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Developing the tube theory for polymer knots
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Entanglements make polymers fundamentally different from other molecules and thus are a major theme in
polymer physics research. Interchain entanglements have been extensively investigated in past decades, while
intrachain entanglements, often appearing as polymer knots, are much less understood. In this work, we apply the
tube theory for polymer knots based on the tube model: the polymer segments in a knot core are confined within
a tube due to topological entanglements. We use an approach of visualizing and quantifying the “tubes.” First,
we perform Monte Carlo simulations to generate a large number of polymer knots. Then, we superimpose knot
cores to obtain average knot conformations. The fluctuations of individual knot conformations around average
knot conformations produce tubes, which materialize the conceptual tubes. Analyzing the tubes validates many
scaling relationships and determines the relevant parameters. Furthermore, we reveal a heart shape for polymer
trefoil knots, which results from the competition of entropy and bending energy. Overall, this work builds the
foundation of the tube theory for polymer knots.
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Just like entanglements in everyday linear objects, entan-
glements are common in polymers. Entanglements are caused
by the uncrossability of polymer segments and affect con-
formational and dynamic properties of polymers. Due to the
dramatic effects of entanglements in polymer dynamics and
rheology, interchain entanglements have received intensive
investigation in past decades. One well-established theory to
describe interchain entanglements is the tube theory, which
assumes that a polymer is confined within a tube due to the
entanglements with neighbor polymers [1]. Besides interchain
entanglements, polymers can also form intrachain entangle-
ments, which often appear as polymer knots [2–4] and are
much less understood than interchain entanglements.

Recently, knots in DNA [5–10] and proteins [11–15] have
been observed in many experiments. Many intriguing or even
counterintuitive phenomena have been found for polymer
knots [16–20]. The importance of knotting has been demon-
strated by the effects of knotting on the rheology of knotted
polymers [9,21–23], the biological functions of knotted DNA
[24] and knotted proteins [25,26], and the catalysis of knotted
molecules [27]. Quantitative description of these knotting
effects requires an analytic theory for polymer knots, which
is unavailable.

In this work, we apply the tube theory to polymer knots.
The basic idea of the theory is the tube model, which assumes
the polymer segments in a knot core are confined within a
tube due to topological entanglements [16]. Applying this
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tube model to derive properties of polymer knots relies on
the validation of several assumptions and determination of
many parameters, which are to be addressed using an effective
approach in this work: materializing the “tubes” for polymer
knots by computer simulations. The calculation of tubes based
on primitive path analysis has been previously applied for
interchain entanglements [28].

First, we obtain the tubes for polymer knots by simula-
tions. We perform Monte Carlo simulations to generate linear
polymer conformations under equilibrium and then analyze
the knots inside the polymer conformations. We describe
polymers by the discretized wormlike chain model, i.e., a
string of beads with bending energies [17,29]. The bond
length between two adjacent beads is fixed as a. A bending
potential is applied for three adjacent beads to reproduce a
persistence length, Lp:

Ebend/(kBT ) = (1/2)(Lp/a)θ2, (1)

where θ is the bending angle, kB is the Boltzmann constant,
and T is the temperature. We do not apply any pairwise
interaction between beads. The data shown in this Rapid Com-
munication are based on the simulations with the persistence
length Lp = 10a and the polymer length L = 500a = 50Lp.
We use Lp as the unit length. As shown by additional results
in the Supplemental Material [30], the simulation results
of polymer knots are insensitive to a/Lp and L/Lp when
a/Lp � 1/4 and L/Lp � 50. Note that this work focuses on
the investigation of the knots in long wormlike chains. Our
parameters of a/Lp = 1/10 and L/Lp = 50 can substantially
eliminate the effects caused by discretization and finite chain
lengths.

