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Observation of the algebraic localization-delocalization transition in a one-dimensional
disordered potential with a bias force
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One-dimensional (1D) Anderson localization phenomena are strongly affected by a bias force or equivalently
a voltage in electronic systems. We experimentally study this case, launching a noninteracting 39K Bose-Einstein
condensate in a 1D disordered potential induced by a far-off-resonance laser speckle, while controlling a bias
force. In agreement with theoretical predictions, we observe a transition between algebraic localization and
delocalization as a function of our control parameter that is the relative strength of the disorder against the bias
force. We also demonstrate that the transition is intrinsically energy independent and that the initial velocity of
the wave packet only plays a role through an effective disorder strength due to the correlation of the disorder.
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I. INTRODUCTION

Adding a bias force is a quite natural way to probe the
transport properties of quantum systems, a subject of broad
interest. In particular, electronic systems are probed through
the current response to an applied voltage that is equivalent to
a force. The study of transport with atomic quantum gases is
of specific interest because of their high degree of control and
versatility. They do not suffer from dissipation or decoherence
effects, such as the ones induced by phonons in condensed-
matter materials [1]. For example, Bloch oscillations have
been measured through the addition of a constant force to
atoms in a periodic potential induced by an optical lattice
[2]. A force applied to a harmonic trap is equivalent to
a trap displacement. The response to such a displacement
reveals the fluid or insulating behavior of atomic systems.
In one-dimensional (1D) interacting Bose gases, the pinning
transition by an optical lattice [3,4] or the insulating transition
in quasidisordered optical lattice [5,6] have been studied in
this manner. More recently, transport in quantum gases is
also studied in biased junction-type setup more analogous to
condensed-matter systems [7,8].

In our work, we focus on the transport of noninteracting
particles in disordered media. Without a bias force, quan-
tum interferences between multiple paths lead to Anderson
localization [9] whose signature is an exponential decay in
the space of single-particle wave functions [10]. This phe-
nomenon is ubiquitous in wave and quantum physics and it
has been observed in many physical contexts [11] including
condensed matter [12] and ultracold atoms [13–15]. One-
dimensional truly disordered systems are always localized
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[16], unlike the three-dimensional (3D) cases where a local-
ization transition takes place [17–20].

The localization properties of 1D disordered systems are
strongly modified in the presence of a bias force. At in-
finite time, theoretical studies predict a sharp localization-
delocalization transition as a function of a single dimen-
sionless parameter α which is the ratio of the force to the
disorder strength [21,22]. The transition remarkably does
not depend on the energy of the particles for a white noise
disorder. In addition, the usual exponential decay associated
to the localization is replaced by a much weaker algebraic
decay. Related phenomena such as a nonlinear current-voltage
response could be relevant in 1D condensed-matter systems
such as nanowires [23] or nanotubes [12].

Realistic disorders can be correlated with possible im-
portant effects. For particles at momentum k, only disorder
Fourier components around 2k are relevant in the weak dis-
order limit (Born approximation). For example, our disorder
produced from a far-off-resonance laser speckle [24] has no
Fourier component beyond a spatial frequency kc and back-
scattering and localization are thus not expected for atoms
with wave vectors k > kc/2 (effective mobility edge) [13,25].
Since localized wave functions always have a small fraction at
long distances corresponding to large energies and momenta,
in the presence of a bias force, we thus expect correlation-
induced delocalization at very long times. However, at tran-
sient times, sufficiently fine disorder correlations are expected
to play little role [22].

In this paper, we report on the observation of the al-
gebraic localization-delocalization transition with ultracold
atoms propagating in a one-dimensional disordered potential
in the presence of a controlled bias force. We experimentally
show that the dimensionless ratio of the force to the disorder
strength α is the only relevant parameter to describe the
transition. We notice that the initial velocity of the quan-
tum wave packet only plays a role through the correlation
of the disordered potential, showing that the transition is
intrinsically energy independent. In the localized regime, we
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FIG. 1. Schematic of the experimental sequence. A noninteract-
ing atomic Bose-Einstein condensate is produced in a crossed trap
(a). The cloud is then launched into a 1D tube with a controlled force
(b). The cloud can be accelerated to a velocity v. A constant force
is then applied for a time τ to the system while a 1D speckle at
532 nm is shone on the atoms (c). An average density profile over
eight disorder realizations is shown.

demonstrate an algebraic decay of the density and measure the
corresponding decay exponent as a function of α, revealing
features due to the speckle disorder correlation.

