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Physical mechanisms for zero-bias conductance peaks in Majorana nanowires
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Motivated by the need to understand and simulate the ubiquitous experimentally observed zero-bias conduc-
tance peaks in superconductor-semiconductor hybrid structures, we theoretically investigate the tunneling con-
ductance spectra in one-dimensional nanowires in proximity to superconductors in a systematic manner taking
into account several different physical mechanisms producing zero-bias conductance peaks. The mechanisms we
consider are the presence of quantum dots, inhomogeneous potential, random disorder in the chemical potential,
random fluctuations in the superconducting gap, and in the effective g factor with the self-energy renormalization
induced by the parent superconductor in both short (L ∼ 1 μm) and long nanowires (L ∼ 3 μm). We classify
all foregoing theoretical results for zero-bias conductance peaks into three types: the good, the bad, and the
ugly, according to the physical mechanisms producing the zero-bias peaks and their topological properties. We
find that, although the topological Majorana zero modes are immune to weak disorder, strong disorder (“ugly”)
completely suppresses topological superconductivity and generically leads to trivial zero-bias peaks. Compared
qualitatively with the extensive existing experimental results in the superconductor-semiconductor nanowire
structures, we conclude that most current experiments are likely exploring trivial zero-bias peaks in the “ugly”
situation dominated by strong disorder. We also study the nonlocal end-to-end correlation measurement in both
the short and long wires, and point out the limitation of the nonlocal correlation in ascertaining topological
properties particularly when applied to short wires. Although we present results for “good” and “bad” zero-bias
peaks, arising respectively from topological Majorana bound states and trivial Andreev bound states, strictly
for the sake of direct comparison with the “ugly” zero-bias conductance peaks arising from strong disorder, the
main goal of the current work is to establish with a very high confidence level the real physical possibility that
essentially all experimentally observed zero-bias peaks in Majorana nanowires are most likely ugly, i.e., purely
induced by strong disorder, and are as such utterly nontopological. Our work clearly suggests that an essential
prerequisite for any future observation of topological Majorana zero modes in nanowires is a substantial materials
improvement of the semiconductor-superconductor hybrid systems leading to much cleaner wires.
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I. INTRODUCTION

The experimental search for Majorana zero modes (MZM)
[1–23] in the superconductor-semiconductor (SC-SM) hybrid
devices has succeeded in observing many of the theoretically
predicted apparent topological features, especially the quan-
tized zero-bias conductance peak (ZBCP) in the normal-to-
superconductor (NS) tunneling spectroscopy [24–35]. How-
ever, there are still some crucial topological features yet to be
unambiguously confirmed in experiments; for example, the
growing Majorana oscillations with the increasing magnetic
field [36], closing and reopening of bulk superconducting
gaps [11,12,19,25,37], and robust stability of ZBCP over
extended regimes of magnetic fields and gate voltages [38,39].
In particular, extensive fine-tuning of various gate voltages ap-
plied across the sample appears necessary in the experimental
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manifestation of the rather fragile quantized tunneling ZBCPs
putatively identified as arising from topological Majorana
zero modes, seemingly in conflict with the predicted robust
and generic nature of the topological phase. Experiments
manifest no signs of any nonlocal correlations, which are
difficult to reconcile with the existence of MZMs. In addition,
the fact that no bulk signatures of a topological quantum
phase transition (TQPT) (e.g., closing and then reopening of a
gap) have ever been reported in spite of widespread report-
ing of observed ZBCPs is problematic. All these problems
have led to alternative nontopological explanations for the
experimental ZBCPs [40–51], and there have been theoretical
suggestions on how to identify MZMs experimentally as
well as to distinguish between topological and trivial (i.e.,
nontopological) ZBCPs [44–48]. Unfortunately, a consensus
seems to have developed that most, if not all, of the observed
ZBCPs are trivial, arising from fermionic (i.e., non-Majorana)
subgap states, widely referred to as Andreev bound states
(ABS), as opposed to Majorana bound states (MBS). A
closely related possibility for trivial ZBCPs is the disorder-
induced ABS or antilocalization enhancement of the density
of states in class D system where the topological superconduc-
tivity is completely suppressed by disorder [42,52–55]. These
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alternative explanations focus on one explicit aspect of the
system and subsequently modify or insert a specific term in
the Hamiltonian introducing some elements of the relevant
microscopic physics (e.g., the quantum dot or inhomogeneous
potential or disorder, etc.) to explain the development of
trivial ZBCPs. For strongly disordered multibands platforms
[56], the ZBCP can be simulated and alternatively explained
using the random-matrix method in the class D ensemble
[42,57–64].

In the current work, we take a broad view within the
single-subband 1D nanowire model for the SC-SM struc-
ture, considering all possibilities, both trivial and topological
which produce ZBCPs, critically comparing the results in
different situations in order to shed light on how to discern
MZM-induced topological ZBCPs from the trivial ones. We
critically compare four distinct physical situations produc-
ing ZBCPs within one unified formalism keeping all the
SC-SM parameters fixed (except for the specific mechanism
leading to the ZBCP in each case), discuss similarities and
differences between various cases, and comment on possible
methods for distinguishing between trivial and topological
phases as a matter of principle. Given the proliferation of
many different proposed physical mechanisms leading to
trivial ZBCPs in different contexts, it is important to com-
pare them all under one uniform model to understand their
relevance and properties. In addition, we carefully study the
nonperturbative stability and robustness of pristine MZMs in
nanowires to different types of disorder, which leads to the
interesting conclusion that, while strong disorder by itself
could produce trivial ZBCPs, pristine ZBCPs arising from
topological MZMs, if they exist in the system, are immune
to weak disorder. Immunity of topological MZMs to weak
disorder and complete suppression of topological supercon-
ductivity with the consequent generic appearance of trivial
ZBCPs (some of which may be accidentally “quantized”) is
the unfortunate dichotomy making it a difficult challenge to
interpret the existing tunneling conductance data in SC-SM
hybrid nanowires since a priori no quantitative information
is available on whether the disorder in the currently existing
samples is strong or weak compared with the topological
superconducting gap (which has not yet been clearly seen in
any experiment).

We consider three distinct physical situations (i.e., ZBCP
origins) with ZBCPs in the SC-SM hybrid nanowires, re-
ferred to as “good”/“bad”/“ugly”, which differ qualitatively
in the way the ZBCPs arise in each case. All the considered
situations apply to the same physical system, namely, a 1D
SM (InSb or InAs) nanowire with spin-orbit (SO) coupling
in proximity to an ordinary metallic superconductor (Al)
subjected to an external magnetic field, described by the
same 1D Bogoliubov-de Gennes (BdG) Hamiltonian with the
differences among the three cases arising from extra terms in
the Hamiltonian representing either inhomogeneous chemical
potential (“bad”) with or without quantum dots or quenched
disorder (“ugly”). The “good” situation is pristine without
these extra terms, and has been the standard model for study-
ing topological superconductivity and Majorana modes in SC-
SM structures ever since it was introduced in Refs. [12,19].
The “bad” situation is further subdivided into two physically
distinct cases, depending on how the inhomogeneity in the

chemical potential arises in the nanowire. One bad situation
arises from having an unintentional quantum dot in the sys-
tem, which often happens near the wire end because of the
complex materials science of creating the hybrid system [65].
The other bad situation arises from the presence of an inho-
mogeneous potential along the wire, arising presumably from
the presence of charged impurities in the environment [66].
These two bad situations are not qualitatively different as they
both give rise to near-zero fermionic subgap states leading to
trivial ZBCPs, but their physical origins are different and there
are significant quantitative differences between the two, so
that considering them separately is sensible. The “ugly” is the
fluctuation in the nanowire due to the unintentional (mostly)
charged impurities invariably present in the nanowire. Since
the charge fluctuation is very sensitive to the gate voltages,
temperature, subband occupancy, etc., it is intractable when
multiple gate voltages are being tuned simultaneously. Thus
it can be treated as a random disorder in the 1D SC-SM
nanowire. The random disorder also arises from disorder in
the parent superconductor, the dielectric substrates, and the
various leads and gates necessary to produce the hybrid sys-
tem. The precise source of this strong disorder in the ugly case
is unimportant for our considerations since we parametrize it
simply as a random disorder as described below.

We construct the SC-SM nanowire Hamiltonian taking into
account various aspects (see Fig. 1), including the pristine
wire, quantum dot, inhomogeneous potential, and disorder in
the chemical potential, in the SC gap, and in the effective g
factor. We theoretically calculate the tunneling conductance
spectra through an NS junction as a function of the Zee-
man field VZ (magnetic field B) by calculating the S matrix
(Fig. 1). All numerical results are classified into three types:
the “good”, the “bad”, and the “ugly”. The “good” ZBCPs are
the true topological MZMs which exist in the pristine
nanowire (even with a small amount of disorder). The “bad”
ZBCPs are induced by the quantum dot or the inhomogeneous
potential, where a trivial ZBCP emerges from the fermionic
subgap ABS with X-shape anticrossings [57]. The “ugly”
ZBCPs arise from the large disorder, especially strong disor-
der in the chemical potential and the effective g factor. These
kinds of disorder completely alter the pattern of the con-
ductance spectra, suppressing superconductivity completely
beyond a disorder-dependent finite magnetic field, leading
to trivial and (sometimes) persistent ZBCPs. We emphasize
that “bad” and “ugly” mechanisms are completely and fun-
damentally different from each other as the former arises
from a smoothly spatially varying deterministic background
potential because of the spatially inhomogeneous variation in
the chemical potential whereas the latter arises from strong
random background disorder (which could be in the chemical
potential, superconducting gap, or the effective g factor). The
background potential being deterministic (“bad”) versus ran-
dom (“ugly”) makes a qualitative difference. We emphasize
that we also show that weak random disorder preserves the
“good” ZBCPs because of the topological immunity of the
MZMs. Weak versus strong disorder is basically defined by
whether the variance fluctuation is larger than the average
or not. The goal of this work is to present ZBCP results
for all four situations within one unified formalism keep-
ing the system parameters the same throughout so that the
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experimentalists can judge whether their results fall into one
or the other category. Our conclusion is that all currently
existing experimental ZBCPs are likely to be ugly ZBCPs
induced by strong disorder.

Apart from the tunneling conductance results as a function
of the Zeeman field, we additionally calculate the tunneling
conductance spectrum at zero Zeeman field as a function of
the chemical potential. At zero magnetic field, where every-
thing observed inside the gap should be topologically trivial,
the “bad” and “ugly” ZBCPs may still manifest fermionic
subgap states. This observation of the fermionic subgap states
would thus become an indicator of inhomogeneous chemical
potential or strong disorder, and therefore, samples showing
subgap states at zero field are unsuitable for MZM studies.