We calculate average knot conformations using the follow-
ing steps. First, we generate single polymer conformations
by performing PERM (pruned-enriched Rosenbluth method)
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FIG. 1. (a) Conformations of the knot cores in left-handed
trefoil-knotted polymers generated by Monte Carlo simulations. The
contour lengths of the knot cores are Lknot = 12Lp, where Lp is the
persistence length. (b) The average knot conformation obtained by
superimposing 105 conformations. (c) The tube has the same shape
as the left cartoon, while the diameters of the tube correspond to
the standard deviations of the fluctuations of individual knot-core
conformations around the average knot conformation. Note that the
diameter varies along the tube axis. (d)–(f) Projections of the average
knot conformation along three directions. (g) The bottom part of
the x-y projection is fit by a circle. (h) The top-left part of the x-y
projection is fit by an ellipse.

simulations. PERM is a sequential Monte Carlo algorithm that
has been demonstrated to be highly efficient in generating
polymer conformations [31–33]. Second, we identify the knot
type for each polymer conformation through the calculation of
the Alexander polynomials [17,34,35]. We employ the min-
imally interfering closure scheme to connect polymer ends
before the calculation of the Alexander polynomials [36]. We
determine the knot core by cutting beads from both polymer
ends until the change in the knot type. The contour length of
the knot core is defined as the knot size, Lknot. Figure 1(a)
displays three examples of knot-core conformations. Third,
we superimpose the knot-core conformations with the same
knot size Lknot to obtain the average conformation for a
given Lknot. Before superimposition, we fit the conformations
through rotation and translation to minimize the RMSD (root-
mean-square deviation). Note that because trefoil knots can
be left-handed or right-handed, averaging trefoil-knot confor-
mations with both handedness would remove the structural
features of trefoil knots. As a result, we make the average only
for the knot-core conformations with the same handedness.

Figure 1(b) shows the average conformation for a trefoil-
knot core with the knot size Lknot = 12Lp, which is the most
probable knot size [17,37]. The coordinates of this average
knot conformation and the fits by empirical equations are

included in the Supplemental Material [30]. Figures 1(d)–1(f)
show three projections. It is intriguing that the bottom part of
the x-y projection can be very well fit by a circle with a radius
of Rcircle ≈ 1.07Lp [Fig. 1(g)]. In addition, the top-left part
of the x-y projection can be fit by an ellipse [Fig. 1(h)]. The
average knot conformation exhibits a beautiful heart shape,
which reveals important information about the competition of
interactions in polymer knots [16,38] and will be discussed
later.

Figure 1(c) shows the tube for polymer knots. The axis of
this tube follows the average knot conformation, while the
diameters of the tube vary along the axis and correspond to
the amplitudes of fluctuations of individual knot-core confor-
mations around the average knot conformation.

Next, we analyze the tubes of polymer knots to facilitate
the development of the tube theory for polymer knots. Apply-
ing the tube model to derive properties of polymer knots relies
on several assumptions. Grosberg and Rabin [16] proposed
that the free energy cost of knot formation Fknot consists of
two parts:

Fknot ≈ Ebend + Fentropy, (2)

where Ebend is the bending energy and Fentropy is the free
energy increase due to the entropic loss. The entropic loss is
caused by the fact that polymer segments inside the knot core
are restricted by the entanglements within the knot. Deriving
the analytic expressions of Ebend and Fentropy requires several
assumptions. In the following, we describe these assumptions
and examine the validity of these assumptions by simulation
results.

(i) The tube model assumes a uniform tube diameter Dtube,
which is proportional to the knot size Lknot. To validate this
assumption, we need to calculate Dtube. We quantify Dtube

by the amplitude of the fluctuations around the average knot
conformation, i.e., RMSD. Figures 2(a) and 2(b) show the
average knot conformations and RMSD for different knot
sizes. RMSD varies along the tube axis. Because the variance
is not significant, we quantify the tube diameter by the average
RMSD:

Dtube ≡ 2〈RMSD〉. (3)

The prefactor 2 is added to take into account the fact that
RMSD corresponds to the tube radius. The top inset of
Fig. 2(c) shows that Dtube is roughly proportional to the knot
size Lknot:

Lknot ≈ 20〈RMSD〉 = 10Dtube, (4)

and then we obtain the aspect ratio of the tube:

p ≡ Lknot/Dtube ≈ 10. (5)

The aspect ratio is an important parameter to quantify the
shape of polymer trefoil knots and derive many properties of
polymer knots. In previous studies, the value of p is estimated
to be p ≈ 12.4 based on the maximally inflated trefoil knot
[39], or p ≈ 16 based on the fit to the dependence of the knot
size on the chain width [17].