II. EXPERIMENTAL SETUP

We first produce a 39K Bose-Einstein condensate. In con-
trast to our previous works [26–28], after optical cooling, we
pump the atoms to the |F = 2, mF = 2〉 state and load a mag-
netic trap which serves as a reservoir for loading a tightly con-
fining optical trap [29]. The evaporation is then pursed in the
|F = 1, mF = 1〉 state in the vicinity of the 403.4(7) G Fesh-
bach resonance [30] until condensation is reached. The mag-
netic field is then ramped down close to the scattering length
zero crossing at 350.4(4) G in order to be in a noninteracting
regime. The scattering length is then −0.2 ± 0.2 a0 with a0

being the Bohr radius. The final trap is made of two horizon-
tal far-detuned laser beams at 1064 and 1550 nm. Its trap-
ping frequencies are 18 × 124 × 124 Hz. When the 1550-nm
beam is turned off, the longitudinal confinement (along x̂)
is removed and the atoms are free to evolve in the 1064-nm
trap whose radial frequencies are ω⊥/2π = 124 Hz [31] (see
Fig. 1). The residual trapping frequency in the longitudinal
direction is precisely canceled to 0.0(5) Hz by using the
magnetic field curvature induced by two pairs of magnetic
coils. We also control a longitudinal force, characterized by
an acceleration a, through a magnetic field gradient produced
by an off-centered additional coil.

A 1D disorder potential is shone on the atoms for a time τ

while they propagate in the one-dimensional trap under the
action of the constant force. The atoms are finally imaged
by resonant fluorescence imaging at zero magnetic field.
For a strong disorder, the atoms do not move much from
their initial position, whereas, for small disorder, they behave
ballistically. We adjust the propagation time τ as a function
of the constant force such that in the ballistic regime the
atoms travel about 1 mm and are still in the camera field of
view. In this case, the velocity spread of the atomic cloud is
measured to be �v = 0.37(6) mm s−1. In Fig. 1(c), we show

FIG. 2. Power spectral function Ĉ(k) of a single realization of
the disorder measured in a square of 175 × 175 μm. The dispersal of
points at low spacial frequencies is due to the speckle randomness.
The curve is a fit with the autoconvolution of a truncated Gaussian as
can be experimentally expected from a truncated Gaussian entering
the optical system. The fitted function is used in the rest of the paper.
The inset shows an enlargement around k/kc = 1.

a density profile observed at intermediate disorder strength
where both localized and ballistic atomic fraction are visible.
We define the localized fraction by integrating over a window
extending by 300 μm in the propagation direction. This value
is chosen somewhat arbitrarily to include most atoms in
the localized decaying peak while not including atoms that
are in the process of escaping. We have checked that our
experimental results do not strongly depend on the chosen
value [32].

The disorder is produced from a laser speckle at 532 nm,
and its effect on the atoms is the one of a conservative
potential. The 532-nm laser beam propagates along the ẑ axis
and passes through a diffusing plate. The amplitude VR of
the speckle potential is proportional to the laser intensity and
corresponds to both its mean value and its standard deviation
[24]. On the diffusing plate, the intensity distribution is ellip-
tical with the major axis along x̂ and the minor axis along ŷ.
This produces an anisotropic disorder that we have imaged
for characterization. The autocorrelation widths are 4.7 μm
along ŷ and 4.3 μm along ẑ (half-width at 1/

√
e). Both values

largely exceeds the ground-state extension of the harmonic
oscillator

√
h̄/2mω⊥ = 1.0 μm, where m is the atomic mass

and h̄ is the reduced Planck constant. The disordered potential
can thus be considered as one dimensional for the atoms prop-
agating along x̂. In this direction, the power spectral density
Ĉ(k) is shown in Fig. 2. It takes zero values for wave vec-
tors larger than kc = 2/σ with σ = 0.34(1) μm. The power
spectral density at zero momentum is Ĉ(k = 0) = cV 2

R πσ ,
where c = 1.26(5). It would be 1 for a uniform intensity on
the diffusing plate.

