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Effect of Berry phase on nonlinear response of two-dimensional fermions
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We develop a theory of nonlinear response to an electric field of two-dimensional (2D) fermions with
topologically nontrivial wave functions characterized by the Berry phase �n = nπ , n = 1, 2, . . .. In particular,
we find that owing to the suppression of backscattering at odd n, Hall field-induced resistance oscillations, which
stem from elastic electron transitions between Hall field-tilted Landau levels, are qualitatively distinct from those
at even n: Their amplitude decays with the electric field and their extrema are phase shifted by a quarter cycle.
The theory unifies the cases of graphene (n = 1) and graphite bilayer (n = 2) with the case of conventional 2D
electron gas (n = 0) and suggests another method to probe backscattering in topological 2D systems.
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The topological property of two-dimensional (2D) mass-
less Dirac fermions, expressed in terms of the Berry phase
�1 = π , is responsible for peculiar Landau quantization man-
ifesting itself in the phase-shifted Shubnikov–de Haas oscilla-
tions (SdHOs) and unconventional quantum Hall effect [1–4].
This makes the Dirac fermions in graphene fundamentally
distinct from both the conventional 2D electron gas (2DEG) in
quantum wells (�0 = 0) and topologically nontrivial fermions
in graphite bilayers (�2 = 2π ) [5,6]. Another immediate
consequence of the topological nature of wave functions of
massless Dirac fermions is the absence of elastic backscat-
tering off scalar potentials, which has various manifestations
in electronic properties. In particular, it lies at the origin of
Klein tunneling [7] and its implications for the resistivity
of graphene-based n-p-n junctions [8–10]. Furthermore, it
removes a sharp cusp of static polarizability of degenerate
carriers at doubled Fermi wave number (characteristic for
conventional 2DEG and graphite bilayers) [11], leading to the
enhanced spatial decay of Friedel oscillations [12].

Another well-known effect which crucially depends on
backscattering is Hall field-induced resistance oscillations
(HIROs) [13–15] which emerge in the differential resistivity
r of a 2DEG subjected to an elevated current density j and
perpendicular magnetic field B. These oscillations appear due
to the property of enhanced phase space for elastic transitions
in 2DEG in the vicinity of backscattering. In the presence of
classically strong B, the backscattering means a spatial shift of
the cyclotron orbit guiding center twice the cyclotron radius
Rc, so the transition rate increases each instant when 2Rc

equals the integer multiple of spatial separation between Lan-
dau levels (LLs) tilted by the electric field E . Therefore, r os-
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cillates with the dimensionless parameter ε = 2Rc|e|E/h̄ωc,
where E � EH , EH is the Hall electric field, and ωc is the
cyclotron frequency. As a result, HIROs are periodic in 1/B
with the frequency (ε ≡ B1/B)

B1 = 8π h̄c

ge2vF
j, (1)

where vF is the group velocity at the Fermi level and g is the
degree of band degeneracy.

To date, HIROs have been observed only in topologically
trivial (n = 0) 2D systems based on GaAs/AlGaAs [13,14],
Ge/SiGe [16], and ZnO/MgZnO [17] heterostructures. In
overlapping LLs, they are described by quantum correction
to the differential resistivity δr [15],

δr

ρ0
= 2λ2H0(ε), H0(ε) = 8

π

τ

τπ

cos 2πε, πε � 1, (2)

where ρ0 is the resistivity at B = 0, τ is the transport scatter-
ing time, τπ is the backscattering time, λ = exp(−π/ωcτq ) is
the Dingle factor, and τq is the quantum lifetime. As a result,
at n = 0 HIROs are described by H0(ε) whose maxima occur
at ε = m = 1, 2, 3, . . . and whose amplitude is independent
of ε.

In this Rapid Communication we demonstrate that the non-
linear response of topologically nontrivial (n � 1) 2D systems
crucially depends on the parity of n. For even n, backscattering
is not suppressed and the behavior is qualitatively the same as
in conventional 2DEGs. However, suppression of backscatter-
ing in massless Dirac systems, as well as in any other system
with odd n, leads to a decay of the HIRO amplitude (as 1/ε)
and produces a characteristic quarter-cycle phase shift of the
oscillations towards larger ε. In particular, for Dirac fermions
(n = 1) we obtain [see the definition of τπ for this case after
Eq. (32)]

δr

ρ0
= 2λ2H1(ε), H1(ε) = 16

π2

τ

τπ

sin 2πε

ε
, πε � 1,

(3)
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which describes HIROs with the frequency given by Eq. (1)
and the maxima near ε = m + 1/4. We also find that the
HIRO amplitude increases with n for odd n. Our conclusion
that the absence of backscattering leads to a phase shift of
nonlinear magnetoresistance oscillations can become a basis
for another method to probe backscattering in topological 2D
systems.

