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Generalized spin fluctuation feedback in heavy fermion superconductors
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Experiments reveal that the superconductors UPt3, PrOs4Sb12, and U1−xThxBe13 undergo two superconducting
transitions in the absence of an applied magnetic field. The prevalence of these multiple transitions suggests a
common underlying mechanism. A natural candidate theory which accounts for these two transitions is the
existence of a small symmetry-breaking field; however, such a field has not been observed in PrOs4Sb12 or
U1−xThxBe13 and has been called into question for UPt3. Motivated by arguments originally developed for
superfluid 3He, we propose that a generalized spin fluctuation feedback effect is responsible for these two
transitions. We first develop a phenomenological theory for 3He that couples spin fluctuations to superfluidity,
which correctly predicts that a high-temperature broken time-reversal superfluid 3He phase can emerge as a
consequence. The transition at lower temperatures into a time-reversal invariant superfluid phase must then be
first order by symmetry arguments. We then apply this phenomenological approach to the three superconductors
UPt3, PrOs4Sb12, and U1−xThxBe13, revealing that this naturally leads to a high-temperature time-reversal
invariant nematic superconducting phase, which can be followed by a second-order phase transition into a broken
time-reversal symmetry phase, as observed.

DOI: 10.1103/PhysRevResearch.2.013381

I. INTRODUCTION

There has been renewed interest in unconventional super-
conductors, as they provide a natural platform for topolog-
ical states [1–4]. Correlated fermion superconductors such
as UPt3, PrOs4Sb12, U1−xThxBe13, and URu2Si2 have been
intensely studied as they show time-reversal symmetry break-
ing [5–9] and may host Majorana modes as well as Bogoli-
ubov Fermi surfaces [10–13]. Of these, UPt3, PrOs4Sb12, and
U1−xThxBe13 show a rich phase diagram, with two supercon-
ducting phases under zero field. The high-temperature A phase
is time-reversal symmetric and the low-temperature B phase is
a broken time-reversal symmetry state [9,14–19].

The presence of two transitions in three different materials
raises a question about the underlying mechanism. UPt3 has
been the most studied of these materials and has a phase
diagram as shown in Fig. 1 [15]. The most common expla-
nation for this phase diagram relies on coupling the super-
conducting order parameter to a weak symmetry-breaking
field, which splits the degeneracy between the different order
parameter components [20,21]. The symmetry-breaking field
is associated with an antiferromagnetic (AFM) order seen in
older neutron scattering measurements [22]. However, recent
experiments show that there is no static order near Tc, though
antiferromagnetic fluctuations are present [23,24], which casts
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serious doubts on the use of a symmetry-breaking field to gen-
erate two transitions. Meanwhile, there is no accepted model
which accounts for the double transition in U1−xThxBe13 or
PrOs4Sb12, though there are signatures of antiferroquadrupo-
lar (AFQ) fluctuations in PrOs4Sb12 and antiferromagnetic
fluctuations in U1−xThxBe13 as seen in inelastic neutron scat-
tering [25,26]. It is natural to ask if these fluctuations can
account for the generic observation of two transitions.

To gain insight into this question, it is reasonable to con-
sider superfluid 3He, which also exhibits multiple phases.
In this case, conversely, there is a high-temperature high-
pressure time-reversal symmetry-breaking A phase and a low-
temperature low-pressure time-reversal symmetric B phase as
shown in Fig. 2 [27,28]. Originally, the stability of the A phase
was a puzzle, as weak-coupling theory predicted that the B
state was stable for all temperatures [29]. This paradox was
resolved by Anderson and Brinkman, who showed that cou-
pling superfluidity to paramagnetic fluctuations can stabilize
the A state, through a mechanism called the spin fluctuation
feedback effect [30–32].

In this paper, we propose a mechanism for multiple tran-
sitions in correlated fermion materials by coupling super-
conductivity to fluctuations (both antiferromagnetic and an-
tiferroquadrupolar), analogous to superfluid 3He. We initially
formulate a simple phenomenological method to capture the
essential physics of superfluid 3He and show that it re-
produces the microscopic spin fluctuation feedback effect
developed by Anderson and Brinkman. We then apply this
to UPt3, U1−xThxBe13, and PrOs4Sb12 and show that these
fluctuations change the coefficients of the Ginzburg-Landau
theory and allow for the possible stabilization of a time-
reversal symmetric A phase. We then consider a transition into
the broken time-reversal symmetric state, implementing the
symmetry constraints associated with observing a polar Kerr
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FIG. 1. Magnetic-field–temperature H -T phase diagram of UPt3

with the B field perpendicular to the z axis.

effect, when applicable. These considerations constrain the
possible order parameters. We obtain the following results.

(i) We show that, except for the three-dimensional (3D)
Tg/u irreducible representations of PrOs4Sb12, the only possi-
ble way to undergo two successive transitions is for the B state
to be a time-reversal broken state.

(ii) We also find that the Kerr effect measurement rules
out the two dimensional (2D) Eg/u irreducible representation
scenario for PrOs4Sb12. We suggest that subsequent Kerr mea-
surements with different training fields directions may further
constrain the order parameters for the 3D Tg/u irreducible
representation case.

(iii) For U1−xThxBe13 in the case of its 3D Tg/u irreducible
representation, the form of the spin fluctuation feedback effect
allows for only one A state symmetry out of two possible
states.