In addition, we also study the correlation measurement of
tunneling conductance from both ends of the nanowire. In
principle, this method, by virtue of the nonlocal nature of the
topological MZM, can serve to distinguish Majorana bound
states from trivial Andreev bound states in the “bad” and
“ugly” situations, since the topological state will be correlated
but the trivial one will not [48]. However, this proposal will
work only if the nanowire is sufficiently long. Therefore, by
comparing the long nanowire results (L ∼ 3 μm) with the
short ones (L ∼ 1 μm), we show that in the short nanowire
it is not feasible to distinguish between trivial and topological
even utilizing the correlation measurement because the end-
to-end correlation may be trivially manifested due to wave-
function overlaps from the two ends. Unfortunately, most
existing experiments seem to be in the “short wire” region.
Note that “long” (L ∼ 3 μm) and “short” (L ∼ 1 μm) refer
specifically to the actual physical lengths of the InAs and
InSb nanowires used in the current experiments—since the
coherence length is unknown in the topological regime, it
is possible that all experimental systems so far are in the
“short” wire limit as the topological gap in the experimental
nanowires has not been measured or even detected so far
experimentally. Since we use the nominal InAs and InSb
parameters in our simulations, our working with a physical
wire length is sensible.

We emphasize that the good (pristine MZM) and bad
(smoothly varying background potential) situations have al-
ready been discussed in some depth in the recent Majorana
nanowire literature because of their perceived importance to
experiments. Most Majorana nanowire theories are obviously
based on the pristine nanowire models where there is no
background potential at all (neither smooth or nor random)
as was originally done [12]. Very recent work has estab-
lished rather convincingly that the presence of a smooth
nonrandom background potential could lead generically to
nontopological zero-bias peaks arising from low-lying ABS,
which eventually would become topological Majorana zero
modes at high enough magnetic fields [48,65,67–69]. These
almost zero energy Andreev bound states can be construed as
two spatially overlapping (and thus, only partially separated)
MBS, which would eventually convert into isolated MBS at
high enough magnetic field above the topological quantum
phase transition point. It has earlier been suggested that it is
likely that most experimentally observed ZBCPs in nanowires
are trivial and arise from the presence of smooth background

potential, perhaps because of the existence of unintentional
quantum dots at the wire ends [46,69].

Our current work differs from these earlier conclusions in
the sense that our extensive simulations, as compared with
the latest (and presumably the best) experimental ZBCPs
presented in Refs. [28,29], presented in this paper strongly
suggest that most experimentally observed ZBCPs, including
even the ones claimed to manifest the expected Majorana con-
ductance quantization, are in fact “ugly” ZBCPs arising purely
from strong random disorder present in the currently available
semiconductor nanowire Majorana platforms. Our claim of
the experimental ZBCPs most likely being random disorder
induced (and not induced by smoothly varying deterministic
background potential) distinguishes our work from the earlier
recent theoretical work, which attributes the experimental
ZBCPs to be inhomogeneous potential induced (i.e., “bad”
in our terminology). Our conclusion is based on a detailed
comparison with the best available experimental results which
appeared in the literature only very recently (2017 and 2018)
as we will discuss in Sec. IV.

The main purpose of our showing extensive “good” and
“bad” results on the current paper is simply to compare with
the “ugly” results and draw a contrast among the three ZBCP
mechanisms so that the veracity of our claim of most observed
ZBCP being “ugly” can be critically evaluated by the reader
directly by looking at the results presented here using similar
parameters and models with the only difference being “bad”
arises from a smooth deterministic background potential and
“ugly” arises from a background random disorder potential
with “good” being the usual pristine case.

The remainder of this paper is organized as follows. In
Sec. II, we start with a pristine nanowire and modify each term
according to the corresponding possible dominant physical
mechanism (for the “bad” and the “ugly” cases) in SC-SM
hybrid structures as schematically shown in Fig. 1 and explic-
itly write down their Hamiltonians. In Sec. III, we show the
representative numerical results of the conductance spectra as
a function of the Zeeman field for all three types as well as
their correlation measurements from both ends. In addition,
we present tunneling conductance spectra at zero magnetic
field, where the pristine (i.e., “good”) system should not have
fermionic subgap states, but the other two cases (i.e., “bad”
and “ugly”) may have fermionic subgap states. In Sec. IV,
we discuss the resemblance of our theoretical simulations to
the current experimental results, and compare the conduc-
tance spectra for long nanowires with short nanowires. Our
conclusion is presented in Sec. V. We present only limited
representative numerical results in the main text, deferring our
detailed results for the appendices. In Appendix A, we provide
detailed correlation properties of the calculated ZBCPs for
short and long wires both with and without the self-energy
of the parent SC while the main text being devoted only
to the presentation of the experimentally relevant tunneling
conductance spectra (i.e., including the self-energy of the
parent SC). Appendix B provides all the corresponding energy
spectra and wave functions to help unequivocally determine
the ABS or MBS in the theory. We emphasize that the vast
amount of our simulation results presented in the appendices
are integral parts of our theory, and are relegated to Appendix
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only to enable a seamless reading of the main text without
being burdened by too many results.

II. THEORY

The general form of the Hamiltonian to describe a SC-SM
hybrid nanowire is [5]

Htot = HSM + HZ + HV + HSC + HSC-SM, (1)

where HSM is the Hamiltonian for SM component, HZ de-
scribes the contribution from the applied magnetic field (en-
tering as the Zeeman splitting energy), HV contains various ef-
fects of disorder and gate potentials, HSC quantifies the parent
SC, and HSC-SM is the SC-SM coupling. This model has been
studied extensively since its introduction in Refs. [12,19], but
usually with some of the terms (e.g., HV) left out to emphasize
one or other physical mechanisms. In the current work, we
keep all the terms to study and contrast the different situations
within one comprehensive framework.

A. Minimal effective model

We start with the minimal effective Hamiltonian of a
pristine nanowire without any quantum dot, inhomogeneous
potential, or disorder, which implies HV = 0. (This, by defini-
tion, corresponds to the “good” case where isolated topologi-
cal MZMs arise at two wire ends for sufficiently large Zeeman
splitting and sufficiently long wires, i.e., above the TQPT.)
The pristine nanowire is then described by the “standard” min-
imal BdG Hamiltonian [10–12] Ĥ = 1

2

∫
dx �̂†(x)Htot�̂(x),

with

Htot =
(

− h̄2

2m∗ ∂2
x − iα∂xσy − μ

)
τz + VZσx + �τx. (2)

Here, �̂(x) = (ψ̂↑(x), ψ̂↓(x), ψ̂†
↓ (x),−ψ̂

†
↑ (x))

T
represents a

position-dependent spinor; �σ and �τ denote Pauli matrices
in the spin and particle-hole space, respectively. The mag-
netic field is applied along the longitudinal direction of the
nanowire providing a Zeeman term HZ = VZσx, where VZ =
1
2 gμBB and μB is Bohr magneton. Rashba spin-orbit coupling
with strength α is assumed to be perpendicular to the wire
length [70]. We emphasize the pristine nanowire aspect by
imposing a spatially constant chemical potential μ with an
effective g factor and a SC proximitized gap � in the weak
SC-SM coupling limit [71,72]. Thus HSC-SM here is given sim-
ply by the last term �τx in Eq. (2). Unless otherwise specified,
the values of effective parameters in Eq. (2) are [8,29,39,73–
76] m∗ = 0.015 me (for the effective mass), where me is the
electron rest mass, � = 0.2 meV (for the proximity-induced
SC gap), μ = 1 meV (for the chemical potential), α =
0.5 eVÅ (for the spin-orbit coupling), and the length of the
nanowire L = 1 μm [28,30,33,34] (for the short wire) or 3 μm
(for the long wire). (This choice of parameters corresponds
approximately to the InSb-Al hybrid SC-SM systems.) We
calculate all the energy spectra numerically by discretizing the
continuum Hamiltonian into a finite difference tight-binding
model [77] and then exactly diagonalizing the corresponding
Hamiltonian matrix. The tight-binding model is diagonalized
for different values of VZ to obtain the corresponding eigen-
values and eigenvectors utilizing Arnoldi iteration technique

[78] for sparse matrices (except for the Hamiltonian in the
presence of the self-energy discussed next). The schematic of
a pristine nanowire (“good”) model is shown in Fig. 1(a).

B. Self-energy

Under real experimental conditions, the weak SC-SM cou-
pling limit, i.e., HSC-SM = �τx as in Eq. (2), may not be
sufficient to describe the system, especially for those involv-
ing epitaxial aluminum (Al) as the parent SC [25,79,80].
Therefore we consider the proximity effect in an intermediate
regime within a Green’s function approach [19,71,72]. Note
that the SC proximity effect is due to the electrons in the
SM nanowire penetrating into the covering parent SC segment
and vice versa. To approximate this effect, one can construct
a microscopic tight-binding model between the SC and the
SM, integrate out the SC degrees of freedom, and replace the
parent SC by a self-energy [5,46,71,72,81,82]

	(ω) = −γ
ω + �0τx√
�2

0 − ω2
, (3)

where γ is the effective SC-SM coupling (tunneling) strength,
ω is the energy, and �0 is the bulk parent SC gap. Un-
less otherwise specified, these values of parameters are used
throughout: γ = 0.2 meV and �0 = 0.2 meV Explicitly, the
Hamiltonian then becomes energy-dependent including the
self-energy

HSE(ω) =
(

− h̄2

2m∗ ∂2
x − iα∂xσy − μ

)
τz + VZσx + 	(ω).

(4)

Since the Hamiltonian is ω-dependent in the presence of the
self-energy, it can be solved self-consistently in an iterative
manner for each energy state [83]. Note that the self-energy
term 	(ω) in Eq. (4) represents the coupling term HSC-SM of
Eq. (1).

