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We introduce a theoretical framework for the concept of three-dimensional (3D) twistronics by developing a
generalized Bloch band theory for 3D layered systems with a constant twist angle θ between successive layers.
Our theory employs a nonsymmorphic symmetry that enables a precise definition of an effective out-of-plane
crystal momentum, and also captures the in-plane moiré pattern formed between neighboring twisted layers. To
demonstrate topological physics that can be achieved through 3D twistronics, we present two examples. In the
first example of chiral twisted graphite, Weyl nodes arise because of inversion-symmetry breaking, with θ -tuned
transitions between type-I and type-II Weyl fermions, as well as magic angles at which the in-plane velocity
vanishes. In the second example of a twisted Weyl semimetal, the twist in the lattice structure induces a chiral
gauge field A that has a vortex-antivortex lattice configuration. Line modes bound to the vortex cores of the A
field give rise to 3D Weyl physics in the moiré scale. We also discuss possible experimental realizations of 3D
twistronics.
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Introduction. Moiré superlattices formed in twisted bi-
layers lead to interesting two-dimensional (2D) phenomena.
In twisted bilayer graphene (TBG), there are magic twist
angles, at which moiré bands become nearly flat due to a
vanishing Dirac velocity [1] and many-body interactions are
effectively enhanced. TBG represents a prototypical system
for 2D twistronics [2], where the twist angle serves as a tuning
parameter in controlling material properties. Given the greatly
exciting 2D physics developing in TBG such as the discovery
of superconducting and correlated insulating states [3–14], it
is natural to wonder whether the concept of twistronics can be
generalized to 3D systems.

In this Rapid Communication, we present a theoretical
framework for 3D twistronics that can be realized in 3D
layered systems with a constant twist angle θ between suc-
cessive layers. This 3D chiral twisted structure [Fig. 1(a)]
generally breaks the translational symmetry in all spatial
directions and thus the conventional Bloch theorem cannot be
applied. However, the structure has an exact nonsymmorphic
symmetry, which consists of an in-plane θ rotation followed
by an out-of-plane translation. We use this screw rotational
symmetry to define a generalized Bloch’s theorem, where the
modified crystal momenta are well defined. Various 3D moiré
physics can be explored by considering different 2D building
blocks in our theoretical framework.

We apply our theory to two systems. In the first system
of chiral twisted graphite with graphene as the 2D building
block, Weyl fermions arise due to the inversion-symmetry
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breaking in the twisted structure. Both type-I and type-II [15]
Weyl fermions can be realized depending on the value of θ .
Moreover, we find two magic angles at which the in-plane
Fermi velocity of the Weyl fermions vanishes, representing
the realization of magic-angle Weyl physics. In the second
system of a twisted Weyl semimetal, we study the effects
of chiral twist in the lattice structure on Weyl fermions that
already exist even without the twist. The chiral twist induces
a chiral gauge field A that has a vortex-antivortex lattice
configuration in the moiré pattern formed between adjacent
twisted layers. The vortex cores of the A field bind line
modes with position-dependent chiralities, which generalizes
the quasi-1D physics of a Weyl nanotube under torsion [16] to
3D. The periodic array of the coupled vortex line modes gives
rise to 3D Weyl fermions with moiré-scale modulations in the
wave function. Therefore, the twist angle provides another
tuning knob to create and manipulate Weyl fermions, and,
more generally, topological phases in 3D.