(ii) To derive Fentropy, the tube model makes use of the
Odijk scalings, which were originally derived for the ex-
tension and entropic loss of a polymer confined in a tube
[40]. Note that the “tubes” for polymer knots are not real
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FIG. 2. (a) Average trefoil-knot conformations with different
knot sizes. (b) Fluctuations of individual polymer knots around
average knot conformations for different knot sizes. (c) Normalized
RMSD and normalized length of the tube axis as a function of the
knot size. The two fit lines are based on Eqs. (4) and (6). (d) The free
energy increase due to entropic loss of the polymer segments in the
knot core. (e) Extra bending energy induced by knotting as a function
of the knot size. (f) Extra bending-energy density along a knot core
for Lknot = 12Lp. E extra

bend is normalized to be the extra bending energy
per unit length of Lp. The shaded area corresponds to “negative extra
bending.”

tubes with solid walls, and hence it is not clear whether the
Odijk scalings are applicable in the tube model for polymer
knots. To examine the applicability, we analyze Ltube/Lknot

and Fentropy. Here, Ltube is the arc length of the tube axis,
corresponding to the polymer extension in a tube. The bottom
inset of Fig. 2(c) shows that Ltube/Lknot roughly follows the
Odijk scaling:

Ltube/Lknot ≈ 1 − 0.17k1(Dtube/Lp)2/3 with k1 ≈ 2.05, (6)

where the coefficient 0.17 is the original coefficient in the
Odijk scaling [41], and k1 is an additional coefficient to
take into account that the tube walls for polymer knots are
softer than solid walls. Figure 2(d) shows the free energy
increase due to the entropic loss in knots, which is calcu-
lated from simulation results through Fentropy(Lknot )/(kBT ) =
−ln[pknot (Lknot )] − Ebend(Lknot )/(kBT ). Here, pknot is the
probability distribution of the knot size in our simulations. We
find that for Lknot > 10Lp, Fentropy roughly follows the Odijk
scaling:

Fentropy/(kBT ) ≈ 1.86(Lknot/Lp)1/3

≈ 2.36k2LknotD
−2/3
tube L−1/3

p with k2 ≈ 0.17,

(7)

where 1.86 is obtained by fitting, 2.36 is the original coeffi-
cient in the Odijk scaling [41], and k2 ≈ 0.17 is an additional
coefficient to take into account that the tube walls are soft.
In Eq. (7), we make use of Lknot = pDtube with p = 10. For
Lknot < 10Lp, Fentropy significantly deviates from the Odijk
scaling. Recall that the most probable trefoil knot size is
Lknot ≈ 12Lp, and around this knot size, Eq. (7) is applicable.

(iii) The tube model assumes the bending energy scales as
Ebend ∼ LknotR

−2
knot ∼ L−1

knot based on the approximation that the
radius of curvature Rknot is proportional to Lknot. Figure 2(e)
shows Ebend follows

Ebend/(kBT ) ≈ 23(Lknot/Lp)−1. (8)

In addition to the total bending energy, we also analyze the
bending energy distribution along the contour of the knot
core as shown in Fig. 2(f). Here, we plot the extra bending-
energy density, which is defined as the difference in the
bending-energy density between the knotted and unknotted
segments:

E extra
bend ≡ Eknot

bend − 〈
Eunknot

bend

〉
. (9)

There are two important features in Fig. 2(f). First, the
bending-energy density varies greatly with the knot core.
Second, some regions of the knot core possess negative extra
bending energies. Note that the unknotted segments also
possess certain bending energies due to thermal fluctuations.
The negative E extra

bend indicates that the polymer segments at the
boundaries of a knot core adopt less bent conformations than
unknotted conformations. In other words, a knot suppresses
the bending at boundaries. This observation is surprising but
understandable. Straight conformations at the boundaries of
a knot core should favor a larger separation between two
segments at the entanglement site and then reduce the entropic
loss, which will be discussed later. Nonuniform distribu-
tions of bending—in particular, the negative extra bending
energies—should be the reason for knot localization on a
polymer with nonuniform bending stiffness, which has been
observed in previous studies [42,43].