Our theory of nonlinear magnetotransport is developed
for the regime of large occupation factors (high LLs), clas-
sically strong magnetic fields, and overlapping LLs, which
is relevant for the observation of HIROs [18]. We consider
spin-degenerate 2D systems described by the Hamiltonian

Ĥ = ε(k)

(
0 e−inϕ

einϕ 0

)
, (4)

where ϕ is the angle of the wave vector k, the energy spectrum
±ε(k) is isotropic, and the winding number n gives the Berry
phase �n = nπ . The Hamiltonian Ĥ describes fermions in
graphene (K valley) at n = 1 [ε(k) = h̄vF k with constant
Fermi velocity vF � 108 cm/s] and in a graphite bilayer
at n = 2 [ε(k) = (h̄k)2/2m� with a constant effective mass
m� � 0.037 of the free-electron mass]. For these particular
systems, n can be viewed as the degree of chirality in the
carbon sublattice space [6]. Even larger integers are realizable
by the stacking of 3 or more carbon monolayers [19]. Though
Ĥ formally produces a two-band spectrum, we consider only
intraband excitations and the topologically trivial case (n = 0)
can be equally applied to 2DEG in quantum wells.

To derive expressions for the resistivity, we use Eq. (4)
and consider the elastic scattering of fermions by impurities.
Adopting the methods developed for 2DEG with a parabolic
spectrum [18,20], in particular, using the reference frame
moving with the drift velocity [15,20], we can write the
steady-state Boltzmann equation for the distribution function
fε,ϕ of a 2DEG placed in a perpendicular magnetic field
B = (0, 0, B) and an in-plane electric field E = (Ex, Ey, 0) in
the following form,

ωc
∂ fε,ϕ
∂ϕ

= 2π

h̄

∫ 2π

0

dϕ′

2π

∫
dε′δ(ε′ − ε − γ )

×wkk′F (n)
kk′ νε′ ( fε′,ϕ′ − fε,ϕ ). (5)

The right-hand side is the collision integral describing elastic
scattering of electrons by impurities within a single valley.
Here, γ = h̄vD · q is the work of the electric force |e|E during
a scattering event, vD = c[E × B]/B2 is the drift velocity,
q = k − k′ is the wave vector transmitted in scattering, νε is
the density of states per spin and valley, and wkk′ is the Fourier
transform of the correlation function of the impurity poten-
tial. It is assumed below that γ � ε so that |k′| � |k| ≡ kε.
The cyclotron frequency ωc = |e|B/m�c is determined by the
effective (cyclotron) mass m� = h̄kε/vF , which, in general, is
energy dependent (for graphene, kε = ε/h̄vF ). The function

F (n)
kk′ = F (n)

θ = (1 + cos nθ )/2 (6)

is the squared overlap integral of columnar eigenstates of Ĥ
with wave vectors k and k′, and θ = ϕ − ϕ′ is the scattering
angle. This function is not sensitive to the sign of n so that
it is the same for different valleys (K and K ′ in graphene),
but it is sensitive to the parity of n. It is seen directly that

backscattering (θ = π ) is suppressed for odd n but not for
even n.

For overlapping LLs, the oscillatory density of states at
ε � h̄ωc follows from the Bohr-Sommerfeld quantization
rule corrected by the Berry phase [21],

νε � νε

[
1 − 2λε cos

(
πk2

ε l2
B + �n

)]
, (7)

where νε is the density of states at B = 0 (for graphene,
νε = ε/2π h̄2v2

F ), lB = √
h̄c/|e|B is the magnetic length, and

λε is the Dingle factor at energy ε. The quantity k2
ε l2

B/2
is the number of magnetic flux quanta inside the cyclotron
orbit of electron with energy ε. Equation (7) can also be
derived from the self-consistent Born approximation (for
graphene, see, e.g., Ref. [22]). The density of states has max-
ima at the Landau quantization energies, εN = h̄vF l−1

B

√
2N

(N = 0, 1, 2, . . .) for graphene and εN = h̄ωc(N − 1/2) for a
graphite bilayer. In the latter case, εN approximates the exact
spectrum εN = h̄ωc

√
N (N − 1) [6] at N � 1.