One of the practical problems encountered in experiments
is that the bulk SC gap of the parent superconductor is
suppressed by the applied magnetic field, and often in fact
vanishes for sufficiently large Zeeman field [43]. To better
simulate the real experimental situation, [28–35] we therefore
further consider a VZ-dependent bulk SC gap, where it col-
lapses at some experimentally determined nonuniversal VC,
namely, the constant �0 in Eq. (3) is then replaced by [46]

�0(VZ) = �0(VZ = 0)

√
1 −

(
VZ

VC

)2

θ (VC − VZ), (5)

where θ (. . . ) is the Heaviside-step function indicating that
the SC gap will never reopen once it has collapsed since
the parent bulk SC gap has vanished causing a complete
disappearance of the proximity effect in the SM. As such
regimes of gap collapsing VZ are not of our interest, we do not
extend Zeeman field VZ in the numerical calculated tunneling
conductance spectra beyond the SC collapse field VC (i.e., the
theory throughout the paper is only discussed within VZ < VC,
and should not be applied to the regime of VZ > VC). Thus the
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Hamiltonian with the self-energy Eq. (3) then becomes

H̃SE(ω) =
(

− h̄2

2m∗ ∂2
x − iα∂xσy − μ

)
τz + VZσx + 	(ω,VZ),

(6)

where

	(ω,VZ) = −γ
ω + �0(VZ)τx√
�2

0(VZ) − ω2
. (7)

Equation (6) along with Eqs. (7) and (5) are the Hamiltonian
to produce most of the numerical results in the main text.
In essence, the reason for including the self-energy with
the bulk VZ-dependent SC gap collapse is to introduce the
renormalization effects by the parent SC. The functional form
of the SC gap collapse Eq. (5) is chosen merely because
it phenomenologically simulates well the real experimental
situation–any other smooth form of the parent SC gap collapse
does not change any aspect of our results or conclusions.

We will show results both with and without the self-energy
term to distinguish weak- and intermediate-coupling SC-SM
systems in Appendix A. In the main text, only results with the
self-energy are presented since the self-energy effect is crucial
under real experimental conditions. (Note that we call the
results with self-energy “intermediate-coupling” rather than
“strong-coupling” since the strongly coupled SC-SM repre-
sents the situation where the SC completely overwhelms the
SM nanowire, leading to very unfavorable conditions for the
creation of MZMs–weak-coupling and intermedate-coupling
situations, without and with the self-energy respectively, are
the experimentally relevant situations.)

C. Quantum dot

The previous Hamiltonian in Eq. (2) describes a pristine
“good” nanowire without any disorder, i.e., HV = 0. However,
the presence of an unintentional quantum dot at the end
of the nanowire may be inevitable under real experimental
conditions due to the mismatch of Fermi energy between the
normal lead and the SM nanowire by creating a Schottky
barrier [46,84]. Therefore, although the quantum dot may not
be intentionally introduced in experiments, it is expected to
be quite ubiquitous in many SC-SM nanowire experimental
setups [28,29,31,75]. Theoretically, the “quantum dot” is a
potential fluctuation at the end of the nanowire which is a
short segment uncovered by the parent SC. Since it is a zero-
dimensional object, the quantum dot usually appears at the
contact point connecting the SM nanowire to the lead. Thus
the quantum dot will play a role in HV = V (x), where V (x) is
simply chosen as a Gaussian barrier. Namely, the quantum dot
potential is given by

V (x) = VD exp

(
−x2

l2

)
θ (l − x), (8)

where VD defines the peak of the dot barrier and l is the length
of the quantum dot. Here VD and l are the parameters modeling
the quantum dot. By intensive numerical calculations, we
ensure that the specific form of the quantum dot potential does
not qualitatively modify the results [46,85]. Consequently, the
BdG Hamiltonian of SC-SM nanowire with a quantum dot

then becomes

HQD =
(

− h̄2

2m∗ ∂2
x − iα∂xσy − μ + VDe− x2

l2 θ (l − x)

)
τz

+VZσx + �θ (x − l )τx, (9)

where θ (x − l ) is included to account for the partially cov-
ering parent SC (i.e., the SC is absent over a length l at the
end of the nanowire). For the same reason, we incorporate
the self-energy Eq. (3) as well for the finer simulation of
experimental results in the presence of the quantum dot. Thus
the Hamiltonian in the presence of the quantum dot and the
self-energy then becomes

HQD,SE(ω) =
(

− h̄2

2m∗ ∂2
x − iα∂xσy − μ + VDe− x2

l2 θ (l − x)

)
τz

+VZσx − γ
ω + �0(VZ)τx√
�2

0(VZ) − ω2
θ (x − l ). (10)

The schematic of the nanowire with a quantum dot is shown in
Fig. 1(b). This is one of our “bad” situations, with the possibil-
ity of ZBCPs arising from the quantum dot. The second “bad”
situation with an inhomogeneous potential along the whole
wire, in contrast to a potential fluctuation just at the end, is
discussed below.

D. Inhomogeneous potential

The inhomogeneous potential is an alternative mecha-
nism producing ZBCP in the topologically trivial regime
[66,69,84,86–88]. This is the second type of “bad” situation
we consider. To be specific, the inhomogeneous potential is a
smooth confining potential in the SM due to charged impuri-
ties in the environment or the gate voltage [25,29,31,75,89].
In the theoretical model, we use, similar to the quantum dot
case above, a Gaussian smooth confining potential [66,69]

V (x) = Vmax exp

(
− x2

2σ 2

)
, (11)

where Vmax defines the height of confining potential and
σ controls the linewidth of the inhomogeneous potential.
Therefore the BdG Hamiltonian of the nanowire with an
inhomogeneous potential is

Hinhom =
(

− h̄2

2m∗ ∂2
x − iα∂xσy − μ + Vmaxe− x2

2σ2

)
τz

+VZσx + �τx. (12)

We note that both types of “bad” situations, the quantum dot
and inhomogeneous potential, can be construed to produce an
effective spatially varying chemical potential μ − V (x) in the
BdG equations defined by Eqs. (9) and (12), respectively, with
the only difference between the two “bad” cases being the way
inhomogeneous potential in V (x) arises. A slight difference
in the theoretical model between the quantum dot and the
inhomogeneous potential case lies in the spatial extent of the
parent SC segment covering the nanowire. Unlike the quan-
tum dot case, the parent SC fully covers the SM nanowire in
the “bad” situation of the inhomogeneous potential. We may
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also incorporate the self-energy Eq. (3) here, and the Hamil-
tonian then becomes

Hinhom,SE(ω) =
(

− h̄2

2m∗ ∂2
x − iα∂xσy − μ + Vmaxe− x2

2σ2

)
τz

+VZσx − γ
ω + �0(VZ)τx√
�2

0(VZ) − ω2
. (13)

The schematic of the nanowire with the inhomogeneous po-
tential is shown in Fig. 1(c). This is our second type of the
“bad” situation.

E. Disorder

There are two completely distinct aspects of disorder we
study in our work. We show that the pristine MZM-induced
topological ZBCPs, if they exist in the system, are to a large
extent immune to the effects of disorder by virtue of their
topological robustness. Thus the “good” ZBCPs are robust to
disorder effects. By contrast, disorder by itself can produce
trivial ZBCPs, which mimic MZM-induced ZBCPs, compli-
cating the interpretation of experimentally observed ZBCPs.

Under real experimental conditions, unintentional disor-
der is unavoidable, and therefore, disorder may also play
an important role in the emergence of topologically trivial
ZBCP [40–42,53,55,88,90–96]. In essence, the superconduct-
ing nanowire which hosts the Majorana modes acts like an
effective p-wave SC [97–99] which is not necessarily immune
to nonmagnetic disorder [52,100]. We first introduce disoder
in the chemical potential as Vimp(x) in Eq. (1) [40], i.e.,
HV = Vimp(x). Vimp(x) is a random potential represented by
an uncorrelated Gaussian distribution with zero mean value
and standard deviation σμ, i.e., Vimp(x) ∼ N (0, σ 2

μ), where
N (μ, σ 2) denotes a Gaussian distribution with mean value of
μ and variance of σ 2. We clarify that the impurity potential is
randomly generated and the results in Sec. III are shown for a
specific configuration of randomness without averaging over
disorder. Thus the Hamiltonian Eq. (2) then becomes

Hdisorder,μ =
(

− h̄2

2m∗ ∂2
x − iα∂xσy − μ + Vimp(x)

)
τz

+VZσx + �τx, (14)

and the Hamiltonian in the presence of the self-energy Eq. (3)
then becomes

Hdisorder,μ,SE(ω) =
(

− h̄2

2m∗ ∂2
x − iα∂xσy − μ + Vimp(x)

)
τz

+VZσx − γ
ω + �0(VZ)τx√
�2

0(VZ) − ω2
. (15)

The schematic of disorder in the chemical potential is shown
in Fig. 1(d). This is the “ugly” situation in the presence
of a large amount of disorder. Here we can think of the
chemical potential itself having random spatial disorder with
the effective random chemical potential being μ − Vimp(x).

For completeness, we additionally introduce disorder in the
effective g factor and the SC gap in our theoretical model.
Since the Zeeman field is related to the applied magnetic field
and the definite value of g in experiments is unknown [83],

we avoid directly handling the random g factor by transferring
its randomness to VZ. Thus we define a dimensionless factor
g̃(x) = g(x)/ḡ, where g(x) is the random g factor and ḡ stands
for its mean value. Since VZ is linearly proportional to g,
g̃(x) also equals VZ(x)/V̄Z . We randomize g̃(x) in the form of
Gaussian distribution N (1, σ 2

g ) as before. Note that, to avoid
the possibility of a physically meaningless negative g factor,
the standard deviation σg cannot be set too large. With the
random VZ(x) = g̃(x)V̄Z , the Hamiltonian (2) becomes

Hdisorder,g =
(

− h̄2

2m∗ ∂2
x − iα∂xσy − μ

)
τz + VZ(x)σx + �τx

and the Hamiltonian with the self-energy Eq. (4) then be-
comes

Hdisorder,g,SE(ω) =
(

− h̄2

2m∗ ∂2
x − iα∂xσy − μ

)
τz

+VZ(x)σx − γ
ω + �0(VZ)τx√
�2

0(VZ) − ω2
. (16)

The schematic of disorder in the effective g factor is shown in
Fig. 1(e). This type of Zeeman disorder in the effective g factor
is the second mechanism leading to create “ugly” ZBCPs.

The last type of disorder we consider is in the SC gap.
It can be defined as �(x) ∼ N (�, σ 2

�) in Eq. (2) without
the self-energy or �0(x) ∼ N (�0, σ

2
�0

) in Eq. (4) with the
self-energy. Again, to avoid any unphysical negative SC gap,
the standard deviation should not be too large. Thus the
Hamiltonian (2) then becomes

Hdisorder,� =
(

− h̄2

2m∗ ∂2
x − iα∂xσy − μ

)
τz + VZσx + �(x)τx

and the Hamiltonian utilizing the self-energy term (3) be-
comes

Hdisorder,�0,SE(ω) =
(

− h̄2

2m∗ ∂2
x − iα∂xσy − μ

)
τz

+VZσx − γ
ω + �0(x;VZ)τx√
�2

0(x;VZ) − ω2
. (17)

The schematic of disorder in the SC gap is shown in Fig. 1(f).
In Sec. III, we will show that neither the topological MBS-
induced ZBCP is destroyed due to this gap disorder nor
any trivial ABS-induced ZBCP is created in the presence of
disorder in the SC gap. Thus this is another subcategory of
the “good” ZBCPs in contrast to both chemical potential and
Zeeman disorder which lead to ugly ZBCPs. Although the
topological MZMs are protected against some gap disorder
[101], a very large gap disorder obviously destroys the MZMs
since it suppresses the topological superconductivity itself
[55,96].

