which are only shifted by
dnLE (we measure dyp g in units of &y). The interference
between these two processes is a unique property of CAR, not
present in EC, resulting in an unusually strong asymmetry of
the transmission probability with the energy; cf. Fig. 1(c).

CAR processes thus require proximity-induced equal-spin
pairing [32,33], which we analyze by computing the re-
tarded Green’s function associated to Eq. (1) [19,32,33]. In
the basis defined above, the anomalous part of the retarded
Green’s function is written as GX, (x, ', E) = R (x, x', E)&o +
fR(x,x', E) - 6, where fJ is the singlet and X is the vector of
triplet amplitudes [63]. To quantify the net spin carried by a
Cooper pair, we define the polarization vector p(x, x', E)=
ifR x fR* Note that a finite triplet amplitude is not enough
to obtain a polarization. That is the case without magnetic
impurity F, where we have fR=(0, O,fSR), but p=0. By
contrast, when time-reversal symmetry is broken by the F
region (mg #0), we find a finite axial polarization p(x, x, E) =
(0, p2, 0), evidencing that the Cooper pairs develop a net spin.

We show in Fig. 3(a) the polarization of Cooper pairs com-
puted at the interface between each superconductor and the
inner normal regions; see Fig. 1. First, polarizations at each
superconductor have different signs, indicating that Cooper
pairs with opposite net spin have been transferred to each
superconductor. Second, the polarization is maximum for the
resonant energies of the S-F-S junction. Resonant scattering
at each S-F region always gives rise to zero-energy Majorana
(quasi)bound states, with additional finite-energy Andreev
states depending on the cavity’s width [32,33,48,49,51]. The

hybridization between the bound states at each S-F cavity is
controlled by the phase difference between the superconduc-
tors [33,61]. This, in turn, allows for the control of the electric
current through the junction.

Andreev-dominated thermoelectric effect. Given a positive
temperature gradient, we find that a finite thermoelectric
current, Ig, is completely dominated by Andreev processes
when three requirements are fulfilled (see Fig. 2): (i) The
base temperature Tp is sufficiently large, i.e., T = T./2; (ii)
the junction is asymmetric, which we realize by setting dnr, #
dnr; and (iii) the phase difference ¢ is not an integer multiple
of .

Under these conditions, the energy asymmetry of the CAR
transmission is comparable to the energy-antisymmetric bias
df as illustrated in Fig. 1(c), whereas the asymmetry in the
EC probability occurs on a much smaller energy scale [70].
As aresult, the Andreev current Iﬁg becomes much larger than
the EC current I§° as the temperature grows. The CAR con-
tribution is suppressed as the base temperature approaches T,
where the induced gap vanishes. It is a good consistency check
that simultaneously Ig° — 0, since without superconductivity
the resonant tunneling at the S-F regions disappears and so
does the thermoelectric effect [71].

The interference effect of CAR processes is caused by
an asymmetric S-F-S junction. When dnp. = dng, Ilge vanishes
since the two paths in Fig. 1(b) destructively interfere. In
general, these two contributions acquire a different energy-
dependent phase coming from the fact that the Andreev re-
flection for each path takes place at different superconduc-
tors. Consequently, a CAR-dominated thermoelectric current
requires that the S-F-S junction is asymmetric and there is a
finite phase difference between superconductors, as shown in
Fig. 1(d). The interference effect on the CAR probability is
written as [63]

TRi(E, ) = y(E) cos® [¢/2 + (dwr — dnL)E],  (3)

where y(E) is an even function of the energy and ¢ is the
phase acquired by Andreev reflections at SR. Importantly, all
higher order contributions are equal for both paths and even
in energy [63], so they are included into the parameter y (E).
Since only the odd part of TRhf contributes to the integration, it
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can be more conveniently expressed as
T (—E) — Ti(E) = y(E) sin[2E (dxg — dxi)]sing. (4)

The sinusoidal behavior of the current with ¢ is shown in
the inset of Fig. 2(a), revealing the phase difference as an
ideal knob to tune the thermoelectric effect. Equation (4)
clearly displays two of the three conditions for the Andreev-
dominated thermoelectric effect. A finite electric current, Iy,
is obtained when the phase difference and the asymmetry
result in a finite contribution to Eq. (4) that is comparable to
the integration window determined by the temperature bias
of (T, 6). We also note that the finite thermoelectric effect
indicates the simultaneous presence of both even- and odd-
frequency pairing amplitudes in our setup [43].

