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Topological magnetotorsional effect in Weyl semimetals
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In this Rapid Communication we introduce a thermal magnetotorsional effect (TME) as a topological response
in magnetic Weyl semimetals. We predict that magnetization gradients perpendicular to the Weyl node separation
give rise to temperature gradients depending only on the local positions of the Weyl nodes. The TME is a
consequence of magnetization-induced effective torsional spacetime geometry and the finite-temperature Nieh-
Yan anomaly. Similarly to the anomalous Hall effect and chiral anomaly, the TME has a universal material-
independent form. We predict that the TME can be observed in the magnetic Weyl semimetal EuCd2As2.
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Introduction. The cross-fruition between condensed matter
and high-energy physics has become a central theme in con-
temporary research. Topological Weyl and Dirac semimetals
[1] provide a particularly rich example of this interplay. These
systems offer a versatile playground to study the phenomenol-
ogy of relativistic fermions in the presence of gauge fields and
curved spacetimes as well as inspire novel electronic appli-
cations. Due to the flexibility of condensed matter systems,
there are no fundamental limitations to realize predictions
that have remained hypothetical in the high-energy context.
A fascinating example of such predictions is the Nieh-Yan
anomaly [2–8] of chiral fermions in torsional spacetimes
which has recently been proposed as a source of universal
effects in condensed matter systems.

Significant interest in topological semimetals is focused
on their remarkable material-independent properties resulting
from momentum-space Berry monopoles and field theory
anomalies. In the present Rapid Communication, we report
the discovery of an addition to the previously known topolog-
ical responses in Weyl semimetals. We introduce the thermal
magnetotorsional effect (TME) which gives rise to energy
currents and temperature gradients as a response to magnetic
gradients. This effect results from two important factors.
First, as depicted in Fig. 1(a), the Weyl fermions couple to
spacetime geometry through frame fields. As established in
Refs. [9,10], smoothly varying magnetization will give rise
to a low-energy description in terms of locally varying frame
fields. As discussed in the present work, the effective ge-
ometry encoded in frame fields admits nonvanishing torsion.
Another key ingredient is the Nieh-Yan anomaly of chiral
fermions in torsional spacetimes. Until recently, the physical
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consequences of the Nieh-Yan anomaly [2,3] have remained
controversial due to the explicit appearance of a nonuniversal
high-energy cutoff in physical predictions. However, several
recent studies [4–7] have confirmed its universal character by
identifying temperature as the appropriate substitute for the
high-energy cutoff.

We first present a derivation of an effective low-energy
theory of magnetic Weyl materials with torsional geometry.
We proceed by showing how the TME results from combining
the effective geometry with the finite-temperature Nieh-Yan
anomaly. Then we discuss the striking physical consequences
of the TME by studying a system depicted in Fig. 1(b). By
connecting a magnetic Weyl material to a thermal bath at one
end, the relative temperature drop in the system is given by

the relative shift of the node separation Th/Tc =
√

kc
W /kh

W .
This remarkable relation has the same universal form in all
Weyl materials and is independent on the specific spatial
profile of the magnetic texture. We discuss how this relation
can be experimentally probed in the magnetic Weyl material
EuCd2As2 [11–13].

Torsional spacetimes in magnetic Weyl semimetals. We
first outline the general mechanism for the emergent torsional
geometry in time-reversal (TR) breaking Weyl semimetals.
We consider a four-band parent Hamiltonian that breaks the
TR symmetry,

H = kiγi + mγ4 + M(r) · b, (1)

where γi with i = 1, 2, 3, 4 denotes the four Hermitian γ

matrices satisfying anticommutation relations {γi, γ j} = 2δi j

with δi j being the Kronecker delta function and
b = (γ23, γ31, γ12) with γi j = −i[γi, γ j]/2. Since the
momentum is odd under the TR, γ1,2,3 and b are also
odd. The M(r) · b term breaks the TR symmetry, and M(r) =
M(r)[sin θ (r) cos φ(r), sin θ (r) sin φ(r), cos θ (r)] corres-
ponds to three-dimensional (3D) magnetization or any field
that transforms as magnetization under TR. It can be used
to describe real materials such as 3D topological insulators
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FIG. 1. (a) Weyl fermions couple to spacetime geometry through
the frame fields eμ

a. Inhomogeneous magnetization gives rise to
locally varying frame fields in Weyl semimetals. (b) The thermal
magnetotorsional effect gives rise to a temperature gradient as a
response to a magnetic gradient perpendicular to the Weyl node
separation �kW . Placing one end of a sample in contact with a heat
bath, the relative temperature drop between the ends is given by the
relative shift of the node separation.