(iv) We also suggest that a polar Kerr measurement be
conducted on U1−xThxBe13, as the presence of a polar Kerr
signal would rule out the 2D (Eg/u) scenario for U1−xThxBe13

and would constrain the pairing channels for the 3D (Tg/u)
irreducible representation scenario of U1−xThxBe13.

These results are tabulated in Table I. We have only written
one representative state when there are degeneracies; the other
degenerate states appear in the main text and the Appendix.

FIG. 2. Pressure-temperature P-T phase diagram of 3He.

II. 3He

3He is a strongly correlated Landau-Fermi liquid, whose
quasiparticle excitations pair to form a spin-triplet p-wave
superfluid [27,28]. The gap function is �(k) = i[di(k)σi]σy,
with di = diαk̂α; in this paper we use the Einstein summation
convention. The order parameter diα is a 3 × 3 matrix with
complex entries, where i is the spin index and α is the
orbital index and both run over x, y, and z. By comparing
to experiments, the 3He–A phase was identified with the
Anderson-Brinkman-Morel state with dxx = �√

2
, dxy = i �√

2
,

and all other di j = 0, while the B state was associated with
the Balian-Wethamer state, which has di j = �√

3
δi, j [27,28].

Weak-coupling theory showed that the BW state is stable
for all temperatures [29], implying that a strong-coupling
approach was needed to explain the existence of the high-
temperature high-pressure A phase. Anderson and Brinkman
[30] used spin fluctuation feedback effect to stabilize the
A phase, which relied on the pairing glue in 3He being
paramagnetic fluctuations. This implies that the formation of
the superfluid alters the pairing interaction, where the type
of modification depends on which state is formed [27]. Thus
the A state can be stabilized despite being unstable under
weak-coupling theory. The A–B transition in this case is first
order as the B state is not a subgroup of the A state.

Here spin fluctuation feedback effect will be recaptured in
a phenomenological manner, by coupling the superfluid order
parameter to paramagnetic fluctuations and calculating the
resulting change to the bare free energy. The bare free-energy
density of superfluid 3He is given as

β fsf = αdiαd∗
iα + β1diαdiαd∗

jβd∗
jβ + β2diαd jαd∗

iβd∗
jβ

+β3d jαd jβd∗
iαd∗

iβ +β4diαd∗
iαd jβd∗

jβ + β5d∗
iαd jαdiβd∗

jβ.

(1)

To this we add the coupling of superfluidity and magnetic
fluctuations, which is constructed to be invariant under inde-
pendent rotations in orbital and spin space. The free-energy
density is given as

β fsf-m = A1mimi + K1mimid jαd∗
jα + K2mimjdiαd∗

jα

+ K3imi(εi jkd jαd∗
kα ) + B( �∇im j )

2, (2)

where mi is the magnetic order parameter associated with
spin fluctuations. The K’s are the couplings between the spin
fluctuations and the superfluid order parameter, and the B term
is the spatial variation, i.e., q dependence, of the spin order.
We assume that A1 is parametrically small and positive, i.e.,
A1 → 0, to indicate that we have large fluctuations. We have
the Hamiltonian

βH = βH0 + K

=
∫

d3x
[
A1m2

j + B( �∇im j )
2
] +

∫
d3x

[
K1

(
m2

i

)
(d jαd∗

jα )

+ K2mimjdiαd∗
jα + K3imi(εi jkd jαd∗

kα )
]
, (3)

where βH0 is the Gaussian theory for spin fluctuations and
K is the coupling between superfluid order and the spin order
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TABLE I. Summary of our results. Column 2 shows the fluctuations responsible for the spin fluctuation feedback effect, whose Q vector
dependence can be found in the text. Column 3 shows the irreducible representation of the order parameter. Column 4 gives a representative
basis function of the superconducting order parameter and displays the symmetry properties of its components. Column 5 is the time-reversal
symmetric state A, where each state is multiplied by an overall η0 magnitude. Column 6 is the time-reversal symmetry-breaking state B
grown out of the A state, where the “or” separates different B irreducible representations and we only write one state for each irreducible
representation; the other degenerate states are in the text and the Appendix. Here δ represents a small number, which grows positively from 0
at the second transition. The ( )∗ is for A–B transitions which are Kerr inactive. The × represents that this channel is ruled out.

Material Fluctuation Irreducible representation Order parameter A B

UPt3 AFM E kxkz, kykz (1,0) (1,iδ)

PrOs4Sb12 AFQ E 2k2
z − k2

x − ky, k2
x − k2

y × ×
PrOs4Sb12 AFQ T kykz, kxkz, kxky (1,0,0) (1, iδ, 0) or (1, 0, iδ)
PrOs4Sb12 AFQ T kykz, kxkz, kxky (1,1,1) (1, 1 + iδ cos θ, 1 + iδ sin θ )

U1−xThxBe13 AFM E 2k2
z − k2

x − ky, k2
x − k2

y (1,0) (1 + iδ, 0)∗ or (1, iδ)∗

U1−xThxBe13 AFM E 2k2
z − k2

x − ky, k2
x − k2

y (0,1) (0, 1 + iδ)∗ or (iδ, 1)∗

U1−xThxBe13 AFM T kykz, kxkz, kxky (1,0,0) (1 + iδ, 0, 0)∗ or (0, 1 + iδ, 0)

fluctuations. After Fourier transforming we get

βH =
∫

d3q
(2π )3

(A1 + Bq2)|m̃(q)|2 + K. (4)