Theory. We construct a generalized Bloch band theory for
the chiral twisted structure shown in Fig. 1(a). The continuum
Hamiltonian for this system is

H =
∑

n

∫
d2r{ψ†

n (r)hn(k‖)ψn(r)

+ [ψ†
n (r)Tn(r)ψn+1(r) + H.c.]}, (1)

where n is the layer index, r and k‖ = −i∂r are respectively
the 2D in-plane position and momentum operators, ψ†

n (r)
represents the field operator for low-energy states, hn(k‖) is
the in-plane Hamiltonian for each 2D building block, and
Tn(r) is the interlayer tunneling. Here, ψ† can be a multicom-
ponent spinor due to sublattices, orbitals, spins, etc. The layer
dependence of hn and Tn is determined by the twist relation

hn[R̂(nθ )k‖] = h0(k‖), Tn[R̂(nθ )r] = T0(r), (2)
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FIG. 1. (a) Illustration of a 3D twisted structure with a constant
twist angle θ between successive layers. (b) Summary of results
on magic-angle Weyl fermions in chiral twisted graphite. The plot
shows the in-plane velocity v‖ and one of the out-of-plane velocities
v1 for the Weyl fermion at k1/2 = (0, 0, π/2). v‖ vanishes at magic
angles θM,1 and θM,2. v1 changes sign at θC,1 and θC,2, which mark
transitions between type-I and type-II Weyl fermions.

where R̂ is a rotation matrix. T0(r) has an in-plane moiré
periodicity (∝1/θ ) when θ is small.

The 3D twisted structure generally breaks translational
symmetry in all spatial directions, making it appear hopeless
for theoretical treatments. However, Eq. (2) implies that the
Hamiltonian H is invariant under a nonsymmorphic operation,
which rotates a layer by θ and then translates it along the
out-of-plane ẑ direction by the interlayer distance dz. This
nonsymmorphic symmetry suggests a generalized Bloch wave
for the system,

ψkz (r) = 1√
N

∑
n

e−inkzψn[R̂(nθ )r], (3)

where N is the number of layers, and the good quantum
number kz is an effective out-of-plane crystal momentum
measured in units of 1/dz. This Bloch wave is a superposition
of electron states on a spiral line around the screw-rotation
axis, as illustrated by the purple lines in Fig. 1(a). Under this
generalized Bloch representation, the Hamiltonian H becomes

H =
∑

kz

∫
d2r

{
ψ

†
kz

(r)h(k‖)ψkz (r)

+ [
ψ

†
kz

(r)eikz T (r)ψkz [R̂(−θ )r] + H.c.
]}

, (4)

where we use h and T as shorthand notations respectively
for h0 and T0. It is worth noting that the appearance of
R̂(−θ ) in Eq. (4) signals the breaking of in-plane translation
symmetries. To proceed, we expand T (r) by moiré harmonics,
T (r) = ∑

g Tgeig·r, where g is a moiré reciprocal lattice vector.
T (r) generates in-plane momentum scatterings specified by
k′

‖ = R̂(θ )k‖ + g. For low-energy physics, |k‖| is generally of
the same order of magnitude as |g|, which is proportional to
θ . Thus, R̂(±θ ) can be approximated by an identity matrix
in the small θ limit, and the error is on the order θ |g| � |g|.
Under this approximation, H acquires a moiré translational
symmetry,

H ≈
∑

kz

∫
d2rψ†

kz
(r)[h(k‖) + �(kz, r)]ψkz (r),

�(kz, r) = eikz T (r) + e−ikz T †(r), (5)

which gives rise to energy bands in the 3D momentum space
spanned by kz and the in-plane moiré Brillouin zone. Equa-
tion (5) is our effective Hamiltonian for the 3D small-angle
twisted system, which builds in exactly the nonsymmorphic
symmetry and captures the moiré pattern formed in neighbor-
ing twisted layers.