(TIs) with a magnetic texture [14], topological insulator
heterostructures [15,16], or ferromagnetic Weyl semimetals
discovered recently [11–13,17–20].

Following the general method introduced in Refs. [9,10],
we block diagonalize the parent Hamiltonian [for details,
see the Supplemental Material (SM) [21]]. This leads to an
effective Weyl Hamiltonian,

HW = da(k, r)σ a, (2)

where a = 0, 1, 2, 3, σ 0 is the 2 × 2 unit matrix, σ 1,2,3

are the Pauli matrices, d1 = cos θ cos φkx + cos θ sin φky −
sin θkz, d2 = − sin φkx + cos φky, d3 = M − m − (κ2

3 +
f 2)/2m, d0 = − f κ3/m with κ3 = cos φ sin θkx +
sin φ sin θky + cos θkz, and f = (∂zφ + cos φ∂yθ −
sin φ∂xθ )/2. The Weyl points are located at
±KW = ±KW (sin θ cos φ, sin θ sin φ, cos θ ) with KW =√

2m(M − m) − f 2. We assume 2m(M − m) > f 2 such that
there are always two well-separated Weyl points.

Expanding Eq. (2) around the Weyl point KW , we obtain
the Hamiltonian for the left-handed Weyl fermion,

HL ≈ 1
2

{
vi

a, ki − KW,i
}
σ a − KW,0σ

0, (3)

where KW,0 = f KW /m is the energy shift of the Weyl point
and vi

a(r) = ∂da
∂ki

|
KW

is the position-dependent Fermi velocity.

It is convenient to introduce v0
0 = −1 and v0

1,2,3 = 0 such that
v can be written as a 4 × 4 matrix. The explicit expressions for
vμ

a are given in SM. The effective Weyl Hamiltonian is simi-
lar to the one induced by elastic deformations [22], where the
position-dependent Fermi velocities are related to the strain
instead of magnetization. However, an important difference
is that the spacetime mixed components vi

0 are absent in the
strained Weyl systems, whereas in inhomogeneous magnetic
Weyl semimetals the mixed term can exist and give rise to
exotic physics [10].

The action corresponding to the left-handed Weyl fermion
takes the form (see SM)

SL =
∫

d4x eψ†
L eμ

a

(
i∂μ + A5,μ + i

Tμ

2

)
σ aψL, (4)

where ψL is a two-component spinor, e ≡ det(eμ
a) =

(det vμ
a)1/3 gives the invariant volume element, and eμ

a =
e−1vμ

a is the frame field with the coordinate index denoted
by μ = t, x, y, z and the Lorentz index by a = 0, 1, 2, 3.
The emergent metric is given gμν = eμ

aeν
bηab with ηab =

diag(−1, 1, 1, 1) and eμ
a being the coframe field satisfying

eμ
aeν

a = δν
μ and eμ

aeμ
b = δa

b . The position of the Weyl point
is given by the “axial gauge field” A5,μ = KW,μ. Comparing
to the standard action of a spinor field in gravitational fields
[23], the spin connection is absent in Eq. (4). As a result, the
curvature also vanishes and the torsion two form T a is simply
given by the exterior derivative of the coframe one form ea,
T a = dea. The torsion is in general nonzero and therefore
the inhomogeneous magnetization induces a low-energy Weyl
fermion living in a Weitzenböck spacetime, which is used in
teleparallel gravity theory [24]. The coframe field ea can also
be viewed as a gauge potential, and then the torsion is the field
strength corresponding to the potential. Note that it is the trace
of the torsion tensor Tμ = Tμν

ν = e−1eμ
a∂ν (eeν

a) that appears
in the action. We consider a static magnetization so the frame
fields are time independent, but in general it is possible to
realize time-dependent frame fields. Thus, in the following
derivation of the TME we will allow for time-dependent
frame fields and formulate the general theory in a covariant
form.