F. Spatial wave function

Since all of our foregoing models, after discretization, are
based on the tight-binding approximation, we can obtain the
wave functions straightforwardly by diagonalizing the BdG
Hamiltonian. Specifically, for an N-site system, the dimension
of the Hamiltonian is 4N-by-4N where the factors of 4 are
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due to the Nambu spinor basis (c↑, c↓, c†↓,−c†↑)
T

. Therefore
the corresponding component on the same site should be
summed up to obtain an N-component wave function |ψ (xi )|2.
The trivial ABSs are distinct from the topological MBSs in
the spatial separation between the localized bound states in the
nanowire, where ABS in the topologically trivial regime are
two highly-overlapping (or only partially separated) Majorana
modes at one end of the nanowire; MBS in the topological
regime are two well-separated Majorana modes at both ends
of the nanowire [67–69]. Thus the trivial ABSs here are in
fact quasi-MZMs except that the localized modes overlap too
strongly for them to be considered in isolation. Therefore,
to identify the ABS-induced ZBCP, we need to convert the
wave function from the particle-hole basis to the Majorana
basis. To properly address the self-antiparticle property of
Majorana fermion, the creation (equivalently, annihilation)
operator γ can be considered as one half of the “regular”
fermion. Thus we combine two Majorana zero modes to form
one well-defined regular fermion [3,102], i.e.,

c = (γ1 + iγ2)/2, c† = (γ1 − iγ2)/2. (18)

Thus the two wave functions in the Majorana basis can be
represented by the spatial wave function ψ (x) as [69]

φ1(x) = 1√
2

(ψε (x) + ψ−ε (x)),

φ2(x) = i√
2

(ψε (x) − ψ−ε (x)), (19)

where ψε (x) (ψ−ε (x)) is the wave function in the Nambu
spinor basis with energy ε (−ε) in the electron (hole) channel
and φ1,2(x) are two wave functions in the Majorana basis in
the same energy level. Note that φ1,2(x) are generally not
the eigenstates of Hamiltonian Eq. (1) unless ε = 0 when
they in fact represent the zero-energy Majorana mode. The
quasi-Majorana ABSs have small, but finite energy, which is
close to zero, but not exactly zero. The detailed results of
wave function calculations in the Majorana basis are presented
in Appendix B. The energy spectra (eigenvalues), which are
also shown in Appendix B, can be obtained along with the
corresponding wave function (eigenvector) when the BdG
Hamiltonian at each Zeeman field is diagonalized.

G. Differential conductance spectrum

To simulate the experimental measurement of tunneling
conductance G = dI/dV [29–35,75], we attach a normal lead
to the end of the nanowire and numerically calculate the
tunneling conductance through the NS junction using the S
matrix method. The normal lead has the same Hamiltonian as
the SC-SM nanowire except for the absent SC term, i.e.,

Hlead =
(

− h̄2

2m∗ ∂2
x − iα∂xσy − μ + Elead

)
τz + VZσx (20)

where Elead ∼ −25 meV is an additional on-site energy in the
lead controlled by the voltage of the tunnel gate [46]. The
tunneling barrier Z ∼ 10 meV is added on the first site in
the nanowire at the interface of the NS junction [103]. We
use KWANT to compute the S matrix [104]. Since the cal-
culation technique is well-established, we refer the reader to

existing references for technical details [47,77,87,104–117].
The schematic for the simulated model is in Fig. 1 under six
distinct aforementioned situations [from (a) to (f)]: the pristine
nanowire, the nanowire in the presence of the quantum dot, the
nanowire in the presence of the inhomogeneous potential, the
nanowire in the presence of disorder in the chemical potential,
the nanowire in the presence of disorder in the effective g
factor, and the nanowire in the presence of disorder in the SC
gap.

We insert a set of discrete VZ into the Hamiltonian and
calculate the differential conductance as a function of Vbias

from −0.3 to 0.3 mV. The conductance varies between G = 0
and 4e2/h because of two spin channels in general [108]. We
present two-dimensional color plots, where the two axes are
VZ and Vbias, to visualize the pattern of conductance spectra,
with red indicating quantized conductance 2e2/h and blue
indicating zero conductance. The numerical results for the
tunneling conductance are presented in Sec. III.

H. Dissipation and temperature

In the experimental situation, there is invariably some
dissipation in the nanowire because of coupling to the envi-
ronment, which we simulate phenomenologically by adding
a dissipative term to the diagonal part of the BdG Hamil-
tonian [105]. Dissipation also introduces a particle-hole
asymmetry in the observed tunneling conductance at finite
voltages which is not present in the dissipationless BdG
formalism by virtue of the exact particle-hole symmetry
[105]. In reality, the experiments are at the temperature
T ∼ 20 mK [30,33]. To include finite temperature effect, the
conductance spectrum is calculated as a convolution with
the derivative of Fermi distribution at finite temperature.
The dissipation and finite temperature effects are already
taken into account by following recent works in the literature
[19,40,42,77,85,87,90,103,105,118]. Thus we do not intend
to discuss the effect of the dissipation and finite temperature
throughout the paper by sticking to zero temperature and small
dissipation (� = 10−4 meV) in all numerical results.

III. RESULTS

We emphasize that our definitions for good, bad, and ugly
physical mechanisms are both mathematically and physically
sharply defined with no ambiguity as shown clearly in Fig. 1.
Physically, the good situation is pristine MZM with little
background disorder and a constant chemical potential; the
bad situation has a spatially varying (but deterministic) chem-
ical potential with no random disorder; the ugly case has
strong random disorder. Mathematically, the three situations
are distinguished by the term HV in the Hamiltonian defining
the BdG equation [see Eq. (1)] with HV being a constant
(“good”), spatially varying in a deterministic manner (“bad”),
and strongly random (“ugly”). Thus the three situations,
good/bad/ugly, are both physically and mathematically dis-
tinct.

In this section, we show representative numerical results
for the calculated differential tunneling conductance as a func-
tion of Vbias and VZ in Figs. 2–6. The complete correlation con-
ductance measurements from both ends of the nanowire are
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FIG. 1. The schematic of the NS junction composed of a lead
and (a) pristine nanowire with a constant SC gap � in the clean limit
V (x) = 0; (b) nanowire with a quantum dot V (x) and a partially
covered parent SC; (c) nanowire with an inhomogeneous potential
V (x) and a constant SC gap �; (d) nanowire with disorder V (x) in the
chemical potential; (e) nanowire with disorder g̃(x) in the effective g
factor; and (f) nanowire with disorder in the SC gap �(x).

shown in Appendix A. Our goal is to simulate stable ZBCPs as
observed experimentally, taking into account various possible
experimental situations, including the pristine nanowire, the
nanowire in the presence of the quantum dot, in the presence
of the inhomogeneous potential, in the presence of disorder
in the chemical potential, in the presence of disorder in the
effective g factor, and in the presence of disorder in the SC
gap, within a unified formalism keeping all system parameters
the same except for the specific mechanism leading to that
ZBCP. Based on the nature of the ZBCP sticking to zero
energy (as well as the underlying physical mechanism), we
classify the conductance results into three types: the good (in
Sec. III A), the bad (in Sec. III B), and the ugly (in Sec. III C).
We emphasize that all ZBCPs other than the good ones are
topologically trivial since the ZBCPs begin to stick to zero
energy in these trivial cases before the nominal TQPT. This

FIG. 2. (a) and (b) show an example of the good ZBCP in a
pristine nanowire with the self-energy in a 1 μm wire. The color
plots show the differential tunneling conductance G as a function of
VZ (x axis) and Vbias (y axis) from the left lead (left column) and
the right lead (right column). The SC gap collapse VC = 3 meV.
The TQPT is labeled in the white dashed line at VZ = 1.02 meV.
The complete correlation conductance measurements are shown in
Fig. 11; (c) and (d) show an example of the good ZBCP in the
presence of a small amount of disorder in the chemical potential in
a 1 μm wire. The parameters are: standard deviation of disorder in
the chemical potential σμ = 0.4 meV, SC gap collapse VC = 3 meV.
The TQPT is labeled in the white dashed line at VZ = 1.02 meV.
The complete correlation conductance measurements are shown in
Fig. 12; (e) and (f) show an example of the good ZBCP in the
presence of disorder in the SC gap in a 1 μm wire. The parameters
are: standard deviation of disorder in the gap σ� = 0.06 meV, mean
parent SC gap �0 = 0.2 meV, and SC gap co llapse VC = 3 meV.
The TQPT is labeled in the white dashed line at VZ = 1.02 meV.
The complete correlation conductance measurements are shown in
Fig. 13.

triviality is reinforced from the wave functions in the Majo-
rana basis in Appendix B, where the two Majorana modes are
not well-separated for the bad and the ugly cases in spite of
the occurrence of ZBCPs.

In addition, we notice that by including the self-energy
with a gradual-collapsing SC gap (as happens experimen-
tally), the amplitude of the ZBCP oscillation is significantly
suppressed as VZ increases. For each type of ZBCP, the
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left-right correlation conductance measurements are also dis-
cussed. Although the end-to-end correlation measurement can
be, in principle, used to distinguish MBS from ABS in long
wires, we show that the nonlocal end-to-end measurements in
short wires can trivially manifest such correlations, which ren-
ders the current end-to-end measurement experiments at best
inconclusive [119,120]. Besides presenting the conductance
spectrum as a function VZ, we also present conductance results
for zero magnetic field in Sec. III D, which qualitatively repro-
duce the experiments in Ref. [119]. Obviously, the observed
existence of subgap states at zero magnetic field indicates the
presence of substantial disorder in the system which casts
serious doubt on the topological nature of the corresponding
finite field ZBCPs.