The coupling between superfluidity and magnetic fluctuations
in Fourier space is

K =
∫

d3q1d3q2d3q3d3q4

(2π3)4
(2π )3δ3(q1 + q2 + q3 + q4)

× [K1m̃i(q1)m̃i(q2)d̃ jα (q3)d̃∗
jα (q4)

+ K2m̃i(q1)m̃ j (q2)d̃iα (q3)d̃∗
jα (q4)]

+ K3

∫
d3q1d3q2d3q3d3q4

(2π3)3
(2π )3δ3(q1 + q2 + q3)im̃i

× (q1)εi jk d̃ jα (q2)d̃∗
kα (q3). (5)

Near the superfluid transitions, the coupling K can be
treated perturbatively around the Gaussian theory of the mag-
netic fluctuations, i.e., βH0. This quadratic theory for spin
fluctuations is valid as long as we are more than a Ginzburg
temperature away from the critical temperature associated
with magnetic ordering. Thus the coupling can be evaluated as

βH = βH0 − ln〈exp−K〉m, (6)

where 〈 〉m implies that we are calculating the expectation
values with respect to the Gaussian βH0 theory. The
expression (6) can be expanded perturbatively around the
Gaussian theory (see, e.g., [33]) as

ln〈exp−K〉m = −〈K〉m + 1
2 (〈K2〉m − 〈K〉2

m) + · · · . (7)

We keep up to only the second order in K, as this will
introduce corrections of O(d4) to the superfluid free-energy
density, which will be responsible for stabilizing the A state.

The first term 〈K〉m can be evaluated and will introduce a
correction to quadratic term in the superfluid Hamiltonian

−〈K〉m = −3K1 + K2

2

∫
d3q1d3q2d3q3d3q4

(2π )12
(2π )3δ3(q1

+ q2 + q3 + q4)
(2π )3δ3(q1 + q2)

A1 + Bq2
1

d̃iα (q3)d̃∗
iα (q4)

= −3K1 + K2

2

∫
d3q3

(2π )3
d̃iα (q3)d̃∗

iα (−q3)

×
∫

d3k
(2π )3

1

A1 + Bk2
. (8)

Performing an inverse Fourier transformation, we obtain the
correction to the bare superfluid free-energy density

β feff =
(

α + (3K1 + K2)(2π )3

2�3

∫ �3
d3k

(2π )3

1

A1 + Bk2

)
diαd∗

iα

+β1diαdiαd∗
jβd∗

jβ + β2diαd jαd∗
iβd∗

jβ + β3d jαd jβd∗
iαd∗

iβ

+β4diαd∗
iαd jβd∗

jβ + β5d∗
iαd jαdiβd∗

jβ, (9)

where �3 is a cutoff wavelength.
We see that the first-order correction from the spin

fluctuation feedback effect has changed the bare Tc. The
coefficient of the quadratic term is the inverse suscep-

tibility, i.e., χ−1 = A1 + Bq2 + (3K1+K2 )(2π )3

�3

∫ �3 d3k
(2π )3

1
A1+Bk2 .

Next we calculate the crucial second-order 1
2 (〈K2〉m −

〈K〉2
m) correction which will change the coefficient of the

quartic terms in the bare free-energy density. We fol-
low the exact same process as outlined above and af-
ter inverse Fourier transforming we get the free-energy
density

β feff =
(

α + (3K1 + K2)(2π )3

2�3

∫ �3
d3k

(2π )3

1

A1 + Bk2

)
diαd∗

iα + β1diαdiαd∗
jβd∗

jβ + β2diαd jαd∗
iβd∗

jβ

+
(

β3 − K2
2 (2π )3

4�3

∫ �3
d3k

(2π )3

1

(A1 + Bk2)2

)
d jαd jβd∗

iαd∗
iβ +

(
β5 − K2

2 (2π )3

4�3

∫ �3
d3k

(2π )3

1

(A1 + Bk2)2

)
d∗

iαd jαdiβd∗
jβ
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+
(

β4 −
(
K2

2 + 6K2
1 + 4K1K2

)
(2π )3

2�3

∫ �3
d3k

(2π )3

1

(A1 + Bk2)2

)
diαd∗

iαd jβd∗
jβ

− K2
3 (2π )3

2�3

∫ �3
d3k

(2π )3

1

(A1 + Bk2)
(i �d × �d∗)2. (10)

Let us now consider a simpler situation, where we ignore
the cost of spatial variation in the spin fluctuation order
parameter, i.e., B = 0. Thus we have the coupling

β fsf-m = A1mimi + K1mimid jαd∗
jα + K2mimjdiαd∗

jα

+ K3imi(εi jkd jαd∗
kα ). (11)

The magnetic partition function is given as

Zm =
∫

Dmie
−βH =

∫
Dmi exp

(
−

∫
d3x fsf-m

)

=
∫

Dmi exp

(
−

∫
d3xAi jmimj

)
, (12)

where Ai j contains couplings between magnetic and super-
conducting orders and gives corrections for the bare super-
conducting free-energy density. Integrating out the quadratic
(Gaussian) magnetic fluctuations gives an effective free-
energy density