Finite-temperature mixed chiral-torsional anomaly. The
low-energy theory Eq. (4) has far-reaching physical conse-
quences. Here, we focus on the torsion-induced effects which
have attracted significant attention recently [3–6,8,25–35]. It
has been shown that the torsion gives a contribution to the
chiral anomaly [2] through the Nieh-Yan term [36], which in
the absence of spin connection reads

N = εμνρσ

4
Tμν

aTρσa = 2Ea · Ba, (5)

where εμνρσ is the totally antisymmetric symbol with the
convention εtxyz = 1, and Ea and Ba are the torsional electric
and magnetic fields, respectively. The Nieh-Yan term looks
similar to the celebrated Adler-Bell-Jackiw anomaly [37,38].
However, a fundamental difference is that the Nieh-Yan term
has the dimension of inverse length squared [L−2] while
the electromagnetic E · B term has the dimension of [L−4].
Consequently, the coefficient of the Nieh-Yan contribution to
the chiral anomaly has the dimension of [L−2]. It was pointed
out that the coefficient depends on the high-energy cutoff in
Weyl semimetals [3] and therefore makes the contribution
superficially nonuniversal. Recently, it was suggested [4,5]
that the temperature can also play the role of cutoff since
it has the correct dimension, and the temperature-dependent
contribution of the Nieh-Yan anomaly takes a universal
form,

∂μ

(
eJμ

5

) = T 2

12
N. (6)
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This result has been verified by a direct calculation of the
chiral charge density induced by torsional Landau levels, es-
tablishing the Nieh-Yan anomaly as a universal Fermi-surface
effect at finite temperatures. Furthermore, it has been argued
that in addition to temperature, the coefficient contains a
dimensionless central charge of (1+1)D Dirac fermions [6].
Since the central charge is also related to the (1+1)D gravita-
tional anomaly [39], there could be a connection between the
thermal Nieh-Yan anomaly in (3+1)D and the gravitational
anomaly in (1+1)D which is yet to be revealed, moreover,
temperature-dependent torsional anomalies may also appear
in other dimensions [8]. However, the most important insight
from the recent activity is the emergence of a simple physical
picture of the Nieh-Yan contribution to the chiral anomaly in
terms of torsional Landau levels and its universal nature at
finite temperature.

From the thermal Nieh-Yan anomaly, we find a contribu-
tion to the effective action,

Sanomaly = T 2

12

∫
d4x εμνρσ A5μeν

a∂ρeσa. (7)

This effective action leads to a chiral current e jμ5 =
T 2εμνρσ eν

a∂ρeσa/12, which is consistent with the current
obtained from linear response calculations [31,32] and there-
fore provides additional confirmation on the validity of
the anomaly action. The original action, Eq. (3), exhibits
the Nieh-Yan-Weyl rescaling symmetry [27] ea → exp (�)ea

which does not carry over to the quantum theory because of
the anomaly. The overall normalization of the frame fields
in the effective action is fixed by requiring that the chiral
densities resulting from the direct torsional Landau level
calculation are equal to the one obtained from the effective
action. Thus we find that the frame fields should be normal-
ized so that the volume element is unity e = 1 (see the SM
for details). The zero-temperature counterpart of Eq. (7) was
discussed in Refs. [3,25,27,28] in the context of lattice dis-
locations. However, due to the cutoff-dependent and imprac-
tical nature of the physical consequences, the experimental
signatures of the Nieh-Yan anomaly have remained unclear.
In contrast, as shown below, the finite-temperature anomaly
gives rise to profound universal effects that can be observed
experimentally.