The length of q and its angle ϕq can be expressed as

q = 2kε sin
θ

2
≡ qε,θ , ϕq = φ + π/2, φ ≡ ϕ + ϕ′

2
, (8)

and the work γ can be conveniently rewritten as

γ = −2h̄kεvD cos φ′ sin
θ

2
, φ′ ≡ φ − χ, (9)

where χ is the angle of the electric field E. The assumed
strong inequality γ � ε always holds at vD � vF .

Equation (5) is easily solved in the regime of classically
strong magnetic fields (vF τ � kεl2

B), when one can replace
the distribution functions under the integral by an isotropic
distribution fε. Substituting such a solution into the expression
for the current density,

j = j(d ) + ensvD, j(d ) = ge
∫

dενε

∫ 2π

0

dϕ

2π
vF fε,ϕ, (10)

where ns is the carrier density, and taking into account that
the impurity potential correlator depends only on the absolute
value of q, wkk′ = w(q), we obtain the dissipative conductiv-
ity (j(d ) = σd E),

σd = gπ h̄c2

B2

∫
dεk2

ε

∫ 2π

0

dφ′

2π

∫ 2π

0

dθ

2π
w(qε,θ )F (n)

θ γ −1

×(1 + cos 2φ′)(1 − cos θ )νενε+γ ( fε − fε+γ ). (11)

The isotropic part of the distribution function standing in
Eq. (11) can be represented as a sum of quasiequilibrium
Fermi distribution f (0)

ε = {exp[(ε − εF )/kBTe] + 1}−1, where
Te is the temperature of carriers and kB is the Boltzmann
constant, and a small nonequilibrium contribution δ fε caused
by the field-induced redistribution of electrons in the energy
domain in the presence of Landau quantization [15,23]. The
function δ fε shows rapid oscillations similar to those in νε,
Eq. (7), and can be found from Eq. (5) averaged over ϕ. To
describe relaxation of the isotropic distribution, the inelastic
relaxation term −δ fε/τin (τin is the inelastic relaxation time),
approximating the linearized collision integral for electron-
electron scattering, should be added to the right-hand side of
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Eq. (5). To the first order in λε,

δ fε � −2λε h̄kF vD[∂ηn(ζ )/∂ζ ]

τ−1
in + τ−1

q − ηn(ζ )

∂ f (0)
ε

∂ε
sin

(
πk2

ε l2
B + �n

)
, (12)

where kF = √
4πns/g is the Fermi wave number. The quan-

tum and the transport scattering rates are given by

1

τq
=

∫ π

0

dθ

π

1

τn(θ )
,

1

τ
=

∫ π

0

dθ

π

1 − cos θ

τn(θ )
, (13)

respectively, with

1

τn(θ )
= 2π

h̄
νεF w(qεF ,θ )F (n)

θ . (14)

Next,

ηn(ζ ) =
∫ π

0

dθ

π

1

τn(θ )
J0

(
2ζ sin

θ

2

)
, (15)

where Jα denotes a Bessel function of the first kind, and

ζ = πε, ε = 2k2
F l2

B

vD

vF
� 8π h̄c

ge2vF

j

B
. (16)

Assuming degenerate carriers, we have set ε = εF , kε = kF in
all quantities whose energy dependence is weak.

Substituting fε = f (0)
ε + δ fε into Eq. (11) and calculating

the integrals over ε and φ′ analytically, we represent the result
as an expansion in powers of the Dingle factor,

σd = σ
(0)
d + σ

(1)
d + σ

(2)
d , (17)

where σ
(0)
d = nsh̄kF c2/vF τB2 is the Drude conductivity and

σ
(1)
d = −σ

(0)
d 4λDT cos

(
πk2

F l2
B + �n

)
sn(ζ ) (18)

is the term describing SdHOs, where DT = XT / sinh XT , with
XT = 2π2kBTekF l2

B/h̄vF . The influence of the electric field on
SdHOs is described by

sn(ζ ) = −τ

ζ

∂ηn(ζ )

∂ζ
, (19)

as δ fε does not contribute to σ
(1)
d [24]. SdHOs are strongly

suppressed by temperature at XT � 1, owing to rapid os-
cillations of νε. In the last term, σ

(2)
d , we retain only the

contributions that survive at XT � 1. We find

σ
(2)
d = σ

(0)
d 2λ2[hn(ζ ) + gn(ζ )], (20)

where the parts

hn(ζ ) = −τ
∂2ηn(ζ )

∂ζ 2
(21)

and

gn(ζ ) = − 2τ [∂ηn(ζ )/∂ζ ]2

τ−1
in + τ−1

q − ηn(ζ )
, (22)

respectively, come from substitution of f (0)
ε and δ fε into

Eq. (11) and are often referred to as the displacement and the
inelastic contributions.