β feff =
(

α + 3K1

2A1
+ K2

2A1

)
diαd∗

iα + β1diαdiαd∗
jβd∗

jβ

+β2diαd jαd∗
iβd∗

jβ +
(

β3 − K2
2

4A2
1

)
d jαd jβd∗

iαd∗
iβ

+
(

β4 − K2
2 + 6K2

1 + 4K2K1

2A2
1

)
diαd∗

iαd jβd∗
jβ

+
(

β5 − K2
2

4A2
1

)
d∗

iαd jαdiβd∗
jβ − K2

3

2A1
(i �d × �d∗)2. (13)

Now if we compare Eqs. (10) and (13), we note that even
though the corrections introduced to the free-energy density
have different forms in both cases, the sign of the correction
introduced is the same, i.e., in both cases the spin fluctuation
feedback effect leads to corrections which can stabilize a
different state than the state preferred by the weak-coupling
theory. Subsequently, for clarity, we use the simplified result
since it yields qualitatively the same results.

The βi quartic terms in Eq. (13) are associated with the
free-energy density without coupling to fluctuations, here
assumed to be derived from weak-coupling theory and the
quartic terms with the K’s originating from spin fluctuation
feedback effect. For large paramagnetic fluctuations, i.e., a
small but positive A1, the terms that dominate are those that
are proportional to A−2

1 and we ignore terms of order A−1
1 ,

e.g., couplings of the form m2d4. The K3 term in Eq. (13)
shows that paramagnetic fluctuations can favor nonunitary
states [34–37], but will be neglected here due to its weaker
A−1

1 dependence.
Weak-coupling theory gives β2 = β3 = β4 = −β5 =

2β1 = 6
5 s, where s is a positive-valued constant [27,28].

When the spin fluctuation feedback effect is turned off, i.e.,

Ki = 0, the BW state is energetically favorable with feff = 5
3 s,

while the A state has a slightly larger free-energy density
of feff = 2s. The spin fluctuation feedback effect coupling
lowers the energy of the A state by K2

2 /3A2
1 compared to the

B state and thus for large fluctuations, i.e., K2
2 /3A2

1 > 1
3 s, can

stabilize the A state [32].
The A–B transition stems from the different temperature

dependence of the weak-coupling quartic terms versus the
spin fluctuation feedback effect corrections to the quartic
terms. Quartic, i.e., β, terms originating from weak-coupling
theory generically have a 1

T 2 dependence [35], while micro-
scopic calculations show that quartic terms originating from
the spin fluctuation feedback effect have a 1

T dependence
[27,31,32]. These calculations assume quadratic Gaussian
spin fluctuations and imply that at high temperatures, strong
fluctuations may stabilize the A phase, while at lower temper-
ature the weak-coupling terms will dominate and the system
will undergo a first-order transition into the state preferred by
weak-coupling theory, i.e., the B phase. Recent calculations
done for twisted bilayer graphene [38] show that the same
temperature dependence of the quartic terms is seen for both
spin density and charge density wave fluctuations, again con-
sidering Gaussian fluctuations. This suggests that the weak-
coupling quartic terms and spin fluctuation corrections to
these terms generically have a 1/T and a 1/T 2 temperature
dependence, respectively. We will assume this to be the case
in the correlated fermion materials considered below.

III. UPt3

UPt3 is a hexagonal crystal with D6h point group sym-
metry and has two distinct phases under zero field: a high-
temperature A phase and a low-temperature B phase [15,39].
However, unlike 3He, the A phase is time-reversal symmetric
while the B phase is time-reversal symmetry breaking as seen
in muon spin relaxation (μSR) and polar Kerr measurements
[5,14]. UPt3 has four 2D irreducible representations labeled
E1u/g and E2u/g, where the order parameter transforms like
η1 ∼ kxkz and η2 ∼ kykz and like η1 ∼ k2

x − k2
y and η2 ∼

2kxky, respectively. The free-energy density is the same for
all the E irreducible representations and is given as [40]

β fsc = α(|η1|2 + |η2|2) + β1(|η1|2 + |η1|2)2 + β2

∣∣η2
1 + η2

2

∣∣2
.

(14)

The coefficient of |η2
i |2 determines the behavior below Tc,

with β2 > 0 favoring the time-reversal symmetry-breaking
(1, i) state and β2 < 0 stabilizing the time-reversal symmetric
(1,0) state. To explain the existence of multiple phases, the
currently accepted model involves coupling superconductivity
to antiferromagnetic order [20,21]. This splits the Tc between
η1 and η2 and allows for two transitions.
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However, recent experiments raise questions over the ex-
istence of true antiferromagnetic order near the two closely
spaced superconducting transitions. The Bragg peaks in in-
elastic neutron scattering are not resolution limited near
the superconducting transitions of TcA = 530 mK and TcB =
480 mK [15,23,41], in addition to the absence of signatures
of a magnetic transition in specific heat, magnetization, and
NMR Knight shift experiments around this temperature. The
peaks start narrowing only below 50 mK and become res-
olution limited at 20 mK [23,41], which seems consistent
with anomalies seen in specific heat [42,43], thermal expan-
sion [44], and magnetization measurements [45] seen near
20 mK. Interestingly, NMR experiments show an anomaly
at 50 mK which is associated with the fluctuations slowing
down, though there is no sign of static order down until
15 mK [46,47]. This has led to the current interpretation that
these experiments imply the presence of antiferromagnetic
fluctuations [24], instead of antiferromagnetic order, and we
suggest that a generalized spin fluctuation feedback effect
then stabilizes a time-reversal symmetric A state.