Topological magnetotorsional effect. Taking variation of
the effective action Eq. (7) with respect to the coframe fields,
we obtain the anomalous energy-momentum current,

eT μ
a = −T 2

6
εμνρσ A5ν∂ρeσa + T 2

12
εμνρσ ∂νA5ρeσa. (8)

The second term on the right-hand side of the above equation
is omitted in Ref. [6], but in our case it is of the same order as
the first term since the frame fields and axial gauge potential
have the same physical origin. It can also be understood
as the 0th chiral pseudo-Landau-level contribution to the
energy current [40]. For a = 0, we get the energy current.
The physical energy-momentum current corresponds to eT μ

ν ,
which is obtained by converting the lower Lorentz index to the
spacetime index with the help of coframe fields [41], but this
does not affect our main result, so we use eT μ

a for simplicity.

Assuming A5,t = 0, then the energy current reads
(Ji

ε ≡ eT i
0)

Jε = −T 2

6
A5 × E0 − T 2

12
B5et0, (9)

where B5 = ∇ × A5 is the chiral magnetic field and Ei,0 =
∂iet0 − ∂t ei0 is the torsional electric field. Remarkably, since
the chiral vector potential A5 = (kW /M )M(r) and the frame
fields eμ0 are directly given in terms of the local magnetiza-
tion M(r), Eq. (9) in fact expresses the energy current as a
response to magnetization. This gives rise to a different mag-
netothermal response in Weyl semimetals. We call relation
(9), combined with the expressions for magnetization-induced
A5 and eμ0, as the TME. The energy current is perpendicular
to the separation between the Weyl points.

On the other hand, the temperature gradient is also a
driving force of the energy current. Temperature gradients
can be formally identified with an extra torsional electric
field T −1∇T = −E0 [42–44]. As a direct consequence of
this prescription, the anomalous thermal Hall current is given
by Jε = T A5 × ∇T/6 [6,40]. In the equilibrium, the energy
current vanishes [45] and Eq. (9) implies that

A5 × ∇T

T
= 1

2
∇ × A5. (10)

This relation, coupling magnetization A5 = (kW /M )M(r) to
thermal gradients, follows from Eq. (9) together with the
expressions for magnetization-induced gauge and frame fields
and is the main result of this Rapid Communication. It
presents an alternative type of response with a topological
origin and concrete observable effects.

To demonstrate the remarkable consequences of the TME,
we consider a magnetic Weyl semimetal model, Eq. (1) with
unidirectional magnetization M = [0, 0, M3(x)]. In this case
the Weyl node separation is parallel to M and Eq. (10) gives
rise to the temperature profile

T (x)

T (0)
=

√
KW (0)

KW (x)
, (11)

where KW (x) = √
2m(M3(x) − m). The relation Eq. (11) has

a universal form and the material-specific details only enter
through the dependence of Weyl node positions on mag-
netization. In this simple model, the magnetization-induced
torsional electric field vanishes, but it is generally nonzero for
time-dependent magnetization or interacting Weyl semimet-
als [46]. As shown in the SM, by replacing the node sep-
aration by its component perpendicular to the temperature
gradient kW → kW ⊥, the relation (11) also applies to rotating
Néel-type magnetic textures such as the one depicted in
Fig. 2(a).

Experimental detection. Here, we discuss how our predic-
tion linking the temperature profile to Weyl node separation,
Eq. (11), can be detected in a topological insulator-magnetic
insulator layer structure realization of Weyl semimetals
[15,16]. In this case the magnetization perpendicular to the
topological insulator layers is mapped to M3 and our theory
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FIG. 2. (a) Néel-type textures in magnetic Weyl semimetals will
induce temperature gradients. (b) A spatially varying magnetic field
is applied in the z direction, and the temperature at x = 0 is fixed by
a thermal bath. (c) Temperature as a function of position for the TI
heterostructure setup. The parameter is M3/m = 3 + 0.2x/ξ .

is readily applicable. The experimental setup is shown in
Fig. 2(b). The inhomogeneous magnetization is realized by
applying a decreasing magnetic field Bz along the x direc-
tion. There is no need for high-precision control over the
field gradient as long as there is a detectable increase in
magnetization over the sample. When the temperature at
x = 0 is fixed by a heat bath, there will be a temperature
gradient along the x direction. Figure 2(c) shows the result
of the temperature as a function of position for M3/m = 3 +
0.2x/ξ . Alternatively, one could employ a naturally occurring
Néel-type texture by contacting the sample to the heat bath
near a domain wall and study the temperature profile in the
vicinity.