For n = 0, the results given by Eqs. (15)–(22) reproduce
those obtained previously for the 2DEG with parabolic spec-
trum [15,24]. However, they now carry important topolog-
ical distinction between even and odd n because the field-
dependent quantities η, s, h, and g depend on the Berry phase

through the overlap factor F (n)
θ in Eq. (14). To demonstrate

this distinction, we consider the case of a sharp (δ-correlated)
scattering potential, for which w(qεF ,θ ) is constant and τ/τq =
1 + δn,1, and the integral in Eq. (15) can be evaluated analyti-
cally [below, Jα ≡ Jα (ζ )],

ηn(ζ ) = (
J2

0 + J2
n

)
/τξn, ξn = 1 + δn,0 − δn,1/2. (23)

We further find

sn(ζ ) = [2J0J1 + (Jn+1 − Jn−1)Jn]/ζξn, (24)

hn(ζ ) = [
J2

0 − 2J2
1 − J0J2 − (Jn+1 − Jn−1)2/2

−Jn(Jn−2 − 2Jn + Jn+2)/2
]
/ξn, (25)

and

gn(ζ ) = − 2[ζ sn(ζ )]2

τ/τin + 1 + δn,1 − (
J2

0 + J2
n

)
/ξn

. (26)

In the weak-field limit, ζ � 1, the above expressions
describe quadratic in E corrections to the conductivity. In
particular, sn = 1 − μnζ

2 and hn = 1 − 3μnζ
2, where μ0 =

3/8, μ1 = 1/4, μ2 = 7/16, and μn = μ0 for n > 2. Remark-
ably, the function gn in this limit does not depend on n:
gn = −2ζ 2/(τ/τin + ζ 2/2). If the inelastic relaxation is slow,
τ/τin � 1, this function gives the main contribution to the
weak-field nonlinear response in σ (2).

In the strong-field limit, ζ � 1, Eqs. (24)–(26) describe
field-induced oscillations of conductivity caused by transi-
tions of carriers between different LLs. The result depends
on the parity of n in an essential way because the influence
of backscattering on the conductivity becomes important. For
even n,

sn(ζ ) = − 4 cos 2ζ

πζ 2(1 + δn,0)
, hn(ζ ) = 8 sin 2ζ

πζ (1 + δn,0)
,

gn(ζ ) = − 16(1 + cos 4ζ )

π2ζ 2(τ/τin + 1)(1 + δn,0)2
, (27)

whereas for odd n,

sn(ζ ) = 2(1 − n2 sin 2ζ )

πζ 3(1 − δn,1/2)
, hn(ζ ) = − 4n2 cos 2ζ

πζ 2(1 − δn,1/2)
,

gn(ζ ) = −8(1 + δn,1)2(1 − n2 sin 2ζ )2

π2ζ 4(τ/τin + 1 + δn,1)
. (28)

For odd n, all these quantities decrease with ζ faster than for
even n and the oscillations gain in amplitude with increasing
n. Regardless of the parity of n, the main contribution to
the strong-field response comes from hn. This contribution
describes HIROs, whose behavior in conventional 2DEG and
in a graphite bilayer (n = 2) is predicted to be qualitatively the
same, while in graphene (n = 1) their behavior is essentially
different. Application of the theory to carbon multilayers with
n > 2, however, is limited because Eq. (4) will be valid for an
ever reduced range of energies as n increases. Moreover, any
perturbation that involves a potential difference between the
layers will renormalize the eigenstates, thereby leading to the
case when the Berry phase is no longer an integer multiple of
π . Consideration of this case is beyond the scope of this Rapid
Communication.

022011-3



O. E. RAICHEV AND M. A. ZUDOV PHYSICAL REVIEW RESEARCH 2, 022011(R) (2020)

FIG. 1. Function H1(πε) for a sharp scattering potential (solid
curve a), and for a smooth scattering potential modeled by w(q) ∝
e−αq, where α is chosen to provide τ/τq = 5 (solid curve b) and
τ/τq = 10 (solid curve c). The dashed lines represent the limit πε �
1 for curves a and b.