In addition to critically examining assumptions in the
tube model, our simulations also reveal a heart shape of the
average knot conformation. To clearly view the average knot
conformation, we printed a 3D object for the knotted curve
[Figs. 3(a)–3(c). In the following part, we will explain the
shape of the average knot conformation based on the idea
that this shape should minimize the free energy. We attempt
to search the knotted curve with the minimum free energy and
compare it with the average knot conformation.

Inspired by the half-circle shape in Fig. 1(g), we search
the knotted curve with the minimum free energy using the
following approach. First, we tie a knotted curve with the
minimum bending energy, as shown in Fig. 3(d). To tie a knot,
the total bending angle is at least 2π . One way to achieve the
minimum bending angle is to make a knotted curve consisting
of a nearly full circle and a twist part [Fig. 3(d)]. The twist
part is necessary for knot formation. The total bending angle
of the twist part can be minimized towards zero by reducing
its size towards zero. For a given knot size of Lknot, this knot-
ted curve has the minimum bending energy Emin

bend/(kBT ) ≈
2π2Lp/Lknot. Note that the prefactor 23 in Eq. (8) is slightly
larger than 2π2 ≈ 19.74.
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FIG. 3. (a)–(c) The top view and side views of a 3D printed
object based on the average knot conformation with Lknot = 12Lp.
The minimum distance between the two end segments of the curve is
denoted by Dmin. (d) A knotted curve with the minimum bending en-
ergy. (e) We distort the curve in (d) for the free energy minimization.
Three points are defined on the curve to facilitate the formalization of
the knotted curve. Based on these three points, we define two curves:
C12 and C23. The two yellow lines are added to aid visualization of
the knot.

Although the knotted curve in Fig. 3(d) can minimize the
bending energy, this knotted curve is not favored because
polymer segments in the twist part can only fluctuate within
very small space, corresponding to a small entropy. Accord-
ingly, our next step is to enlarge and distort the twisting
portion of this knotted curve to increase the entropy for free
energy minimization [Fig. 3(e)]. During this process, the half-
circle at the bottom of the curve is also slightly distorted to
ensure the smooth bending and minimize the bending energy.
To facilitate the optimization of the knotted curve, we generate
the knotted curve based on the spline interpolation of three
points. The first two points, P1 = [0,−Rcircle, 0] and P2 =
[−Rcircle, 0, 0], are the lowest and the most left points of the
circle, respectively. Here, Rcircle is the radius of the circle. For
Lknot = 12Lp, we have Rcircle ≈ 1.07Lp [Fig. 1(g)]. The third
point, P3 = [x3, y3, 0], is the end point of the curve, while the
values of x3 and y3 are to be determined during the free energy
minimization. Note that the average knot conformation has the
rotational symmetry along the y axis, and hence we only need
to determine one half of the curve, i.e., from P1 to P2 (curve
C12), and from P2 to P3 (curve C23).

