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Non-Newtonian flow effects in supercooled water
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The viscosity of supercooled water has been a subject of intense study, in particular with respect to its
temperature dependence. Much less is known, however, about the influence of dynamical effects on the viscosity
in its supercooled state. Here we address this issue for the first time, using molecular dynamics simulations
to investigate the shear-rate dependence of the viscosity of supercooled water as described by the TIP4P/Ice
model. We show the existence of a distinct crossover from Newtonian to non-Newtonian behavior characterized
by a power-law shear-thinning regime. The viscosity reduction is due to the decrease in the connectivity of
the hydrogen-bond network. Moreover, the shear thinning intensifies as the degree of supercooling increases,
whereas the crossover flow rate is approximately inversely proportional to the Newtonian viscosity. These results
stimulate further investigation into possible fundamental relations between these nonequilibrium effects and the
quasistatic Newtonian viscosity behavior of supercooled water.

DOLI: 10.1103/PhysRevResearch.2.022004

Supercooled liquid water has been the subject of intense
investigation for decades [1,2] and continues to attract sig-
nificant attention [3-5]. Besides the hotly debated issue con-
cerning the possible existence of a second critical point in
the supercooled regime [6-8], there has been a long-standing
interest in the behavior of water’s viscosity below the melting
temperature. Particular topics of interest include the existence
of a fragile-to-strong transition [9,10], the relation between
viscosity and molecular diffusion [11], and the effect of
pressure [12].

The viscosity 1 of a viscous fluid is defined as the propor-
tionality constant between the shear stress o and the corre-
sponding strain rate y according to o = ny [13,14]. If, for
given temperature and pressure, the relation between o and
y is linear, i.e., n is constant, the flow behavior of the fluid
is said to be Newtonian [14]. Conversely, fluids for which
this linearity is violated are referred to as non-Newtonian,
with colloidal suspensions, many polymer melts, and granular
fluids as typical examples [14,15].

Many fluids display Newtonian flow behavior for suffi-
ciently small rates y. Liquid water in thermodynamic equi-
librium is an example, with a viscosity that is known to
be constant across several orders of magnitude of y [16].
Much less is known, however, about the dynamical effects
on the viscosity of water in its supercooled state. Although
its magnitude is known to rise sharply as the temperature is
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lowered [11,17], this increase has so far only been probed for
the low-rate Newtonian limit and the question as to whether it
displays a shear-rate dependence remains open.

Here we consider this issue, investigating the influence
of the flow rate on the shear viscosity of supercooled water
using atomistic-level simulations. In particular, we employ
nonequilibrium molecular dynamics (NEMD) simulations in
which we impose shear deformations at a constant rate y and
measure the associated shear stress o. To describe the interac-
tions between the water molecules, we employ the TIP4P/Ice
water model [18], which is among the best molecular models
for water [19] and has a melting point 7,, = 271K that is
close to the experimental value. All simulations have been
carried out using the LAMMPS package [20]. The long-range
intermolecular electrostatic interactions for the TIP4P/Ice
model are calculated using the particle-particle particle-mesh
(PPPM) scheme [21] and the intramolecular bond lengths and
angles are held fixed using the SHAKE algorithm [22].

All the flow simulations are carried out using a compu-
tational cell containing 10 800 water molecules. The cells
are first allowed to equilibrate at zero external pressure and
constant temperature, allowing fully flexible cells. This is
achieved using a Parrinello-Rahman-type barostat [23] and a
Langevin thermostat [24] with damping constants of 2 and 0.2
ps, respectively. The corresponding equations of motion are
integrated using velocity-Verlet algorithm with a time step of
At = 1 fs. Subsequently, the nonequilibrium flow simulations
are carried out at constant volume and isothermally, with
temperature control implemented using a Langevin thermostat
with a damping constant of 0.2 ps. The pure shear deforma-
tions are imposed using LAMMPS’s fix deform command
with the remap x option, allowing the molecules to adjust to
the cell deformation without requiring an explicit velocity pro-
file. This approach has shown to give good agreement with the
alternative SLLOD approach [25]. Because of the appreciable
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FIG. 1. Shear stress as a function of the accumulated strain at
T =226K for y =2 x 107 s7! (green), 2 x 10® s7!' (red), 1 x
10° s~! (dark blue), 2.5 x 10° s~! (light blue), 2.5 x 10'0 s~! (pur-
ple), and 5 x 10'° s~! (magenta).

cell distortions during the NEMD simulations, the reciprocal
space part of the PPPM scheme is reset several times during a
run, approximately after every ~1% of deformation.