A. The good ZBCP

The good ZBCP arises from the genuine topological Majo-
rana mode which occurs beyond the TQPT. First, we present
the results of good ZBCPs in the pristine nanowire model in
Figs. 2(a) and 2(b). The schematic of the pristine model is
shown in Fig. 1(a). In Figs. 2(a) and 2(b), the chemical poten-
tial and the SC gap are all simply constant without any dis-
order. The identical nonlocal conductance correlated between
the two ends as shown in Fig. 2 manifests the most ideal the-
oretical instance of the good ZBCP, where the ZBCP is com-
pletely topological and appears only beyond the TQPT [67].

The good ZBCP arising from MZM remains immune to
some finite amount of disorder as shown in Figs. 2(c) and
2(d). In Figs. 2(c) and 2(d), we provide an example of the
good ZBCP in the presence of weak disorder in the chem-
ical potential with a Gaussian distribution of variance σμ =
0.4 meV, which accounts for 40% of the chemical potential.
The corresponding schematic is in Fig. 1(d). We find no ZBCP
emerging in the trivial regime below TQPT, and the topolog-
ical ZBCP with the Majorana oscillation emerging beyond
the TQPT in the usual manner. The nonlocal conductance
measurements are almost identical from both ends exhibiting
the expected Majorana correlations from the two ends.

Another type of disorder is also found to have a modest
impact on the good ZBCP as in Figs. 2(e) and 2(f), where
we show the calculated conductance for SC gap disorder. The
corresponding schematic is in Fig. 1(f). The strength of the
random gap disorder is parameterized by the standard devia-
tion of 0.06 meV, which accounts for 30% of the mean SC gap.
Note that, we avoid using a very large strength of disorder to
preserve the SC gap, otherwise, the SC gap has a possibility
to be negative which would be unphysical. In the presence
of disorder in the SC gap, we again find that the topological
ZBCP, occurring beyond the TQPT, is relatively immune to
disorder, and no trivial ZBCP is induced below the TQPT.
To show that we are not deliberately choosing particular
random configurations, we provide more disorder-averaged
conductance spectra in Appendix A, where we observe a
robust ZBCP beyond the TQPT. Thus the good ZBCP survives
weak disorder in the chemical potential and the SC gap.

B. The bad ZBCP

The bad ZBCP is topologically trivial because it ex-
ists below the TQPT. In Fig. 3, we present the calculated

FIG. 3. Two examples of the bad ZBCP due to the quantum
dot in (a) and (b) and the inhomogeneous potential in (c) and
(d) respectively with the self-energy in a 1 μm wire. The left (right)
column shows the conductance measured from the left (right) lead.
For the quantum dot case [(a) and (b)], the parameters are: SC
gap collapse VC = 1 meV, the peak value of the Gaussian-shaped
quantum dot VD = 1.7 meV, and the size of the quantum dot l =
0.2 μm. For the inhomogeneous potential case [(c) and (d)], the
parameters are: SC gap collapse VC = 1 meV, the peak value of
the Gaussian-shaped potential confinement Vmax = 1.4 meV, and
the linewidth σ = 0.15 μm. The complete correlation conductance
measurements are shown in Fig. 14 for the quantum dot and Fig. 15
for the inhomogeneous potential respectively.

conductance spectra for the nanowire in the presence of a
quantum dot at its end, as shown in Fig. 1(b). In Figs. 3(a)
and 3(b), we find that two ABSs coalesce into a zero-
energy bound state producing a stable ZBCP from VZ = 0.6
to 0.9 meV. These two ABSs anticross at zero energy for
several times before VZ reaches the TQPT. If the amplitudes
of anticrossings are tiny, within the finite energy resolution
scale in experiments (where thermal broadening also provides
a finite energy resolution around zero energy), these anti-
crossings may be incorrectly identified as ZBCPs although
they arise from almost-zero-energy trivial ABSs, not from
isolated MBSs. Apart from the fact that the trivial ZBCPs
arise below the TQPT, the trivial ZBCPs also differ from the
topological ZBCPs in the amplitude of the ZBCP oscillation.
In short nanowires (L = 1 μm), the true Majorana-induced
ZBCP should have a prominent oscillation in the topological
regime [as shown in the right of the white dashed line in
Figs. 2(a) and 2(b)]. However, in Figs. 3(a) and 3(b), the
ZBCP only has a small amplitude of the ZBCP oscillation.
Admittedly, one could go to a very high magnetic field to
measure the amplitude of the ZBCP oscillation, but this may
not be feasible because the SC gap may collapse at such a high
magnetic field. Thus, if the SC gap collapses even below the

013377-9



HAINING PAN AND S. DAS SARMA PHYSICAL REVIEW RESEARCH 2, 013377 (2020)

FIG. 4. Two examples of the ugly ZBCP in the presence of a
large amount of disorder in the chemical potential with the self-
energy in the 1 μm wire. (a) and (b) share a common configuration
of disorder; (c) and (d) share another common one. The left(right)
column shows the conductance measured from the left(right) lead.
The parameters are: standard deviation of disorder in the chemical
potential σμ = 1 meV, SC gap collapse VC = 1.2 meV. The nominal
TQPT is labeled in the white dashed line at VZ = 1.02 meV. The com-
plete correlation conductance measurements are shown in Fig. 16.

TQPT (e.g., VC = 1 meV shown in Fig. 3 is smaller than the
nominal TQPT 1.02 meV), one will never expect to observe
the real Majorana mode under such a situation. We believe
that in most of the current experimental samples, the bulk SC
gap collapse happens before the TQPT is reached, dooming
any manifestation of the MZMs.

Besides the quantum dot, the inhomogeneous potential [as
shown in Fig. 1(c)] can also induce the bad ZBCP as shown in
Figs. 3(c) and 3(d). We take the same Gaussian form of V (x)
in the inhomogeneous potential case as in the quantum dot
case except that the potential is now extended over the bulk of
the nanowire instead of being confined to the end as it is for
the quantum dot. Thus both quantum dots and inhomogeneous
potential induce bad ZBCPs below the TQPT.

C. The ugly ZBCP

The ugly ZBCP induced by disorder is also topologically
trivial. In Fig. 4, we present two distinct configurations of
the random disorder in the chemical potential, where the
schematic is shown in Fig. 1(d). Figures 4(a) and 4(b), which
are calculated conductance from the left and right lead, re-
spectively, share a common disorder configuration; Figs. 4(c)
and 4(d) share another common configuration. The disorder-
induced ugly ZBCPs are ubiquitous. We note that the disorder
configuration in a given sample is not necessarily fixed and
most likely changes as various gate voltages are tuned to

FIG. 5. Two examples of the ugly ZBCP in the presence of
disorder in the effective g factor with the self-energy in the 1 μm
wire. (a) and (b) share a common configuration of disorder; (c) and
(d) share another common one. The left (right) column shows the
conductance measured from the left (right) lead. The parameters are:
standard deviation of disorder in the effective g factor is σg = 0.8,
SC gap collapse VC = 1.2 meV. The nominal TQPT is labeled in
the white dashed line at VZ = 1.02 meV. The complete correlation
conductance measurements are shown in Fig. 17.

optimize the zero-bias peaks, as is the common experimental
practice. (The same happens also in thermal cycling.) For
example, the occurrence of the disorder-induced ZBCP in
Fig. 4(a) could shift from the left lead to the right lead as
shown in Fig. 4(d). In addition, under the same configuration
of disorder [e.g., Figs. 4(a) versus 4(b), and Fig. 4(c) versus
4(d)], we also find the end-to-end correlation from both ends,
although this arises here simply due to the shortness of the
wire. Thus ugly disorder is capable, particularly when gate
voltages are tuned so as to modify the disorder configuration
in a given sample, of producing well-correlated ZBCPs in
nanowires although these ZBCPs are completely trivial. Of
course, it is possible that the end-to-end correlations are
absent for ugly ZBCPs in a given situation (even for a short
wire) since the correlations in the trivial ZBCPs depend on
many details and are not a universal nonlocal property. More
examples are provided in Appendix A.

For completeness, we also study the nanowire in the pres-
ence of disorder in the effective g factor and obtain qualita-
tively similar results as presented in Fig. 5. This corresponds
to the schematic shown in Fig. 1(e). Again, Figs. 5(a) and 5(b)
share a common disorder configuration; Figs. 5(c) and 5(d)
share another common configuration. Therefore we conclude
that, in the short wire, the disorder-induced trivial ABS not
only resembles Majorana-induced ZBCP, but also manifests
the pseudo end-to-end correlation from two ends, which could
be very misleading in experiments. We emphasize again that
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FIG. 6. The conductance spectra as a function of the chemical potential μ and Vbias at zero magnetic field in the 1 μm wire with the self-
energy. The first (second) row shows the conductance measured from the left (right) lead. Note that the range of the conductance is 0 ∼ 4e2/h
here. (a) and (f) are in the pristine nanowire case. (b) and (g) are in the presence of a quantum dot with the peak value of VD = 1.7 meV and
the size of l = 0.2 μm. (c) and (h) are in the presence of an inhomogeneous potential with the peak value of Vmax = 1.4 meV and the linewidth
σ = 0.15 μm. (d), (i), (e), and (j) are in the presence of disorder in the chemical potential with two distinct configurations. The standard
deviation of disorder is σμ = 3 meV.

whether end-to-end correlations are present for ugly ZBCPs
depend on many details, and short wires may or may not
manifest end-to-end correlations for ugly ZBCPs in specific
instances. The important point is that the existence of end-
to-end conductance oscillations cannot be construed to be a
smoking gun evidence for good ZBCPs since ugly ZBCPs
manifest them do (as do the bad ZBCPs also) in many
instances.

D. Zero magnetic field

All preceding conductance spectra are calculated for a
fixed chemical potential μ as a function of VZ; however, we
additionally show the nonlocal end-to-end conductance mea-
surement at zero magnetic field as a function of the chemical
potential in Fig. 6 to theoretically reproduce the experiment
in Ref. [119]. In Fig. 6, the left (right) lead measurements
are shown in the first (second) row. All three mechanisms
(good, bad, ugly) discussed in this article are presented in
Fig. 6. The first column is for the pristine nanowire; the second
and third column are in the presence of the quantum dot
and inhomogeneous potential respectively; the fourth and fifth
columns are both in the presence of disorder in the chemical
potential. Two separate conductance spectra in the ugly case
due to two different configurations are presented here again to
demonstrate that the specific disorder choice is not important
for the physics being discussed. Since the nanowire is short
(L = 1 μm), the nonlocal conductance measurements are triv-
ially correlated. In addition, we notice that the bad and ugly
cases will bring down the fermionic subgap states to lower
energies as opposed to the good case. This is particularly
noticeable for the bad case in Fig. 6 where the subgap trivial

states at zero field happen to be almost near zero energy
although the system is simply a nontopological s-wave BCS
superconductor by construction. Therefore, whenever there
is strong disorder in the nanowire, there could be prominent
fermionic subgap bound states at both ends of the wire, even
at zero magnetic field. This further implies that if one already
finds fermionic subgap states in the system, the chance of
seeing an ABS mimicking MBS will be highly enhanced at
finite magnetic fields, because those fermionic subgap states
could move to zero, and then anticross with each other, which
could produce trivial ZBCPs within the finite experimental
energy resolution. Thus it is important to ascertain that there
are no low energy subgap states in the nanowire at zero field
before embarking on the VZ-dependent search for ZBCPs in
the hybrid system.