Let us now discuss the relevant energy scales of our
experiment. The correlation length of the disorder gives the
correlation energy Eσ = h̄2/2mσ 2 = (2π h̄) × 1.1 kHz. In or-
der for the correlation of the disorder to play little role, it
has to be the largest energy scale. By dimensional analysis,
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one can construct an energy scale Ea = h̄2/3m1/3a2/3 associ-
ated with the acceleration a. Experimentally, Ea takes val-
ues between (2π h̄)×7 Hz and (2π h̄)×33 Hz. The disorder
strength is characterized by VR, which is varied between 0 and
(2π h̄)×200 Hz. A more relevant parameter when comparing
with a white noise potential is rather V ∗ = h̄−2/3m1/3Ĉ(0)2/3,
which is lower than VR. The dimensionless parameter α is
then defined as α = (Ea/V ∗)3/2 = h̄2a/Ĉ(0) such that the
localization-delocalization transition is expected for α = 1
[22]. Another energy scale, Eτ = h̄/τ , can be associated to the
propagation time τ . Its value is chosen to be below the value of
Ea by a factor of the order of 15 to 20, such that propagation,
scattering, and localization phenomena have enough time to
set in. Note that in a correlated speckle disorder, the very long
time limit is complete delocalization [22] and we thus work at
intermediate time where the localization-delocalization tran-
sition is smoothed.

III. RESULTS

We first study the case of atoms entering the disorder
without initial velocity. The localized fraction are measured
for four different values of the acceleration a = 9.3(6), a =
19(1), a = 32(2), and a = 81(4) mm s−2 respectively asso-
ciated with propagation times τ = 460, τ = 320, τ = 280,
τ = 90 ms [see Fig. 3(a)]. For small values of the speckle
amplitude VR, the system is mostly delocalized whatever the
acceleration. On the contrary, all the atoms are localized
when the speckle strength is high. One notes slower accel-
eration is correlated with faster localized fraction increases
with VR.

Rescaling the horizontal axis with the dimensionless pa-
rameter 1/

√
α, which is proportional to VR/

√
a, leads to a

clear collapse of the data within the error bars [see Fig. 3(b)].
This indicates that α, which compares the acceleration to
the disorder strength, is the relevant parameter driving the
localization-delocalization transition. If the transition point is
defined for a localized fraction equal to 0.5, this corresponds
to α = 1.0(3). We can compare these results with disorder-
averaged numerical simulations of the 1D Schrödinger equa-
tion for our parameters [Fig. 3(b)]. We use these simulations to
calibrate VR as a function of the optical power with a 15% un-
certainty, matching estimations from scattering experiments
in the absence of a force.

We now consider the case of atoms entering the disorder
with an initial positive velocity. The initial velocity v is first
set by applying an acceleration to the atoms during 10 ms
without disorder (see Fig. 1). The acceleration is then changed
to its final value a = 19 mm s−2 and the speckle is shone on
the atoms for 280 ms. The measured localized fractions are
presented in Fig. 4 [28]. For the highest velocity (v = h̄k/m =
2.9 mm s−1), kσx � 0.6, and the value of the disorder poten-
tial’s power spectrum Ĉ(2k) = 0.17Ĉ(0) is greatly reduced.
This correlation effect is responsible for the noncollapsing
behavior when the localized fractions are plotted as a function
of 1/

√
α [see Fig. 4(a)]. Plotting as a function of 1/

√
α∗,

where α∗ = h̄2a/Ĉ(2k) takes into account an effective dis-
order strength at the atomic initial momentum k, leads to a
much better collapse of the data on the curve at zero velocity
for which α∗ = α [see Fig. 4(b)]. This indicates that α∗ is

FIG. 3. Localized atomic fraction as a function of the speckle
amplitude VR (a) and 1/

√
α ∝ VR/

√
a (b) obtained for four different

values of the applied acceleration and v = 0. Each curve is averaged
over eight realizations of the disorder potential. The error bars are the
standard deviations of the measured localized fractions. Experimen-
tal values above 1 are due to small errors in background substraction.
The continuous red line is the average of numerical simulations of
the 1D Schrödinger equation.

the most relevant parameter and that the initial velocity only
plays a role through the correlation of the disorder [22]. The
transition point corresponding to a localized fraction of 0.5 is
obtained for α∗ = 1.0(4) [Fig. 4(b)].