Then, we proceed to the generation of the knotted curve
based on the three points. To make smooth connections be-
tween P1 and P2 and between P2 and P3, we adopt the cubic
Bezier curve, which is a widely used method to connect two
points with given positions and orientations. We define the
orientations at three points as shown in Fig. 3. Here, α3

represents the angle within the x-y plane [Fig. 3(e)], and β1,
β2, and β3 represent the tilt angles with respect to the x-y plane
(Fig. 3). Applying cubic Bezier curves, the connection curve
C12 between P1 and P2 follows

C12(t ) = (1 − t )3P1 + 3(1 − t )2t (P1 + k12
−→v1 ) + 3(1 − t )t2

× (P2 − k21
−→v2 ) + t3P2 with 0 � t � 1, (10)

and the connection curve C23 between P2 and P3 follows

C23(t ) = (1 − t )3P2 + 3(1 − t )2t (P2 + k23
−→v2 ) + 3(1 − t )t2

× (P3 − k32
−→v3 ) + t3P3 with 0 � t � 1, (11)

Here, the coefficients k12, k21, k23, and k32 are adjustable
parameters in cubic Bezier curves.

After parametrizing the knotted curve, we proceed to free
energy minimization. To calculate the bending energy, we
adapt Eq. (1) for a continuous curve

E curve
bend /(kBT ) = (1/2)Lp

∫
R−2

c (s)ds. (12)

The integration is over the arc of the curve and Rc is the radius
of curvature. To calculate the entropic loss by knotting, we
use the following approximation. For the polymer segments in
C12, we ignore the effect of knotting on the entropy, because
these segments are far away from the entanglement site of
the knot. For the polymer segments in C23, we assume these
segments are confined in a tube with a diameter of Dmin, where
Dmin is the minimal distance between the two arms of the knot
[see the illustration of Dmin in Fig. 3(b)]. Then, the free energy
contributed by the entropic loss can be approximated by the
Odijk scaling as mentioned above [40]:

Fentropy/(kBT ) ≈ kentropyL23D−2/3
min L−1/3

p , (13)

where kentropy is a prefactor to be determined, and L23 is the arc
length of the curve C23. Based on the above equation, the en-
tropic loss mainly depends on Dmin, because the confinement
effect comes from the entanglement site. Straightening the
conformations of the segments around the entanglement site
allows more translational freedom of these segments, which
should be the reason for the negative extra bending energies
observed in Fig. 2(f).

With the functional forms in Eqs. (12) and (13), we search
the knotted curve with the minimum free energy by adjusting
the parameters: β1, β2, β3, α3, x3, y3, k12, k21, k23, and k32.
In addition, we tune kentropy in Eq. (13) to match the knotted
curve from the free energy minimization and the average
knot conformation from simulations [Fig. 4(b)]. This fit yields
kentropy ≈ 0.45. It is interesting to see the competition of
different parts of the knotted curve during free energy mini-
mization. Figure 4(a) shows the free energies as a function of
β2, the tilt angle at point 2. Curve C12 prefers a smaller β2 to
minimize the bending energy, while curve C23 prefers a larger
β2 to minimize the free energy (mainly entropic contribution).
The competition leads to a free energy minimum at β2 = 16◦
in agreement with the average knot conformation.

In conclusion, we build the foundation of the tube theory
for polymer knots by critically examining the assumptions
and determining the parameters, including the aspect ratio
of the tube p ≈ 10 and the prefactors of Ebend and Fentropy.
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(b)(a)

FIG. 4. (a) Free energies of the curves C12 and C23 and their sum
as a function of the angle β2. The free energy of the curve C23 is offset
to make the last data point at y = 0. (b) Comparison of the average
knot conformation from simulation (blue) and the knotted curve from
the free energy minimization (red).

We also determine the applicable regime of the tube theory:
Lknot > 10Lp. Meanwhile, we discover a surprising result:
negative extra bending energies at knot boundaries, which

can explain knot localization observed in many previous
studies. Furthermore, we obtain and explain the heart shape
of polymer trefoil knots, which reveals the delicate com-
petition of the bending energy and entropy in a knot core.
The results of this work can be applied to calculate many
properties of polymer knots, including free energy of knots,
knotting probability, knot sizes, and knot shape, and guide the
rational control of polymer knots, such as knot localization,
by tuning nonuniform bending stiffness. Looking forward,
it should be interesting to calculate average knot confor-
mations for other knot types, which requires more compu-
tational effort due to the lower probabilities of other knot
types.
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