We next focus on Dirac fermions, n = 1. Using Eq. (17),
we obtain the longitudinal resistivity,

ρ

ρ0
= 1 + 4λDT cos

(
πk2

F l2
B

)
s1(ζ ) + 2λ2[h1(ζ ) + g1(ζ )],

ρ0 = h̄kF

e2nsvF τ
. (29)

In experiments, one usually measures the differential resistiv-
ity r ≡ ∂ ( jρ)/∂ j. Then, r = ρ0 + δr, where

δr

ρ0
= 4λ cos

(
πk2

F l2
B

){[∂ ( jDT )/∂ j]s1(ζ ) + DTS1(ζ )}

+2λ2[H1(ζ ) + G1(ζ )], (30)

with S1(ζ ) ≡ ∂[ζ s1(ζ )]/∂ζ , H1(ζ ) ≡ ∂[ζh1(ζ )]/∂ζ ,
G1(ζ ) ≡ ∂[ζg1(ζ )]/∂ζ . In the limiting case of a sharp
scattering potential, we find s1(ζ ) = [J0 + J2]2 and

S1(ζ ) = [J0 + J2][J0 − 3J2],

H1(ζ ) = J2
0 − 6J2

1 + 5J2
2 − 2J0J2 + 2J1J3. (31)

If ζ � 1, analytical results are obtained for an arbitrary
correlator of the impurity potential,

S1(ζ ) ≈ − τ

τπ

8 cos 2ζ

πζ 2
, H1(ζ ) ≈ τ

τπ

16 sin 2ζ

πζ
, (32)

where τπ differs from τ by the substitution w(qεF ,θ ) →
w(qεF ,π ) in Eq. (14). The function H1(ζ ) and its high-field
asymptote, given by Eq. (32), are shown in Fig. 1 by solid
and dashed curves “a,” respectively. Notice that for the sharp

scattering potential (τ/τπ = 1) Eq. (32) is an excellent ap-
proximation already at ε � 1. For comparison we also include
curves “b” and “c,” which represent different cases of smooth
disorder (see the figure caption).

The oscillations of H1(ζ ) describe HIROs for massless
Dirac fermions, Eq. (3), which differ from HIROs for con-
ventional 2DEG, Eq. (2), by a phase shift and by a decay
1/ε. These changes are the consequences of modification
of the angular dependence of scattering probability and of
its considerable reduction in the vicinity of backscattering
(θ � π ), owing to the factor F (1)

θ . A similar phase shift and a
stronger decay, for the same reasons, are also present in S1(ζ )
describing the field effect on SdHOs. It is unlikely, however,
that S1(ζ ) can be accessed experimentally because heating
of electrons by current, leading to a dependence of Te on
j, becomes important already at ζ � 1 and the nonlinearity
associated with the first term in braces of Eq. (30) prevails
[25]. We note that a decay of HIROs obtained in earlier
numerical calculations of nonlinear resistivity in graphene
[26,27] has also been attributed to electron heating, whereas
the topological relevance of this effect has been overlooked.

In contrast to HIROs, the weak-field (ζ � 1) nonlinear
response of Dirac fermions, dominated (in the absence of
SdHOs) by G1(ζ ), is very similar to the one for conventional
2DEG. This response is rather insensitive to the smoothness
of the disorder, but sensitive to the ratio τ/τin. At ε > 1, the
function G1(ζ ) rapidly decreases as ε−3, much faster than ε−1

in conventional 2DEG.
It is worth noting that there exists another phenomenon

which crucially depends on backscattering, the magne-
tophonon oscillations of linear resistance due to the inter-
action of 2DEG with acoustic phonons [also known as the
phonon-induced resistance oscillations (PIROs)] [28]. Re-
cent observations of this phenomenon in graphene [29,30]
show that PIROs do not shift their phase and behave just
as those in conventional 2DEG with a parabolic band. This
happens because the electron-phonon interaction in graphene
is dominated by the gauge-field mechanism for which the
interaction potential is not a scalar in the sublattice space and,
as a result, backscattering is not suppressed. The microwave-
induced resistance oscillations [31], which have not yet been
observed in graphene, are not expected to change their phase
either, as they are not sensitive to backscattering. Therefore,
among the magneto-oscillatory phenomena specific for 2DEG
in the regime of high LLs [18] only HIROs are expected to
show profound changes in graphene, which makes them a
special and promising tool for the experimental probing of
backscattering.

In summary, we have developed a theory of nonlinear
magnetoresistance for 2D fermions with a Berry phase �n =
nπ , based on a model unifying the conventional 2DEG, mass-
less Dirac fermions in graphene, and fermions in a graphite
bilayer. We have shown that the amplitude and the phase
of nonlinear magnetoresistance oscillations of degenerate 2D
fermion gas crucially depends on the parity of n. Such a
distinction is a consequence of the suppression of backscat-
tering off an impurity potential in the case of odd n. We
believe that our results will stimulate nonlinear magneto-
transport experiments in graphene and in other topological
materials.
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