Figure 1 displays the evolution of the shear stress as a func-
tion of the accumulated strain, y = y ¢, along six flow simu-
lations at the deeply supercooled condition at 7 = 226 K.

The stress-strain curves display nonmonotonic behavior
that is typical of viscoelastic fluids, as has been observed
in a variety of systems, both experimentally as well as in
simulations [26-32]. At the early stages of the flow process,
the stress increases linearly with strain, typifying a solid-like
elastic response characterized by a modulus that is inde-
pendent of the deformation rate. Subsequently, the contribu-

tion of viscous relaxation processes becomes significant, first
reducing the elastic increase of the shear stress to reach a
maximum, opn,y, followed by a final decay to a steady-state
plateau value, 0. Both 0y,,x and o, decrease as the flow rate
is reduced, as the stress relaxation processes are active during
longer periods of time for a given state of deformation. Indeed,
for y =2 x 107 s7!, the stress maximum has disappeared
altogether and the stress-strain curve rises monotonically to
its steady-state value.

The plateau value o, is the shear stress that is required
to maintain steady-state flow at a prescribed rate y and the
corresponding steady-state shear viscosity is then given by

Noo (V) = 0 (¥)/ V. (1

Figure 2(a) displays this viscosity as a function of flow rate
for supercooled TIP4P/Ice water at 226, 246, and 266 K,
respectively. For all three temperatures, the flow response can
be classified into two regimes. For low rates, the viscosity
is independent of y, meaning that flow is Newtonian under
these conditions. Subsequently, there is a crossover into a
non-Newtonian regime in which the viscosity decreases with
growing flow rates, also known as shear thinning. Further-
more, this crossover depends strongly on the temperature:
While at 226 K non-Newtonian behavior sets in for y 2>
107 s~!, the Newtonian flow regime persists up to flow rates
of y ~ 100 s~ at 266 K.

To quantify the crossover between Newtonian and non-
Newtonian flow, we analyze the simulation data in terms of the
Carreau model [33-36], which provides a phenomenological
description of shear thinning that has shown to be accurate for
fluids with relatively low Newtonian viscosities, ny < 1 Pas
[36], which is the case for the present TIP4P/Ice simulations.
The Carreau model treats shear flow as a stress-assisted
thermally activated process involving a broad distribution of
energy barriers and gives a shear viscosity that depends on the
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FIG. 2. (a) NEMD shear viscosity as a function of the flow rate for supercooled TIP4P/Ice water at T = 226 (squares), 246 (circles), and
266 K (triangles). Error bars are smaller than symbol size and are not shown. Solid lines correspond to fits of the viscosity data to the Carreau
model, Eq. (2). (b) Comparison of Carreau estimate for 7y (circles) to Green-Kubo results (squares), as a function of the inverse temperature
1/T. (c) Characteristic crossover rate y; as a function of ny. Full line represents power-law fit with exponent —1.16 4= 0.01. (d) Shear thinning
exponent n as a function of temperature 7. Dashed lines in panels (b) and (d) represent guides to the eye. Error bars in panels (b), (c), and

(d) correspond to 95% confidence intervals.

022004-2



NON-NEWTONIAN FLOW EFFECTS IN SUPERCOOLED ...

PHYSICAL REVIEW RESEARCH 2, 022004(R) (2020)

flow rate according to [33,34,36]

NSE
@=[1+(1)] , )
nN Y0

where ny is the Newtonian viscosity, yy is a characteristic
crossover rate, and n is the shear-thinning exponent with
a value between O and 1. In the limit of large flow rates,
this model gives rise to a power-law decay of the viscosity
according to 1, ~ y" L.