Signatures of equal-spin Cooper pairs. An Andreev-
dominated thermoelectric effect stems from the injection of
Cooper pairs with opposite net spin into each superconductor.
The resulting current, Ir, could be measured as a voltage
drop on the right lead after heating up the left one [40,72].
Our proposal is also phase tuneable so the thermoelectric
power generation can be controlled by a small magnetic field
[45]. Increasing the temperature gradient drives larger ther-
moelectric currents [see Fig. 2(a)], but also potentially larger
fluctuations [73]. It is thus essential for the characterization of
the proposed heat engine to identify a parameter regime where
the fluctuations are the smallest with respect to the average
current. That is, where the Fano factor F = Sgr/|2elR|, with
Sgrr the current fluctuations in the right lead, is minimal. The
zero-frequency fluctuation of Iy is given by [67]

* dE
Sw=ch [ G Y sentesen(d)

00 20,8 skl
X Agy.15(Ra, E)Ajs iy (RB, E) fioy (E) [1 — fis(E)],
)
with
Akyas(ict, E) = 8; 181184,y 80.5 — [$57 ()] s3(E),  (6)

where Greek letters label Nambu indices, with sgn(a)=
+1 for a=e,h, Latin symbols represent reservoirs
{L,R,SL, SR}, s” denotes the amplitude for a particle
of type y in reservoir k to be scattered into reservoir i as a
particle of type «, and fjg(E)=f(E, sgn(B)u;, kgT;) is the
Fermi distribution for particles B in reservoir j [74].

For an asymmetric junction, the phase difference ¢
controls the thermoelectric current, see Eq. (4). The
fluctuations are, however, almost independent of ¢, indicating
that they are mostly caused by thermal noise [74]. As a result
of the carrier-selective heat and charge transfer in this setup,
thermal noise is caused by normal scattering processes that do
not experience interference and Sgg increases steadily with
the temperature bias 6. By contrast, the Andreev-dominated
current increases rapidly for 6 <7, and appears to saturate
for higher bias. Importantly, for experimentally relevant
values [40,72], when the current is maximum, the Fano factor

becomes minimum [see Fig. 3(b)], thus demonstrating that
the current is enhanced over its fluctuations. Note that an
Andreev-dominated current requires Ty 2> 7./2, resulting in
rather large Fano factors [63]. Recently, the electronic noise
due to temperature differences in mesoscopic conductors,
different than thermal or shot noise, was measured and
proposed as an accurate temperature probe [75].

Finally, the injection of Cooper pairs with opposite net
spin into each superconductor produces a nonequilibrium
supercurrent Igp (¢)=Isr(—@); see Fig. 3(c). At equilibrium
(0=0), even though the current at the normal leads van-
ishes, I R =0, there is a finite, Josephson-like supercurrent
at each superconductor. Interestingly, without the F region
(i.e., with my=0 and no CAR), the equilibrium current is
barely affected by the temperature bias. By contrast, in the
presence of F, CAR processes pump equal-spin Cooper pairs
into the superconductors, resulting in large nonequilibrium
supercurrents. The temperature bias thus creates supercur-
rents with opposite sign at each superconductor that could
be measured separately or after connecting them through a
loop, as depicted in Fig. 1. Measuring the flux inside the loop
with and without temperature gradient, one could determine
a thermophase [46]. Within our estimations, for biases 6 < T,
close to the minimum of fluctuations, the magnitude of the
temperature-induced supercurrent is comparable to [, the
zero-temperature maximum Josephson current, with a typical
value of ~1 uA.

Summary. We propose a quantum heat engine that can be
electrically controlled to generate spin-polarized Cooper pairs
and drive supercurrents from a temperature bias on demand.
Our proposal is based on a unique transport mechanism taking
place at a S-F-S junction on the helical edge of a QSHI.
Nonlocal Andreev processes through the junction experience
an interference effect between the contributions from each
superconductor. This interference is not present for normal
processes, resulting in carrier-selective heat and charge cur-
rents where normal processes transfer heat and Andreev
processes transfer charge. Because of the strong spin-orbit
coupling at the helical edge state, the thermoelectric current
is completely dominated by equal-spin Andreev processes.
We discussed how the proposed spin-triplet thermoelectric
effect could be measured as a thermophase appearing be-
tween the superconductors. The measurement is further facil-
itated by the low fluctuations of the spin-polarized nonlocal
current.
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