Our theory is a Ginzburg-Landau theory and is valid near
the A–B transition and cannot be extended deep into the B
state. However, the use of spin fluctuation feedback effect
fluctuations to generate two closely spaced transitions should
be valid near the superconducting transitions, i.e., Tc ∼
500 mK. We note that the Ginzburg temperature for magnetic
transitions is generically of the order 1–10−2 mK of the mag-
netic transition temperature (which for UPt3 is Tcm ∼ 50 mK).
Consequently, the superconducting A–B transitions will be
insensitive to critical phenomena stemming from the possible
ultralow-temperature magnetic ordering. Additionally, there
are no signatures of quantum critical effects in this material
and the other materials considered in this paper. Hence ar-
guments similar to those developed for superfluid 3He can
be used to explain two transitions in UPt3 and it suffices to
consider a Gaussian theory of spin fluctuations.

We will proceed analogously to 3He and assume that
the B time-reversal symmetry-breaking state is favored by
the weak-coupling theory, while strong fluctuations can sta-
bilize a time-reversal symmetric A phase. The fluctuations
are characterized by wave vectors Q1 = 1

2 a∗, Q2 = 1
2 (b∗ −

a∗), and Q3 = − 1
2 b∗ [22,23] which are associated with the

magnetic order parameters m1, m2, and m3, respectively. The
coupling of superconductivity to the magnetic fluctuations is
constructed to be invariant under D6h × U(1) × T , where T
is time-reversal symmetry and is expressed as [21]

β fsc-m = A1m2
i + K1

(
m2

i

)
(η jη

∗
j )

+K2
[(

2m2
1 − m2

2 − m2
3

)
(|η1|2 − |η2|2)

+
√

3
(
m2

3 − m2
2

)
(η1η

∗
2 + η2η

∗
1 )

]
. (15)

Integrating out the fluctuations as before gives the free-energy
density(

α + 3

2

K1

A1

)
(|η1|2 + |η2|2) +

(
β1 − 3

4

K2
1

A2
1

)
(|η1|2 + |η1|2)2

+
(

β2 − 6

4

K2
2

A2
1

)
|η2

1 + η2
2|2. (16)

We see that the terms originating from the generalized
spin fluctuation feedback effect have introduced negative-
value corrections to the quartic terms, which most importantly
changes the |η2

i |2 coefficient. Thus, for large fluctuations,
these spin fluctuation feedback effect terms can stabilize the
A state, instead of the time-reversal symmetry breaking B by
making this coefficient negative.

This also interestingly implies that two transitions will
occur only if the B state is a broken time-reversal symmetry
state. In particular, if the B state were time-reversal symmetric
then the spin fluctuation feedback effect terms would simply
further stabilize the time-reversal symmetric nematic state.

As argued earlier, the quartic terms that stem from weak-
coupling theory should increase more strongly as temperature
is decreased than the quartic terms which arise from the
generalized spin fluctuation feedback effect. This allows the
coefficient of the |η2

1 + η2
2|2 to change sign as temperature

is decreased so that a transition into a broken time-reversal
symmetry state is possible. We discuss this in more detail
below.

A. Effective theory for A–B transitions

A complete phenomenological description of a second
phase transition within a single multidimensional irreducible
representation requires a free-energy density that is at least
eighth order in the order parameter [48,49]. For this reason,
we consider a simpler approach and model the A–B transition
as an effective phenomenological theory in which we start
with the (1,0) state for UPt3 and allow the B state to contin-
uously grow out of this, i.e., (1 + η̃1i, 0 + η̃2i ), where η̃i is
small near the transition. Time-reversal symmetry allows us
to classify the order parameter η̃i for the A–B transition into
a real part η̃R, which is invariant under T , and an imaginary
part η̃I , which changes sign under T , with the transformation
properties

η̃R
T→ η̃R, η̃I

T→ −η̃I . (17)

The condition that the second transition is observed to
break time-reversal symmetry allows us to consider only the
imaginary order parameter. The (1,0) state has D2(C2) × T
and D2 × T [34] symmetries for the E1u/g and E2u/g irre-
ducible representations, respectively. The order parameter η̃1I

belongs to the A1 irreducible representation of D2, while
η̃2I belongs to the B1 irreducible representation. Hence our
mechanism only allows these two possible symmetries for the
B phase.

B. Constraints from the polar Kerr effect

The observation of a polar Kerr signal for the A–B tran-
sition [5] further constrains the possible order parameters. In
particular, polar Kerr experiments shows that the signal can
be trained with an applied magnetic field [5]. This implies
that the only viable order parameters are those which belong
to the same representation as a component of the magnetic
field (Hx, Hy, and Hz). This follows because a Kerr signal
that can be trained by a magnetic field is only possible if
the superconducting order parameter couples linearly to the
applied field. These order parameters will be referred to as
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Kerr active (in the literature, this is sometimes labeled as
belonging to a ferromagnetic class [50]). This rules out the
A1 order parameter since it is Kerr inactive. The η̃2I order
parameter has Hz symmetry, which is consistent with the
direction of the training field applied along the c axis in the
experiment. Thus the A–B transition can be modeled by the
effective order parameter η̃2I with the free energy β fA→B =
α1I η̃

2
2I + β1I η̃

4
2I . We will use this approach subsequently to

constrain the possible symmetries of the order parameters.