Chiral twisted graphite. We apply our theory to study the
electronic structure of chiral twisted graphite, which we con-
struct by starting from an infinite number of graphene layers
with AAA . . . stacking, and then rotating the nth layer by nθ

around a common hexagon center. In each layer, low-energy
electrons reside in ±K valleys, which are related by spinless
time-reversal symmetry T̂ and can be studied separately as
in TBG. We focus on the +K valley, with the in-plane k · p
Hamiltonian h(k‖) = h̄vF k‖ · σ, where vF is the monolayer
graphene Dirac velocity (∼106 m/s) and σ is the sublattice
Pauli matrix. The interlayer tunneling T (r) is [1,17]

T (r) =
∑

j=0,1,2

(
wAA wABe−i2π j/3

wABei2π j/3 wAA

)
eig j+1·r, (6)

where wAA and wAB are respectively the intrasublattice and
intersublattice tunneling parameters, with wAA ≈ 90 meV and
wAB ≈ 117 meV. g1 is a moiré reciprocal lattice vector
(0, 4π/3aM ), and aM = a0/θ , where a0 is the monolayer
graphene lattice constant. The other two vectors g2,3 are
related to g1 by ±2π/3 rotations. We note that aM is the
TBG moiré periodicity, but T (r) in Eq. (6) has a periodicity
of ãM = √

3aM .
The kz-dependent moiré potential � = eikz T + e−ikz T † can

be decomposed into �0σ0 + �xσx + �yσy, where �0 is a
scalar potential. From �, we can define an effective gauge
field A = (�x,�y)/(evF ) that couples to the Dirac Hamil-
tonian h(k‖), and a corresponding pseudomagnetic field bz =
∇r × A. 2D maps of �0 and bz at kz = 0 are plotted in Fig. 2,
which shows that |bz| can reach ∼200 T for θ = 1.1◦.

The effective Hamiltonian H = h(k‖) + � respects Ĉ3z

and Ĉ2zT̂ symmetries, where Ĉnz is the n-fold rotation around
ẑ axis. We diagonalize H using a plane-wave expansion, and
show the calculated band structures at θ = 1.1◦ in Fig. 2.
Bands along the kz axis can be characterized by the Ĉ3z angular
momentum �z ∈ {0,±1}. As shown in Fig. 2(d), crossings
between two bands with different �z actually represent 3D
Weyl nodes, which appear abundantly along the kz axis. For
example, the Weyl fermion at the γ point (k = 0) has an effec-
tive Hamiltonian h̄(v∗

F k‖ · σ + v∗
z kzσz ), which is constrained

by both Ĉ3z and Ĉ2zT̂ symmetries. The θ dependence of
(v∗

F , v∗
z ) is shown in Fig. 2(c). v∗

F is reduced from the bare
value vF , but remains finite for θ from 0.7◦ to 2◦. Remarkably,
the sign of v∗

z oscillates with θ , and therefore the chirality of
the Weyl node at the γ point is twist angle dependent.

Another representative Weyl node is located at k1/2 =
(0, 0, π/2). This Weyl node is pinned to zero energy
by a particle-hole-like symmetry H(−k‖, π − kz,−r) =
−H(k‖, kz, r), and is described by h̄[v‖k‖ · σ + v1qz(σ0 +
σz )/2 + v2qz(σ0 − σz )/2)], where v1,2 are two independent
parameters and qz = kz − π/2. For θ between 1◦ and 1.8◦,
v2 is always negative, but v1 changes sign at θC,1 ≈ 1.52◦ and
θC,2 ≈ 1.22◦, which are critical angles that mark the transi-
tions between type-I and type-II Weyl fermions [Fig. 1(b)].
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FIG. 2. Results of chiral twisted graphite. (a) In-plane and (b) out-of-plane band structure. In (a), kz is 0. In (b), k‖ is zero, the crossings
between bands with different �z represent Weyl nodes, the two purple dots highlight nodes located at kz = 0 and kz = π/2, and the spectrum is
periodic in kz with a period 2π/3 due to a translationlike symmetry H(k‖, kz + 2π/3, r + aMŷ) = H(k‖, kz, r). (c) In-plane and out-of-plane
velocities of the k = 0 Weyl node as a function of θ . (d) DOS per spin, valley, layer, and area for the twisted graphite (blue line), and
corresponding DOS for monolayer graphene (black dashed line). (e) 2D maps of the scalar moiré potential �0 and (f) pseudomagnetic field bz

at kz = 0 and θ = 1.1◦.