The lines in Fig. 2(a) depict the least-squares regression
results for the Carreau model of Eq. (2) with respect to
the NEMD viscosity data. The agreement between model
and simulation is very good across the entire range of flow
rates for all three temperatures, clearly showing a power-law
dependence of the viscosity in the shear thinning regime.
The accuracy of the Carreau model can be further verified
by comparing its estimate for the Newtonian viscosity ny
to results from independent equilibrium calculations. Specif-
ically, since ny represents the shear viscosity in the limit of
vanishing flow rate, it can be computed using the Green-
Kubo (GK) formalism [37-39], which expresses it in terms
of stress-stress autocorrelation functions that can be computed
using equilibrium MD simulations. The equilibrium runs used
to compute the GK viscosities are based on a cubic cell
containing 2000 water molecules that are first equilibrated
at zero pressure and constant temperature using the same
approach used for the 10 800-molecule cells. Subsequently,
five independent NVT equilibrium runs are carried out to
sample the components of the stress tensor and determine the
stress-stress autocorrelation functions ( Pyg(0)Pyg(t) ), where
P,p is an off-diagonal component of the stress tensor. The
Green-Kubo viscosities are then computed as

o]

= Wt )y (Pup(0)Pap (1) )dt,

with V being the volume of the system, T being the tempera-
ture, and kg being Boltzmann’s constant. Aside from the three
off-diagonal components Py, P,., and Py, there are two other
independent components, %(Pxx — P,,) and %(Pyy — P), that
can be used due to rotational invariance [40]. Accordingly, nx
is estimated using the average over these five components and
over five independent equilibrium runs.

Figure 2(b) presents a comparison between the NEMD
Carreau results and equilibrium GK shear viscosities. The
agreement is excellent for all three temperatures, provid-
ing further validation of the Carreau model as an adequate
descriptor of the rate dependence of the shear viscosity in
supercooled TIP4P/Ice water. A further observation based on
the results in Fig. 2(b) is that supercooled TIP4P/Ice water
behaves as a fragile liquid for the considered temperatures
[41], given that the logarithm of ny as a function of the inverse
temperature 1/7 is supralinear, constituting super-Arrhenius
behavior.

The two other parameters of the Carreau model quantify
the nature of the Newtonian to non-Newtonian transition and
their behavior is plotted in Figs. 2(c) and 2(d). Figure 2(c)
plots the characteristic rate yy as a function of the New-
tonian viscosity ny. As noted before, the transition to the
shear-thinning regime sets in for lower flow rates as the

nN

temperature reduces and the Newtonian viscosity grows. More
interestingly, the functional dependence is well described by
a power law with exponent —1.16 & 0.01, implying a direct
relationship between the nonequilibrium parameter y, and the
equilibrium property ny. Figure 3(c) shows that the shear
thinning exponent n decreases substantially as the degree of
supercooling is enhanced, implying that the shear-thinning ef-
fect becomes more pronounced as the temperature is reduced.
We will further discuss this point below.

There are a number of microscopic processes that can lead
to the power-law viscosity behavior of the Carreau model seen
in Fig. 2(a) [36]. A common mechanism concerns a change
in some order parameter that describes correlations between
neighboring molecules [36,42]. For instance, for shear thin-
ning in fluids composed of chain molecules, a relevant order
parameter is one that measures their alignment along the flow
direction [43,44]. Here, we investigate the evolution of the
hydrogen bonding during the flow simulations. To determine
the hydrogen-bond statistics, we adopt the definition that a
HB is present whenever the distance between a proton and
an oxygen satisfies 1.1 A < doy < 2 A. Figure 3(a) displays
the mean number of hydrogen bonds (HBs) per molecule,
nhy, as a function of strain at 7 = 246 K for the flow rates
y =2x108, 2.5 x10°, and 5 x 10'” s7!'. These particular
three values correspond to the Newtonian, crossover, and
shear-thinning regimes for this temperature, respectively. In
the Newtonian regime, ny, remains constant throughout the
entire simulation and the connectivity of the HB network
remains unaffected by the flow. As the rate increases to
the Carreau crossover value, however, the steady-state HB
connectivity becomes discernibly lower, reducing even further
for the highest flow rate.

As mentioned above, molecular alignment during the
shearing process may also possibly play a role in the shear
thinning, as is the case in systems where elongated molecules
are involved [43,44]. To verify this possibility for water, we
analyze the statistics of HB directions during the shearing
process. As seen in the inset of Fig. 3(b), the HB direction
cosines with respect to the x, y, and z directions are uniformly
distributed, indicating that the HB directionality is isotropic,
displaying no preferred alignment direction.