IV. DISCUSSION

In this section, we focus on the experimental results and
attempt to fine-tune parameters to fit them. Figures. 7(a)
and 7(c) are from experimental Refs. [28,29], respectively;
Figs. 7(b) and 7(d) are the corresponding theoretical repro-
duction using our results after fitting and fine-tuning. Both
experimental observations are qualitatively reproduced by the
trivial ZBCPs in the presence of a certain disorder configura-
tion in the chemical potential through fine-tuning. Since the
exact experimental magnetic field for the TQPT is unknown,
[121] we are not able to directly determine whether the exper-
imental ZBCP is topological or not, but the fact that we can
reproduce the experimental ZBCP fairly well by using “ugly”
ZBCPs in our simulations establishes that the experimental
ZBCPs may very well arise simply from disorder. This is
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FIG. 7. (a) Tunneling conductance as a function of the magnetic
field at a small transmission rate to the lead. The darker color
indicates the smaller conductance. This experimental result is from
Ref. [28]; (b) fine-tuning parameters to fit (a); The ZBCP is the ugly
one with σμ = 1 meV; (c) tunneling conductance as a function of
the magnetic field. The redder color indicates the larger conductance.
This experimental result is from Ref. [29]; (d) fine-tuning parameters
to fit (d). The ZBCP is the ugly one with σμ = 1 meV.

also consistent with the experiment not observing any gap
reopening or ZBCP oscillations which should be concomitant
with the TQPT if the ZBCP is indeed arising from topo-
logical MZMs. We find that most experimentally observed
features are qualitatively reproduced by the disorder-induced
ugly ZBCP, including the vanishing amplitude of the ZBCP
oscillation with increasing magnetic field and the instability
of ZBCP over regimes of high magnetic fields. Namely, the
ZBCP will vanish approximately beyond B = 3 T in Fig. 7(a)
and B = 1 T in Fig. 7(c).

To be specific, we choose the experimental result in
Fig. 7(c) from the most compelling experimental paper [29]
in the subject entitled Quantized Majorana conductance and
present measured conductance from Ref. [29] at zero-bias
voltage as a function of the magnetic field in Fig. 9(a): The
conductance grows from zero up to a quantized value of
2e2/h, persists for a very short plateau before it drops. In
Fig. 9(b), we also show the measured conductance cut as a
function of the bias voltage at a fixed magnetic field: It is a
quantized peak at B = 0.88 T, where the maximal peak in
Fig. 9(a) is. However, this quantized value does not indicate
the topological state—we can easily reproduce the same sce-
nario with the manifestation of all these features by the ugly
ZBCPs shown in Fig. 10. In Figs. 10(e) and 10(f), we choose
an instance of ugly ZBCP from Fig. 4(a): The conductance
at zero-bias voltage also grows from zero to quantized 2e2/h
and then drops. We also see a quantized peak in Fig. 10(f),
which plots the conductance as a function of bias voltage at
the maximal peak in Fig. 10(e). Using another disorder profile
in Fig. 4(d) does not change the scenario qualitatively, which

FIG. 8. Conductance spectra measured from the left lead (the first row) and the right lead (the second row) in the long wire L = 3 μm.
(a) and (f) are the good ZBCP in the pristine nanowire with the SC gap collapse VC = 3 meV. (b) and (g) are the bad ZBCP in the presence
of the quantum dot with the peak value of VD = 0.6 meV and the size of l = 0.4 μm. The SC gap collapse is VC = 1 meV. (c) and (h) are the
bad ZBCP in the presence of the inhomogeneous potential with the peak value of Vmax = 1.2 meV and the linewidth of σ = 0.4 μm. The SC
gap collapse is VC = 1 meV. (d) and (i) are the ugly ZBCP in the presence of disorder in the chemical potential, where σμ = 1 meV. The SC
gap collapse is VC = 1.2 meV. (e) and (j) are the ugly ZBCP in the presence of disorder in the effective g factor, where σg = 0.6. The SC gap
collapse is VC = 1.2 meV.
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FIG. 9. (a) The conductance at the zero-bias voltage as a function
of the magnetic field. (b) The conductance cut as a function of the
bias voltage at the magnetic field of the maximal peak. Both of these
experimental results are from Ref. [29].

is shown in Figs. 10(g) and 10(h). In Figs. 10(i) and 10(j),
we show the conductance from the random matrix theory in
Ref. [64], which also manifests this unstable “quantization
plateau”. In Ref. [64], we use the random matrix theory to de-
scribe the statistical features of this highly-disordered system
in a class-D ensemble, which only requires the particle-hole
symmetry. Obviously, the random matrix theory of Ref. [64]
produces only ugly conductance results since the physics is by
definition driven entirely by strong disorder. All the ZBCP we
generated are guaranteed to be topologically trivial because of
the even number of channels in the disordered system. Thus
both the phenomenological random matrix theory of Ref. [64],
which has only disorder in the model and nothing else, and our
fully microscopic theory with random disorder both reproduce
the observed “quantized conductance” behavior remarkably
well, reinforcing our claim that the observed ZBCPs, even the
apparently quantized ones, may easily arise from background
random disorder. We believe that the results shown in Figs. 7,
9, and 10, taken together, establish compellingly that the best
current experimentally observed ZBCPs most likely arise
from strong disorder, and fall into our “ugly” nontopological
category.

For direct comparison between ugly and good/bad results,
we also plot the typical conductance cuts for the good ZBCP
in Figs. 10(a) and 10(b): The conductance remains quantized
as VZ increases, where the nonquantized deviation is simply
due to the Majorana oscillation. For the bad ZBCP as shown
in Figs. 10(c) and 10(d), we find the conductance is typically
not quantized. Therefore the “quantization plateau” does not
appear—only the spikes appear as VZ increases. This turns
out to be a huge distinction between the bad ZBCP, where
conductance quantization is typically unstable, and the ugly
ZBCP, where the “quantization plateau” will persist at least
for a noticeable segment before it disappears. We find that it is
impossible to fine-tune parameters (e.g., quantum dot confine-
ment potentials) of the bad ZBCP case to reproduce the exper-
imental behavior shown in Fig. 9 whereas for the ugly case,
the necessary fine-tuning is no more involved than necessary
for the experimentalists to obtain conductance quantization.

Based on our direct comparison between our ugly results
and the experimental conductance quantization, as shown in
Figs. 7, 9, and 10, we are led to assert that the even the best
currently measured ZBCPs are likely to be “ugly” ZBCPs,

FIG. 10. [(a) and (b)] The conductance at zero-bias voltage and
at the Zeeman field of the maximal peak (labeled in black) respec-
tively in an instance of good ZBCP shown in Fig. 11(c). [(c) and (d)]
The conductance at zero-bias voltage and at the Zeeman field of the
maximal peak (labeled in black) respectively in an instance of bad
ZBCP shown in Fig. 3(b). [(e) and (f)] The conductance at zero-bias
voltage and at the Zeeman field of the maximal peak (labeled in
black) respectively in an instance of ugly ZBCP shown in Fig. 4(a) at
the temperature T = 58 mK. [(g) and (h)] The conductance at zero-
bias voltage and at the Zeeman field of the maximal peak (labeled in
black) respectively in an instance of ugly ZBCP shown in Fig. 4(d) at
the temperature T = 75 mK. [(i) and (j)] The conductance at zero-
bias voltage and at the Zeeman field of the maximal peak (labeled in
black) respectively from the random matrix theory in Ref. [64].
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i.e., trivial ZBCPs induced by strong random disorder in the
system. We emphasize, however, that if the random disorder is
suppressed in future better samples, our results in Figs. 2, 11,
and 12 in the Appendix show that topological MZMs should
emerge in Majorana nanowires. The disorder must be reduced
well below the average quantities (e.g., chemical potential, SC
gap, and Zeeman splitting) in order for the MZMs to manifest
themselves.

In addition, we compare the nonlocal correlation mea-
surements in the short wire (L = 1 μm) with the one in
the long wire (L = 3 μm). We note that the long and short
here refer only to the actual physical length of the wire,
and nothing else. The nonlocal correlation measurements
for each case (“good”/“bad”/“ugly”) in the short wire are
shown in Figs. 2–6. We additionally provide the nonlocal
conductance measurements in the long wire in Fig. 8. The
left lead and right lead measurements are in the first and
second row respectively. In Fig. 8, the first column is for
the pristine nanowire; the second to the fifth column are in
the presence of the quantum dot, inhomogeneous potential,
disorder in the chemical potential, and disorder in the effective
g factor, respectively. These nonlocal measurements inform
us of the properties of ZBCPs and the corresponding likely
mechanisms; for instance, in Figs. 8(a) and 8(f) (the good
case), the left and right measurements show conclusively
identical conductance spectra. For the bad and ugly cases
in the long wire, the ABS-induced ZBCPs are completely
uncorrelated as they are determined by the detailed shape
of the quantum dot, inhomogeneous potential or disorder
profile at both ends of the nanowire. However, it is a different
scenario in the short wire limit; for instance in Fig. 4 (the ugly
case), the ZBCPs measured from both ends will be trivially
correlated just because of the short wire. Imagine a scenario
where none of the physics being discussed here was known
theoretically and the very first experimental paper reported
results like Fig. 4, everything would be temptingly deemed
to be well-established as the discovery of topological MZMs
since it is a quantized zero-bias conductance peak and it is
nonlocal. Unfortunately, this conclusion would be most likely
incorrect as we know from the results presented in the current
work where we find that disorder induced ZBCPs mimic many
features of the MZM-induced ZBCPs, particularly in short
wires. The same is true for Fig. 5, where Figs. 5(a) and
5(b) as well as Figs. 5(c) and 5(d) appear to manifest similar
ZBCPs from both ends although the ZBCPS are purely ugly
and nontopological—thus reinforcing the conclusion that the
mere fine-tuned observation of end-to-end ZBCP correlations
by itself cannot be construed to be a signature or evidence
for topological MZMs. Purely ugly disorder induced ZBCPs
could manifest end-to-end correlations just accidentally. A
key problem is that there is no way to know a priori whether
the experimental wires are long or short since the nanowire
coherence length is completely unknown (and long or short
is defined with respect to the coherence length) although the
current experimental samples with L ∼ 1 micron are most
likely in the short wire regime. For the results of long wires in
Fig. 8, which are longer than the superconducting coherence
length, only the real MZM would have the perfect end-to-end
correlation. The trivial ABS, on the other hand, may have
a pseudo end-to-end correlation in the short wire (typically