Moreover, the in-plane velocity v‖ vanishes at both θM,1 ≈
1.67◦ and θM,2 ≈ 1.09◦, which can be identified as two magic
angles. Here, the value of θM,1 can also be estimated us-
ing an analytical perturbation theory, agreeing quantitatively
with our direct band-structure calculations; see Supplemental
Material (SM) [18]. The low-energy density of states (DOS)
per layer in the twisted graphite near the magic angles is
orders of magnitude larger than that in monolayer graphene
[Fig. 2(d)], which should enhance the interaction effects,
leading to interaction-driven quantum phase transitions.

We now compare our results with related works. Ref-
erence [19] studied multiple graphene layers with a twist
angle (−1)nθ that alternates with the layer index n. Their
3D structure preserves inversion symmetry, in contrast with
our chiral twisted graphite structure. Reference [20] studied
the same structure as ours but with a different method under
the coherent phase approximation. Our theory employs the
exact nonsymmorphic symmetry, which allows us to precisely
define the kz momentum and clearly demonstrate magic-angle
Weyl physics in the twisted graphite. In Ref. [21], twisted tri-
layer graphene has been theoretically studied. An interesting
question is how many layers are required in practice to realize
our predicted 3D physics, which we leave for future study.

Twisted Weyl semimetal. As another demonstration, we
apply our theory to a twisted Weyl semimetal with a lattice
structure also shown in Fig. 1(a). We start by introducing a
minimal Weyl semimetal model on a simple cubic lattice (lat-
tice constant a0), hW = h̄vW k‖ · σ + M(k)σz, where M(k) =

M0(cos kz − cos Qz ) − M1k2
‖ with parameters M0,1 > 0 and

0 < Qz < π . Each site on the cubic lattice accommodates two
orbitals | jz = 3

2 〉 and | jz = 1
2 〉, which are labelled by the angu-

lar momentum jz and form the basis of the Pauli matrices σ.
The Hamiltonian hW breaks time-reversal symmetry and hosts
two Weyl nodes with opposite chiralities located respectively
at k± = (0, 0,±Qz ).

We now consider a twisted cubic lattice in which the nth
layer is rotated by nθ around the ẑ axis following Fig. 1(a).
The effective Hamiltonian HW for this twisted structure is
given by

HW = hW + 2tsp sin kz

′∑
g

(
0 e−i(φg+g·r)

ei(φg+g·r) 0

)
, (7)

where tsp characterizes the interorbital tunneling between
neighboring layers. The summation over g is restricted to the
first shell of moiré reciprocal lattice vectors (|g| = 2π/aM

with the moiré period aM equal to a0/θ ), and φg is the
orientation angle of g. Here, the interlayer tunneling matrix
is derived using a two-center approximation, and the spatial
modulation of interlayer intraorbital tunneling is neglected,
which are thoroughly explained in the SM [18]. Compared
with the twisted graphite Hamiltonian, HW does not have a
scalar moiré potential term.

We can extract an effective gauge field A from HW , similar
to the case of twisted graphite. The A field has a vortex-
antivortex lattice configuration in the moiré superlattices [18].
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FIG. 3. Results of twisted Weyl semimetal. (a) Out-of-plane band structure in the twisted Weyl semimetal. In-plane momentum is zero. Red
and blue lines respectively mark right- and left-moving modes that cross Weyl nodes located at kz = ±π/2. jz specifies the angular momentum
of each mode. Model parameters are M0 = 869 meV, M1 = 10.36 eV Å2, tsp = 4 meV, vW = 3.74 × 105 m/s, a0 = 7.5 Å, and Qz = π/2.
(b) 2D maps of the pseudomagnetic field bz(kz = π/2), which is positive and negative, respectively, around integer R and half-integer R1/2

positions. θ = 1◦ in (a) and (b). (c) The in-plane velocity v∗
W of the Weyl node as a function of θ . The out-of-plane velocity v∗

z (not shown)
barely changes with θ . (d) Real-space probability density of the right-moving modes in (a). The peaks of the density are at R positions in each
2D layer, and wind around the screw rotation axis. (e) Similar as (d) but for the left-moving modes in (a), and the peaks are located at R1/2

positions.