IV. PrOs4Sb12

PrOs4Sb12 is a Pr-based tetrahedral correlated fermion
skutterudite superconductor with a Th point group that, like
UPt3, has two distinct phases [51]. Polar Kerr and μSR
measurements show a time-reversal symmetry-breaking B
phase [6,18], while the A phase is time-reversal symmetric.
PrOs4Sb12 has been studied by phenomenological methods
[52]; however, there is no satisfactory mechanism for the
double transition. Inelastic neutron scattering experiments
indicate the presence of antiferroquadrupolar fluctuations with
a Q = (1, 0, 0) [25,53], which is a single Q order, invariant
under the point group operations. The order parameter of
these antiferroquadrupolar fluctuations is three dimensional
with components that transform as m1 ∼ kykz, m2 ∼ kxkz, and
m3 ∼ kxky [54,55]. The antiferroquadrupolar fluctuations can
stabilize a time-reversal symmetric A phase for both the E and
T irreducible representations as shown below.

For the E irreducible representation, where the order pa-
rameter transforms as η1 ∼ 2k2

z − k2
x − k2

y and η2 ∼ k2
x − k2

y ,
the coupling is

β fsc-m = A1
(
m2

i

) + K1
(
m2

j

)
(η jη

∗
j )

+K2
[(

2m2
3 − m2

1 − m2
2

)
(|η1|2 − |η2|2)

−
√

3
(
m2

1 − m2
2

)
(η1η

∗
2 + η2η

∗
1 )

]
+K3

[√
3
(
m2

1 − m2
2

)
(|η1|2 − |η2|2)

+(η1η
∗
2 + η2η

∗
1 )

(
2m2

3 − m2
1 − m2

2

)]
. (18)

As noted in UPt3, we will consider the simple case of
B( �∇ �m)2 = 0. Integrating out the antiferroquadrupolar fluctu-
ations, we obtain the effective free-energy density

β feff =
(

α + 3K1

2A1

)
(η jη

∗
j )

+
(

β1 − 3K2
1

4A2
1

− 3K2
2

2A2
1

− 3K2
3

2A2
1

)
(η jη

∗
j )2

+
(

β2 − 3K2
2

2A2
1

− 3K2
3

2A2
1

)
(η1η

∗
2 − η2η

∗
1 )2. (19)

This generalized spin fluctuation feedback effect may again
stabilize a time-reversal symmetric A state (φ1, φ2) with D2 ×
T symmetry [52,56], instead of the time-reversal symmetry-
breaking B phase (1, i) with T (D2) symmetry by changing the
sign of the (η1η

∗
2 − η2η

∗
1 )2 term from positive to negative. The

A phase has the two components with the same magnitude
but an arbitrary phase [52]. Similar to UPt3, two transitions
are possible only when the B state is time-reversal symmetry
breaking. The A–B transition is modeled similarly to UPt3;

however, both η1I/2I have A1 Kerr inactive symmetry and
are ruled out due to the presence of the Kerr effect, thereby
eliminating the 2D E irreducible representation scenario for
PrOs4Sb12. Thus we can see that, just using these general
symmetry considerations, we are able to rule out a pairing
scenario with this mechanism.

For the 3D Tg/u irreducible representation, with an order
parameter which transforms, for example, as η1 ∼ kykz, η2 ∼
kxkz, and η3 ∼ kxky, the coupling is

β fsc-m = A1
(
m2

i

) + K1(η jη
∗
j )

(
m2

j

)
+ K2

[
3(|η2|2 − |η3|2)

(
m2

2 − m2
3

)
+ (2|η1|2 − |η2|2 − |η3|2) × (

2m2
1 − m2

2 − m2
3

)]
+ K3

[
(|η2|2 − |η1|2)

(
2m2

1 − m2
2 − m2

3

)
− (2|η1|2 − |η2|2 − |η3|2)

(
m2

2 − m2
3

)]
+ K4[(η2η

∗
3 + η∗

2η3)m2m3 + (η3η
∗
1 + η∗

3η1)m3m1

+ (η1η
∗
2 + η∗

1η2)m1m2]. (20)

Integrating out the Gaussian antiferroquadrupolar fluctuations
gives the effective free-energy density

β feff =
(

α + 3
K1

A1

)
(η jη

∗
j )

+
(

β1 − 6K2
1

A2
1

+ 6K2
2

A2
1

+ 2K2
3

A2
1

− K2
4

4A2
1

)
(η jη

∗
j )2

+
(

β2 − K2
4

4A2
1

)∣∣η2
i

∣∣2 +
(

β3 − 18K2
2

A2
1

− 6K2
3

A2
1

+ K2
4

2A2
1

)

×(|η1|4 + |η2|4 + |η3|4). (21)

Again the generalized spin fluctuation feedback effect has
changed the coefficient of the bare free-energy density and
hence allows for the possibility of a time-reversal symmetric
A state. Interestingly, here we may have two transitions even if
the A state is time-reversal symmetry breaking, due the inde-
terminant sign of the correction to the β3 coefficient. However,
since this does not agree with the experimental identification
of the B state having broken time-reversal symmetry, we do
not consider this possibility. This irreducible representation
has two states which are time-reversal symmetric: the (1,0,0)
state with D2(C2) × T symmetry and the (1,1,1) state with
C3 × T symmetry. Both of these allow for a transition to a
time-reversal symmetry-breaking B state which is Kerr active
and hence provide two viable channels for the transition. The
physics of this is similar to the 2D irreducible representation
case for UPt3 and is worked out in the Appendix, the results
of which are collected in Table I. It would be of interest to
carry out Kerr measurements [6] under different directions
of the training field to further constrain the possible pairing
channels.