These results indicate that the shear thinning arises from
the reduction of HB connectivity, which is consistent with
theoretical arguments [45]. The origin of this decrease and
its dependence on the flow rate is associated with timescale
differences between the imposed flow and molecular rear-
rangements. In the Newtonian regime, the latter is sufficiently
short for the molecular rearrangements to accompany the
imposed flow and maintain the average connectivity of the
HB network. In the non-Newtonian shear-thinning regime,
this is no longer the case, with the molecular orientations
systematically lagging behind the imposed flow, leading to
the reduction of the HB connectivity in the steady-state
flow. This is illustrated in Fig. 3(b), which depicts the time
evolution of ny, along a simulation in which the system is
first subjected to a constant flow rate of ¥ =5 x 10'0 s~ at
246 K until reaching its steady state, after which the deforma-
tion is halted and the system is allowed to relax at a fixed
cell geometry. During the flow stage, the mean number of
HBs per molecule rapidly decreases to its steady-state value.

022004-3



DE ALMEIDA RIBEIRO AND DE KONING

PHYSICAL REVIEW RESEARCH 2, 022004(R) (2020)

T TTTT
31|~ ol ag Py
u]
3.0 0.951 o 4
Thb PRINTYSEVTPEN N
+ 1.0 ot
! i oy
28 0 1 7 S
cos 0.85-
2.7 N I N . "‘(‘CH)W\ N O N ‘F‘HT '
-0, 0.5 Lo 10° 10" 108 107 10" 10M
t (ns) v

FIG. 3. Average number of hydrogen bonds per molecule 7, during flow simulations at 7 = 246 K. (a) Results for y = 2 x 108 (triangles),
2.5 x 10° (circles), and 5 x 10'" s7!, respectively. Dashed lines serve as guides to the eye. (b) Temporal evolution of 7y, during a simulation
in which the system is first subjected to a constant flow rate of y = 5 x 10'° s~! until reaching a total shear of y = 0.7 (filled squares), after
which the deformation is instantaneously halted and the system is allowed to relax at a fixed cell geometry (open squares). Lines in inset
display distribution of hydrogen bond (HB) direction cosines with respect to x (red), y (blue), and z (green) directions at y = 0.7. (c) Variation

of np, normalized by its equilibrium value as a function of y .

Subsequently, after halting the deformation, ny, relaxes to its
equilibrium value by an approximately exponential process
with a time constant 7,, >~ 0.07 ns. While this timescale is
~300 times shorter than that associated with the lowest flow
rate in Fig. 3(a), it is ~3 times larger compared to that of the
highest.

Finally, the increasing intensity of the shear-thinning effect
with reducing temperature, as reflected by the decrease of
the Carreau exponent n in Fig. 2(d), also correlates with the
evolution of the average number of ny,. This is shown in
Fig. 3(c), which depicts the steady-state flow values of npp,
normalized by their equilibrium values nl , as a function of the
flow rate for T = 226, 246, and 266 K, respectively. Because
of the shear thinning effect, as seen in Fig. 2(a), ny;, decreases
as the flow rate grows. Moreover, this decrease is stronger in
relative terms as the temperature is lowered: Whereas for y =
5 x 10'9 57! a reduction of ~15% with respect to its equilib-
rium value is observed at 226 K, it is only ~6.5% at 266 K.

In conclusion, we have performed a series of NEMD
simulations to investigate the shear-rate dependence of the
viscosity of supercooled water as described by the TIP4P/Ice

model for three different degrees of supercooling. In all cases,
we find a distinct Newtonian-to-shear-thinning crossover that
is well described by the Carreau model. The shear-thinning
effect becomes stronger as the temperature is reduced, with
a thinning exponent that decreases and with non-Newtonian
behavior setting in for lower deformation rates. Interestingly,
the results suggest a power-law relationship between the
nonequilibrium crossover rate parameter y, and the equi-
librium Newtonian viscosity property ny. On the molecular
scale, the shear thinning correlates with a significant reduction
in the connectivity of the HB network, which is associated
with timescale differences between the deformation protocol
and molecular rearrangements. Moreover, the connectivity
reduction increases in relative terms as the temperature is
lowered, giving rise to the stronger shear-thinning effect at
lower temperatures.
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