shorter than 1 μm). This leads to the conundrum that although
the nonlocal correlation measurement, in principle, can serve
as a reliable diagnostic for MZMs, the prerequisite for this
indicator being the long nanowire limit may not be satisfied in
the experimental samples. Unless sufficiently long nanowires
(at least longer than the SC coherence length) can be fabri-
cated, the observation of the end-to-end correlation can never
prove the existence of topological MZMs. In fact, as a cau-
tionary note, we emphasize that such accidental end-to-end
correlations could happen for ugly ZBCPs even in the long
wire limit as shown in Figs. 16 and 17 of Appendix. This is
of course purely accidental with no significance except that if
one post-selects and fine-tunes experimental results, a certain
fraction of ugly ZBCPs will manifest apparent nontopological
end to end correlations which could be mistaken for the
nonlocal correlation of real topological MZMs. Of course,
generically, short wires do not manifest any end-to-end con-
ductance correlations arising from trivial ZBCPs as shown in
Appendix A, but the important point here is that trivial ZBCPs
in short (or even, long) wires can be correlated from the two
ends under suitable conditions, making the correlation test
not conclusive unless one can be sure that the experiment is
indeed being carried out in the no-disorder limit.

Many more numerical simulations for good, bad, and ugly
ZBCPs are presented in the appendices along with correlation
results. We also present wave functions and energy spectra in
the Appendices.

V. CONCLUSION

We have provided extensive numerical simulations for the
Majorana properties of semiconductor nanowires in the SC-
SM hybrid structures, taking into account the essential ef-
fects of disorder, including quantum dots and inhomogeneous
potentials along the wire as well as random disorder in the
chemical potential or the SC gap or the effective g factor. We
find three different types of tunneling zero-bias conductance
peaks: the good, the bad, and the ugly. The good ZBCPs
arise from the intrinsic topological properties of the system
for the Zeeman field above the topological quantum phase
transition point, with the ZBCPs from the two ends of the
wire showing a high level of correlations even in long wires
by virtue of the nonlocal topological properties of the system.
We show that good ZBCPs are immune to weak disorder in
the chemical potential and the superconducting gap, and are
robust to system parameters such as the chemical potential
or Zeeman field provided one is the topological regime (i.e.,
Zeeman field above the TQPT value). The bad ZBCPs arise
from quantum dots or other inhomogeneous potentials in the
nanowire, and are essentially quasi-Majorana modes where
the two MZMs, instead of being well-separated as in the good
case, overlap with each other giving rise to near-zero-energy
Andreev bound states. These ABSs produce trivial ZBCPs for
Zeeman field values below TQPT, mimicking many properties
of good ZBCPs, including even the end-to-end correlation
properties in short wires. Since experimentally neither the
TQPT critical field nor the SC coherence length is known,
the mere observation of ZBCPs by themselves (or even
the observation of end-to-end correlations) hardly could be
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construed to be evidence supporting the existence of MZMs
in nanowires since bad ZBCPs are capable of mimicking the
properties of the good ZBCPs. The situation becomes worse
when strong random disorder is considered leading to “ugly”
ZBCPs, which are trivial, but may mimic all the properties
of good ZBCPs, including end-to-end correlations. Our direct
comparison with the available experimental data indicates that
most experimental ZBCP observations are consistent with the
ZBCPs being ugly although one can never be sure without
knowing what the TQPT field is and whether the nanowire
is long or short from a topological viewpoint. The fact that
subgap conductance and even some end-to-end conductance
correlations have been observed already for zero magnetic
field in nanowires [119] suggests that strong disorder is
playing a key role in the existing SC-SM samples, and the
observed ZBCPs are likely to be of the undesirable ugly type.

A key difference between the bad and the ugly ZBCPs
is the fact that the system manifesting bad ZBCPs should,
in principle, eventually manifest good ZBCPs at larger mag-
netic field values above the TQPT. By contrast, the strongly
disordered systems manifesting ugly ZBCPs cannot manifest
topological properties at any Zeeman field since disorder has
eliminated the TQPT. It may therefore appear that one should
be able to observe good ZBCPs in a system manifesting bad
ZBCPs simply by increasing the magnetic field so that the bad
ZBCPs below TQPT transmute to good ZBCPs above TQPT.
The same can also be achieved in principle by tuning the
chemical potential through the TQPT. Although theoretically
appealing, this crossover of trivial ZBCPs arising from ABS
to topological ZBCPs arising from MBS has never been
experimentally achieved because of the SC bulk gap collapse
problem in real nanowires, where with increasing field, the
bulk gap eventually collapses at some characteristic field
(∼1T), thus severely restricting the field range of the topo-
logical regime. In particular, if the gap collapse happens at
a field lower than the TQPT field, there is no hope ever of
observing the topological regime with true Majorana modes.
Current experiments suggest that this is the likely scenario,
making the gap collapse a very serious problem preventing
the existence of topological Majorana modes.

An equally serious problem is that most experimental
nanowires may be in the “short wire” (∼1 μm) regime, where
the concept of topology simply does not apply even if the sys-
tem is fairly disorder-free. In such a situation, the MBSs over-
lap producing near-zero-energy ABSs which then produce bad
ZBCPs. The fact that experimentally Majorana oscillations
are never seen, however, indicates that this situation may not
be the dominant scenario in the current experimental samples,
where strong random disorder and the associated ugly ZBCPs
arising purely from random disorder is the dominant physical
mechanism.

Our most important finding in this paper is that although
weak disorder does not adversely affect the topological prop-

erties of the MZMs, strong random disorder, with the root
mean square fluctuation of disorder being comparable or
larger than the average system parameter such as the SC gap
or the chemical potential, not only suppresses all topolog-
ical properties, but also introduces relatively stable ZBCPs
with conductance values ∼2e2/h, closely mimicking recent
experimental results. We have recently come to the same
conclusion using a phenomenological random matrix theory,
where we find disorder always produces zero-bias conduc-
tance peaks and a certain fraction of these peaks have values
relatively close to 2e2/h. Our current microscopic theory
for ugly ZBCPs should be considered complementary to the
random matrix theory of Ref. [64]. We therefore believe that
the existing experimentally observed ZBCPs in nanowires all
arise from strong disorder in the system, particularly since the
observed experimental behavior of these ZBCPs as functions
of magnetic field and gate voltage is very similar to what
we find in our “ugly” ZBCPs calculations. Our work clearly
indicates that further progress in the field can only be achieved
by reducing disorder in the system. Any effort to build
topological qubits out of the currently available nanowires
based on their apparent “quantized conductance” properties is
doomed to failure unless the background disorder is reduced
substantially, bringing the random variance well below the
average parameter values.

Our work reinforces the need for much cleaner wires for
progress in the field. In addition, one must control the gap
collapse problem so that higher Zeeman fields can be applied
to the system without suppressing the bulk superconductivity
completely. It would also be desirable to obtain estimates
for the actual coherence length in nanowires so that short
versus long wire regimes can be discerned quantitatively in the
experimental systems. We believe that without improvement
in these three directions (i.e., less disorder, longer wires,
no bulk gap collapse) it would be difficult to establish the
existence of topological Majorana modes.
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APPENDIX A: CORRELATION OF CONDUCTANCE
SPECTRA

In this section, the complete nonlocal correlation of con-
ductance spectra are presented including the pristine nanowire
in Fig. 11, a small amount of disorder in the chemical potential
in Fig. 12, disorder in the SC gap in Fig. 13, the presence of
a quantum dot in Fig. 14, the presence of the inhomogeneous
potential in Fig. 15, a large disorder in the chemical potential
in Fig. 16, disorder in the effective g factor in Fig. 17, and the
short but uncorrelated instances in Fig. 18.
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FIG. 11. The good ZBCP in two 1 μm pristine wires [shown in (a)–(d)] and two 3 μm pristine wires [shown in (c)–(h)]. The color plots
show the differential tunneling conductance G as a function of VZ (x axis) and Vbias (y axis) measured from the left lead (in the first row) and
the right lead (in the second row). Nanowires with the self-energy are shown in (b), (f), (d), and (h) and without the self-energy are shown in
(a), (c), (e), and (g). The SC gap collapse VC = 3 meV for the self-energy case. The TQPT is labeled in the white dashed line at VZ = 1.02
meV. The corresponding wave functions and energy spectra are shown in Fig. 19.
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FIG. 12. The good ZBCP in the presence of a small amount of disorder in the chemical potential for 1 μm wires [shown in (a), (b), (e), (f),
(i), and (j)] and 3 μm wires [shown in (c), (d), (g), (h), (k), and (l)]. The color plots show the differential tunneling conductance G as a function
of VZ (x axis) and Vbias (y axis) measured from the left lead (in the first row) and the right lead (in the second row). The third row shows the
disorder-averaged conductance over 200 samples; the first two rows are the conductance spectra under one specific configuration of disorder.
The standard deviation of disorder in the chemical potential σμ = 0.4 meV for wires both with the self-energy shown in (b), (d), (f), (h), (j),
and (l) and without the self-energy shown in (a), (c), (e), (g), (i), and (k). The SC gap collapse VC = 3 meV for the self-energy case. The TQPT
is labeled in the white dashed line at VZ = 1.02 meV. The corresponding wave functions and energy spectra are shown in Fig. 20.
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FIG. 13. The good ZBCP in the presence of a small amount of disorder in the SC gap for 1 μm wires [shown in (a), (b), (e), (f), (i), and
(j)] and 3 μm wires [shown in (c), (d), (g), (h), (k), and (l)]. The color plots show the differential tunneling conductance G as a function
of VZ (x axis) and Vbias (y axis) measured from the left lead (in the first row) and the right lead (in the second row). The third row shows
the disorder-averaged conductance over 200 samples; the first two rows are the conductance spectra under one specific configuration of
disorder. Mean proximity-indcued SC gap � = 0.2 meV/parent SC gap �0 = 0.2 meV and the standard deviation of disorder in the SC gap
σ� = 0.06 meV are for wires both with the self-energy shown in (b), (d), (f), (h), (j), and (l) and without the self-energy shown in (a), (c), (e),
(g), (i), and (k). The SC gap collapse VC = 3 meV for the self-energy case. The TQPT is labeled in the white dashed line at VZ = 1.02 meV.
The corresponding wave functions and energy spectra are shown in Fig. 21.
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FIG. 14. The bad ZBCP due to the quantum dot in two 1 μm pristine wires [shown in (a), (b), (e), and (f)] and two 3 μm pristine wires
[shown in (c), (d), (g), and (h)]. The color plots show the differential tunneling conductance G as a function of VZ (x axis) and Vbias (y axis)
measured from the left lead (in the first row) and the right lead (in the second row). For the short wire L = 1 μm, the peak value of the quantum
dot VD = 1.7 meV and size l = 0.2 μm for wires both with the self-energy shown in (b) and (f) and without the self-energy shown in (a) and
(e). For the long wire L = 3 μm, the peak value of the quantum dot VD = 0.6 meV and size l = 0.4 μm for wires both with the self-energy
shown in (d) and (h) and without the self-energy shown in (c) and (g). The SC gap collapse VC = 1 meV for the self-energy case. The TQPT
is labeled in the white dashed line at VZ = 1.02 meV. The corresponding wave functions and energy spectra are shown in Figs. 22 and 23.