V. U1−xThxBe13

U1−xThxBe13 is a cubic material with an Oh point group,
which also has two transitions [9,17], but only for a doping
range of 2% < x < 4%. The B phase is again a time-reversal
symmetry-breaking state [9]. Antiferromagnetic fluctuations
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are seen in inelastic neutron scattering with a wave vector
of Q3 = (1/2, 1/2, 0) [26]. We consider both the E and T
irreducible representations and model the system with Oh

symmetry, having antiferromagnetic fluctuations with wave
vector Q3. The star of Q3 gives two additional wave vectors
Q2 = (1/2, 0, 1/2) and Q1, each of which corresponds to a
1D order parameter m1 = (0, 1/2, 1/2), m2, and m3. Here η1

and η2 transform exactly as the E irreducible representation
of PrOs4Sb12. The coupling is

β fsc-m = A1
(
m2

i

) + K1
(
m2

i

)
(η jη

∗
j )

+ K2
[(

2m2
3 − m2

1 − m2
2

)
(|η1|2 − |η2|2)

−
√

3
(
m2

1 − m2
2

)
(η1η

∗
2 + η2η

∗
1 )

]
. (22)

The K3 term present in Eq. (18) is absent above, due to
additional symmetry elements present in the Oh as compared
to Th point group. The correction to the free-energy density
from these fluctuations is

β feff =
(

α + 3K1

2A1

)
(η jη

∗
j ) +

(
β1 − 3K2

1

4A2
1

− 3K2
2

2A2
1

)
(η jη

∗
j )2

+
(

β2 − 3K2
2

2A2
1

)
(η1η

∗
2 − η2η

∗
1 )2. (23)

There are two possible time-reversal symmetric A states. The
details of the A–B effective theory follow that of UPt3 and are
in the Appendix, with the possible A state being (1,0) with
D4 × T symmetry and (0,1) with D(1)

4 (D2) × T symmetry
[50]. These states are Kerr inactive, and we suggest that a
polar Kerr measurement be performed on this material. If a
field-trainable polar Kerr signal is seen, then the 2D order
parameter can be ruled out.

For the 3D order parameter case, we note that U1−xThxBe13

has four T irreducible representations: one T2g/u, which trans-
forms exactly like T irreducible representations of PrOs4Sb12,
and the other T1g/u, which transforms as η1 ∼ kykz(k2

y − k2
z ),

η1 ∼ kzkx(k2
z − k2

x ), and η3 ∼ kxky(k2
x − k2

y ). The coupling for
these T irreducible representations is

fsc-m = A1
(
m2

i

) + K1
(
m2

i

)
(η jη

∗
j )

+ K2
[
3(|η2|2 − |η3|2)

(
m2

2 − m2
3

)
+ (2|η1|2 − |η2|2 − |η3|2)

(
2m2

1 − m2
2 − m2

3

)]
. (24)

The K3 term found in Eq. (20) is absent because of higher Oh

symmetry compared to the Th symmetry, while the K4 term is
forbidden as mimj is not translationally invariant for this Q
vector. The effective free-energy density obtained is

β feff =
(

α + 3
K1

A1

)
(η jη

∗
j ) +

(
β1 − 3K2

1

4A2
1

+ 3K2
2

A2
1

)
(η jη

∗
j )2

+β2

∣∣η2
j

∣∣2 +
(

β3 − 9K2
2

A2
1

)
(|η1|4 + |η2|4 + |η3|4).

(25)

Interestingly, here, unlike PrOs4Sb12, there is no change
to β2, which is a result of the K4 coupling being absent
for Eq. (25) in contrast to Eq. (20). There are four possible
time-reversal symmetric A states, two for each T irreducible
representation, i.e., (1,0,0) and (1,1,1). However, due to there

being no change to the coefficient of the |η2
i |2 term, the (1,0,0)

is the only time-reversal symmetric A state which allows for a
viable transition to a time-reversal symmetry-breaking B state
[34]. This state has D4(C4) × T and D(2)

4 (D2) × T symmetry
for the T1g/u and T2g/u irreducible representations, respectively
[50]. The A–B transition follows similarly to UPt3 and is
modeled in the Appendix.

Polar Kerr measurements, especially if trainable by the
field, may be useful as they can rule out the Eg/u irreducible
representation scenario and can eliminate other 3D Tg/u order
parameters.