The corresponding pseudomagnetic field bz is given by

bz = 2tsp

evW

2π

aM
sin kz

′∑
g

eig·r, (8)

which is illustrated in Fig. 3(b). |bz| peaks at two distinct
types of positions in the moiré pattern, namely, integer posi-
tions R = (nx, ny)aM with nx,y ∈ Z and half-integer positions
R1/2 = R + ( 1

2 , 1
2 )aM , which are also locations of vortex

cores of the A field. We assume tsp/vW > 0, and bz is positive
and negative respectively at R and R1/2 for 0 < kz < π .
Being proportional to sin kz, bz represents a chiral magnetic
field as it couples oppositely to the Weyl nodes with different
topological charges. In the semiclassical picture, around R
(R1/2) positions, this chiral magnetic field leads to chiral
Landau levels that propagate along the positive (negative) ẑ
direction for both Weyl nodes at k±. These chiral Landau
levels bound to vortex cores of the A field can be considered
to be vortex line modes (VLMs). The chirality of a VLM
depends on its position in the moiré pattern. An important
physical consequence is that an out-of-plane electric field can
drive a real-space pumping of electrons from R to R1/2

positions, or vice versa. The 2D array of VLMs can further
hybridize with each other, and we expect them to realize Weyl
fermions with moiré-scale modulations in the wave functions.

To verify the above picture, we numerically diagonalize
HW , and show the energy spectrum along kz in Fig. 3(a),
where we find that the Weyl nodes are robust against the twist.
In Fig. 3(d) [Fig. 3(e)], we plot the real-space probability den-
sity of the right- (left-) moving modes highlighted in Fig. 3(a),
which is found to be primarily concentrated at R (R1/2)
positions. This density profile is consistent with the above
semiclassical analysis. Because of the twisted structure, these
modes track spiral lines in real space. From the semiclassical
picture, the in-plane velocity v∗

W of the 3D Weyl fermions
is controlled by the coupling strength between neighboring
VLMs, and therefore by the moiré period aM . Numerical
results plotted in Fig. 3(c) confirm that v∗

W decreases with
decreasing θ (equivalently, increasing aM). For small enough
θ , v∗

W nearly vanishes, showing that VLMs located at different
positions are essentially decoupled. Thus, the twist angle pro-
vides an alternative tuning knob to control the band structure
of 3D Weyl materials.

Conclusion. In summary, we develop a general theoretical
framework for 3D twistronics and apply the theory to chiral
twisted graphite and twisted Weyl semimetal. Our theory can
in principle be realized in van der Waals heterostructures
constructed by stacking multiple twisted layers. Moreover,
chiral twisted van der Waals nanowires have recently been
experimentally synthesized [22,23], indicating that the chi-
ral twisted structure we study can indeed appear in materi-
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als. Similar to 2D twisted bilayers, 3D twisted systems can
provide playgrounds for strongly correlated physics. As an
example, superconducting instability should be enhanced in
3D twisted graphite near the magic angles due to the strong
velocity suppression. In addition to solid state materials, our
theory should be realizable in photonic and phononic systems,
where 2D Dirac physics and 3D Weyl physics have been
demonstrated [24–32]. The flexibility of building metama-
terials makes them promising platforms for our proposed

3D topological twistronics. Our predictions can be tested in
experimental systems as disparate as suitably designed pho-
tonic structures and engineered solid state heterostructures as
well as in layered systems made from graphite and manually
stacked multilayer graphene.
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