Other candidate materials to observe this effect include
ferromagnetic Weyl semimetals which have been recently
identified experimentally [11–13,17–20] and are also captured
by our theory. Specifically, we consider EuCd2As2, whose
ground state is an itinerant magnet where Eu ions form
ferromagnetic layers stacked antiferromagnetically along the
c axis. When a magnetic field is applied along the c axis,
EuCd2As2 becomes a Weyl semimetal with only two Weyl
points [11,12]. Above the Néel temperature, the Weyl nodes
have been observed [13] even in the absence of an external
magnetic field, indicating strong ferromagnetic correlations.
The bands near the Fermi level are dominated by the Cd 5s
and As 4p orbitals. A theoretical description in terms of a
4 × 4 k · p Hamiltonian for the ferromagnetic state around
the � point has been constructed in Ref. [11]. The four-

band model can be further mapped to Eq. (2) with d1 = Akx,
d2 = Aky, and d3 = M3 + m − C1k2

z , where m is the gap at �

point and A and C1 are material parameters (see the SM for
details). The magnetization energy difference M3 between the
p and s orbitals arises from the exchange couplings between
Eu magnetic moments and Cd and As orbitals. Thus, M3

can be tuned by the spin polarization of Eu irons through
an external magnetic field. Therefore, a position-dependent
magnetic field can induce spatially varying M3, which in turn
leads to a temperature gradient through Eq. (11). Magneti-
zation will directly couple to electrons so the temperature
profile (11) refers to the electron temperature. When electron-
phonon mediated relaxation processes cannot be neglected,
the predicted temperature profile will relax. However, at low
temperatures the relaxation time becomes long and the tem-
perature gradient can be observed after a bath temperature
quench.

Conclusion and outlook. In summary, we developed an
effective theory for magnetic Weyl semimetals where inhomo-
geneous magnetizations are mapped to spacetime torsion as
well as axial gauge fields. Building on this notion, we discov-
ered a different topological response, the thermal magnetoro-
sional effect, which implies that an inhomogeneous magneti-
zation will induce a temperature gradient in Weyl semimetals.
This intriguing effect is rooted in the mixed chiral-torsional
anomaly at finite temperature, which, unlike the zero temper-
ature counterpart [2,3], is cutoff independent, and therefore is
of a topological nature. We demonstrated how to detect this
effect experimentally in recently discovered ferromagnetic
Weyl semimetals as well as a TI-magnet heterostructure. Our
discovery would be used as magnetic gradient refrigeration,
and combining it with other thermoelectric effects provides
other methods to control the responses of Weyl semimetals.
In our prediction, the TME also provides an alternative and
concrete way to experimentally verify the torsion anomaly
[33], which has stirred controversy in the field theory literature
[47–49].

In the present Rapid Communication we treated magne-
tization as a static field. Allowing for dynamical effects,
our results imply that it is possible to manipulate magne-
tization by using temperature gradients. Furthermore, under
those circumstances we expect exotic collective magnetic
excitations resulting from the mixed chiral-torsional anomaly.
To study these effects, the dynamics of the magnetization
must be included in the effective theory, which we leave for
future research. Another interesting issue for future study
is to develop a theory of an elastic analog of the TME.
Since our effective theory for Weyl fermions is analogous
to the one obtained in the presence of lattice deformations
[22], we expect that also strain would give rise to thermal
effects. Torsion also emerges in topological superfluids and
superconductors [4,7,50], where the present theory may not
be directly applicable because the central charge of the edge
mode in that case [51] is different from the present model
and the anomaly might be different. This presents another
interesting avenue for future work.
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