VI. CONCLUSION

In analogy to superfluid 3He, we have argued that a
generalized spin fluctuation feedback effect can account for
multiple transitions seen in correlated fermion materials. We
have provided a simple phenomenological framework to cap-
ture this and show that this naturally provides a unifying
mechanism for two superconducting transitions observed in
UPt3, PrOs4Sb12, and U1−xThxBe13. In addition, the use of
this generalized spin fluctuation feedback effect has allowed
us to constrain various pairing symmetries. The results of this
analysis were tabulated in Table I. In particular, we were able
to rule out the 2D (Eg/u) scenario for PrOs4Sb12, while for the
3D (Tg/u) irreducible representation of U1−xThxBe13 only one
of two possible A states was allowed. Additionally, if a polar
Kerr signal were observed for U1−xThxBe13, we would be able
to rule out the 2D (Eg/u) scenario for U1−xThxBe13 and place
further constraints on other pairing channels.
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APPENDIX: EFFECTIVE THEORY
FOR THE A–B TRANSITION

1. PrOs4Sb12

For the 3D T1g/u irreducible representation, we have two
possible time-reversal symmetric A states: the (1,0,0) state
with D2(C2) × T symmetry and the (1,1,1) state with C3 ×
T symmetry. Both of these allow for a transition to a time-
reversal symmetry-breaking B state which is Kerr active and
hence provides two viable channels for the transition. In the
case of (1 + η̃1I , 0 + η̃2I , 0 + η̃3I ), η̃1I belongs to the A1 Kerr
inactive irreducible representation and hence is not consid-
ered, while η̃2I and η̃3I belong to the Kerr active B1 and B2

irreducible representations, respectively. The form of the free
energy will look similar to the 1D A–B transition in UPt3
and the exact transition would depend on which irreducible
representation has a higher Tc. The free energy will be

β fA→B = αI η̃
2
2/3I + βI η̃

4
2/3I . (A1)

For the (1 + η̃1I , 1 + η̃2I , 1 + η̃3I ) state we have a 1D A1

Kerr inactive order parameter, defined as ηA = η̃1 + η̃2 + η̃3

and which is ignored, and a 2D Kerr active E order parameter,
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defined as

ηx = 1√
6

(2η̃3 − η̃2 − η̃3), ηy = 1√
2

(η̃1 − η̃2), (A2)

where ηx and ηy belong to the 2D Kerr active E irreducible
representation of C3. The free energy for this E irreducible
representation is

β f E
A→B = αIη

2
i + β1I

(
η2

i

)2 + γ
(
η2

i

)3 + γ1η
2
xI

(
η2

xI − 3η2
yI

)2

+γ2η
2
yI

(
3η2

xI − η2
yI

)2 + γ3ηxIηyI
(
η2

xI − 3η2
yI

)
×(

3η2
xI − η2

yI

)
. (A3)

Once αI changes sign the ground state will be η =
ηI (cos θ, sin θ ), where the value of θ will depend on the
value of the coefficients (γi) of the sixth-order terms and
hence provides a viable mechanism for a transitions to a
time-reversal symmetry-breaking B phase.

2. U1−xThxBe13

For the 2D Eg/u irreducible representation there are two
possible time-reversal symmetric A states. We model the A–
B transition as done before, with the A state being (1,0)
possessing D4 × T symmetry and (0,1) with D(1)

4 (D2) × T
symmetry [50]. The B state grows as (1 + η̃1I , 0 + η̃2I ), where
η̃1I belongs to the A1 and η̃2I belongs to the B1 irreducible
representation of D4, while for the (0,1) state, the situation is
reversed. In that case the B state grows as (0 + η̃1I , 1 + η̃2I ),
with η̃1I having B1 symmetry and η̃2I belonging to the A1

irreducible representation of D4. The free energy will be the

same as for the 1D order parameters

β fA→B = αI η̃
2
1/2I + βI η̃

4
1/2I . (A4)

Interestingly due the absence of a Kerr measurement experi-
ment, the A1 irreducible representation is viable and the same
physics applies here as discussed for the s + is states in the
iron-based superconductors [57–60]. These states are Kerr
inactive and can be ruled out depending on the results of a
trainable polar Kerr measurement in U1−xThxBe13.

For the 3D irreducible representations T1g/u and T2u/g there
are four possible time-reversal symmetric A states, two for
each T irreducible representation, i.e., (1,0,0) and (1,1,1).
However, as explained in the main text, the (1,0,0) is the
only viable time-reversal symmetric A state which allows for
a transition to a time-reversal symmetry-breaking B state, due
to the form of the coupling between superconductivity and an-
tiferromagnetic fluctuations. This state has D4(C4) × T and
D(2)

4 (D2) × T symmetries for the T1g/u and T2g/u irreducible
representations, respectively [50]. The A–B transition is mod-
eled similarly to PrOs4Sb12, i.e., (1 + η̃1I , 0 + η̃2I , 0 + η̃3I ),
except here η̃1I belongs to the A1 irreducible representation of
D4 and would again have the s + is physics with the standard
free energy for 1D irreducible representations

β fA→B = αI η̃
2
1I + βI η̃

4
2I , (A5)

while (η̃2I , η̃3I ) belong to the 2D Kerr active E irreducible
representation of D4. The free energy for the E irreducible
representation is

β f E
A→B = αI η̃iη̃i + β1I (η̃iη̃i )

2 + β2I η̃
2
2I η̃

2
3I . (A6)

For β2 > 0 we pick the ηI (1, 0) state and for β2 < 0 the
ηI (1, 1) state, both of which break time-reversal symmetry.
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