Finally, we perform a more careful analysis of the localized
profiles for the specific case of a = 19 mm s−2. We find that
singles profiles are quite noisy with modulations that are
stable for a given speckle realization. This shows that the
localization profile is not a self-averaging quantity. We thus
average results for eight different realizations of the speckle
in order to obtain smooth localization profiles (Fig. 5). An al-
gebraic scaling is visible for distances between 40 and 300 μm
(a straight line in log-log scale), whereas an exponential decay
in this region does not fit the data. It is expected that the alge-
braic dependance is only valid at sufficiently large distances
[22,33]. Above 300 μm, the signal-to-noise ratio is low.

We now study the algebraic decay coefficient β as a
function of the disorder strength or equivalently as a func-
tion of α∗ (see Fig. 6). The coefficient is found to increase
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FIG. 4. Localized fractions of the noninteracting cloud of atoms
as a function of 1/

√
α (a) and 1/

√
α∗ (b) for different values of the

initial velocity and a = 19 mm s−2.

FIG. 5. Averaged localized density profile as a function of the
atom displacement in log-log scale for a = 19 mm s−2, α = 0.03,
and v = 0. Log-log scale permits us to show the algebraic depen-
dance as a straight line. The algebraic (red continuous line) and
exponential (orange dotted line) fits are displayed. The fit with the
power law 1/xβ leads to β = 1.79 ± 0.10, where the error bar is
evaluated from reduced data sets of four speckle realizations.

FIG. 6. Values of β, obtained by fitting to the localized density
profile with a power law, as a function of 1/

√
α∗ for three different

values of the initial velocity and a = 19 mm s−2.

with increasing disorder as can be expected for stronger
localization effects. Moreover, we show that the behavior is
not modified by a small positive or negative initial velocity
(v = ±0.9 mm s−1) as expected theoretically. However, our
results do not match with the infinite time white-noise an-
alytical exponents from Ref. [22] (dashed line in Fig. 6).
For small disorder, the small mismatch can be due to the
fact that the measurement of β is sensitive to the wings of
the density distribution up to distances of 300 μm, where
the atom momentum k has significantly increase and Ĉ(2k)
cannot be considered constant at this scale. The observed
saturation of β at large disorder is a striking deviation that we
interpret as a consequence of a strong and correlated disorder.
A strong disorder (VR ∼ Eσ ) broadens the initial wave-vector
distribution such that k vectors around 1/σ are populated
as can be understood from the broad width of the spectral
functions [34,35]. In this case, even in the absence of a force,
the diverging behavior of the localization length close to the
effective mobility edge 1/σ is responsible for an algebraic
decay of the localized density profiles with a coefficient 2
[13], in agreement with our measured value. In this regime,
the acceleration plays little role as the dominant energy scales
are VR and Eσ .

IV. CONCLUSION

In conclusion, we have reported on the observation of
the algebraic localization-delocalization transition with ul-
tracold matter waves in the presence of a controlled bias
force. The localized fraction of atoms only depends on a
dimensionless parameter which is the ratio of the force to
the disorder strength. The initial velocity only plays a role
through a rescaling of the disorder strength due the correlation
of the disordered potential and the localization-delocalization
transition appears as an energy-independent phenomenon.
Algebraic localization is observed. The observed satura-
tion of the algebraic decay exponents at large disorder is
interpreted as a consequence of a correlated and strong
disorder.
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Whereas adding a bias force is a natural tool to study
transport in both condensed-matter and ultracold atomic dis-
order systems, our results show that it can have important
consequences. A straightforward extension of our work can
be the study of 1D interact ing bosons in the presence of dis-
order, when modifying the scattering length. For example, a
finite-temperature localization-delocalization phase transition
has been predicted due to many-body localization effects [36].
The study of the phase diagram of 1D strongly interacting
disordered Bose systems is also of interest [6,37]. Other ex-
tensions of our work could be the study of fermionic mixtures,
with possibly spin-dependent forces in connection to spintron-
ics or the response of the system to an alternating bias force

in connection with the ac conductivity in condensed-matter
[38,39].
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