FIG. 15. The bad ZBCP due to the inhomogeneous potential in two 1 μm pristine wires [shown in (a), (b), (e), and (f)] and two 3 μm
pristine wires [shown in (c), (d), (g), and (h)]. The color plots show the differential tunneling conductance G as a function of VZ (x axis) and
Vbias (y axis) measured from the left lead (in the first row) and the right lead (in the second row). For the short wire L = 1 μm, the peak value
of the inhomogeneous potential Vmax = 1.4 meV and linewidth σ = 0.15 μm for wires both with the self-energy shown in (b) and (f) and
without the self-energy shown in (a) and (e). For the long wire L = 3 μm, the peak value of the inhomogeneous potential Vmax = 1.2 meV
and linewidth σ = 0.4 μm for wires both with the self-energy shown in (d) and (h) and without the self-energy shown in (c) and (g). The SC
gap collapse VC = 1 meV for the self-energy case. The TQPT is labeled in the white dashed line at VZ = 1.02 meV. The corresponding wave
functions and energy spectra are shown in Figs. 24 and 25.

013377-19



HAINING PAN AND S. DAS SARMA PHYSICAL REVIEW RESEARCH 2, 013377 (2020)

FIG. 16. The ugly ZBCP in the presence of a large amount of disorder in the chemical potential for two 1 μm wires (shown in the first
two rows) and for one 3 μm wire (shown in the third row). The color plots show the differential tunneling conductance G as a function of VZ

(x axis) and Vbias (y axis) measured from the left lead (shown in the first and third columns) and the right lead (shown in the second and fourth
columns). The conductance spectra in the first row share a common configuration of disorder; the ones in the second row share another. The
standard deviation of the chemical potential σμ = 1 meV for wires both with the self-energy shown in (c), (d), (g), and (h), and without the
self-energy shown in (a), (b), (e), and (f). For L = 3 μm wire, the standard deviation of the chemical potential σμ = 1 for wires both with the
self-energy shown in (k) and (l) and without the self-energy shown in (i) and (j). The SC gap collapse VC = 1.2 meV for the self-energy case.
The TQPT is labeled in the white dashed line at VZ = 1.02 meV. The corresponding wave functions and energy spectra are shown in Figs. 26
and 27.
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FIG. 17. The ugly ZBCP in the presence of disorder in the effective g factor for two 1 μm wires (shown in the first two rows) and for
one 3 μm wire (shown in the third row). The color plots show the differential tunneling conductance G as a function of VZ (x axis) and Vbias

(y axis) measured from the left lead (shown in the first and third columns) and the right lead (shown in the second and fourth columns). The
conductance spectra in the first row share a common configuration of disorder; the ones in the second row share another. The standard deviation
of disorder in the effective g factor is σg = 0.8 for wires both with self-energy shown in (c), (d), (g), and (h) and without the self-energy shown
in (a), (b), (e), and (f). For L = 3 μm wire, the effective g factor is σg = 0.6 for wires both with the self-energy shown in (k) and (l) and without
the self-energy shown in (i) and (j). The SC gap collapse VC = 1.2 meV for the self-energy case. The TQPT is labeled in the white dashed line
at VZ = 1.02 meV. The corresponding wave functions and energy spectra are shown in Figs. 28 and 29.
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FIG. 18. The short but uncorrelated occasions in bad (the first and second rows) and ugly (the third row) ZBCPs. The color plots show the
differential tunneling conductance G as a function of VZ (x axis) and Vbias (y axis) measured from the left lead (in the first and third columns)
and the right lead (in the second and fourth columns). The bad ZBCPs due to the two quantum dots at both ends in 1 μm wires are shown
in (a)–(d). The peak value of the quantum dot is VD,L = 1.7 meV on the left and VD,R = 2.3 meV on the right, the size of the quantum dot is
lL = 0.2 μm on the left and lR = 0.15 μm on the right for both wires with the self-energy shown in (c) and (d) and without the self-energy
shown in (a) and (b). The SC collapse VC = 1 meV. The bad ZBCPs due to the inhomogeneous potential with the Gaussian barriers on both
ends are shown in (e), (f), (g), and (h). The peak value of the Gaussian barrier is Vmax,L = 1.4 meV on the left and Vmax,R = 1.9 meV on the
right, the linewidth of the Gaussian barrier is σL = 0.15 μm on the left and σR = 0.1 μm on the right for both wires with the self-energy
shown in (g) and (h) and without the self-energy shown in (e) and (f). The SC collapse VC = 1 meV. The ugly ZBCPs due to the disorder in
the chemical potential are shown in (i), (j), (k), and (l). The standard deviation of the chemical potential σμ = 1 meV for wires both with the
self-energy shown in (k) and (l) and without the self-energy shown in (i) and (j). The SC collapse VC = 1.2 meV. The corresponding wave
functions and energy spectra are shown in Fig. 30.
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APPENDIX B: ENERGY SPECTRA AND WAVE FUNCTIONS

In this section, the energy spectra as a function of the Zeeman field VZ are shown in the first column and the corresponding
wave funnctions at several representative VZ in the Majorana basis defined in Eq. (19) are presented in the second to the fourth
columns. In energy spectra, the energies have identical ranges as those in conductance spectra and the red dashed lines are for
the nominal TQPT. The two Majoranas are labeled with blue and cyan in the lowest state while red and orange in the second
state.

FIG. 19. (a)–(d) correspond to Figs. 11(a) and 11(e). (e)–(h) correspond to Figs. 11(b) and 11(f). (i)–(l) correspond to Figs. 11(c) and
11(g). (m)–(p) correspond to Figs. 11(d) and 11(h).
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FIG. 20. (a)–(d) correspond to Figs. 12(a) and 12(e). (e)–(h) correspond to Figs. 12(b) and 12(f). (i)–(l) correspond to Figs. 12(c) and
12(g). (m)–(p) correspond to Figs. 12(d) and 12(h).
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FIG. 21. (a)–(d) correspond to Figs. 13(a) and 13(e). (e)–(h) correspond to Figs. 13(b) and 13(f). (i)–(l) correspond to Figs. 13(c) and
13(g). (m)–(p) correspond to Figs. 13(d) and 13(h).
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FIG. 22. (a)–(d) correspond to Figs. 14(a) and 14(e). (e)–(h) correspond to Figs. 14(b) and 14(f).

FIG. 23. (a)–(d) correspond to Figs. 14(c) and 14(g). (e)–(h) correspond to Figs. 14(d) and 14(h).
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FIG. 24. (a)–(d) correspond to Figs. 15(a) and 15(e). (e)–(h) correspond to Figs. 15(b) and 15(f).

FIG. 25. (a)–(d) correspond to Figs. 15(c) and 15(g). (e)–(h) correspond to Figs. 15(d) and 15(h).
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FIG. 26. (a)–(d) correspond to Figs. 16(a) and 16(b). (e)–(h) correspond to Figs. 16(c) and 16(d). (i)–(l) correspond to Figs. 16(e) and
16(f). (m)–(p) correspond to Figs. 16(g) and 16(h).

FIG. 27. (a)–(d) correspond to Figs. 16(i) and 16(j). (e)–(h) correspond to Figs. 16(k) and 16(l).

013377-28



PHYSICAL MECHANISMS FOR ZERO-BIAS CONDUCTANCE … PHYSICAL REVIEW RESEARCH 2, 013377 (2020)

FIG. 28. (a)–(d) correspond to Figs. 17(a) and 17(b). (e)–(h) correspond to Figs. 17(c) and 17(d). (i)–(l) correspond to Figs. 17(e) and
17(f). (m)–(p) correspond to Figs. 17(g) and 17(h).

FIG. 29. (a)–(d) correspond to Figs. 17(i) and 17(j). (e)–(h) correspond to Figs. 17(k) and 17(l).
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FIG. 30. (a)–(d) correspond to Figs. 18(a) and 18(b). (e)–(h) correspond to Figs. 18(c) and 18(d). (i)–(l) correspond to Figs. 18(e) and
18(f). (m)–(p) correspond to Figs. 18(g) and 18(h). (q)–(t) correspond to Figs. 18(i) and 18(j). (u)–(x) correspond to Figs. 18(k) and 18(l).
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[94] İ. Adagideli, M. Wimmer, and A. Teker, Phys. Rev. B 89,

144506 (2014).
[95] D. Roy, N. Bondyopadhaya, and S. Tewari, Phys. Rev. B 88,

020502(R) (2013).
[96] H.-Y. Hui, J. D. Sau, and S. Das Sarma, Phys. Rev. B 92,

174512 (2015).
[97] N. B. Kopnin and M. M. Salomaa, Phys. Rev. B 44, 9667

(1991).
[98] T. M. Rice and M. Sigrist, J. Phys.: Condens. Matter 7, L643

(1995).
[99] S. Das Sarma, C. Nayak, and S. Tewari, Phys. Rev. B 73,

220502(R) (2006).
[100] A. C. Potter and P. A. Lee, Phys. Rev. B 83, 184520

(2011).
[101] R. M. Lutchyn, T. D. Stanescu, and S. Das Sarma, Phys. Rev.

B 85, 140513(R) (2012).
[102] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[103] F. Setiawan, C.-X. Liu, J. D. Sau, and S. Das Sarma, Phys.

Rev. B 96, 184520 (2017).
[104] C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Waintal,

New J. Phys. 16, 063065 (2014).
[105] C.-X. Liu, J. D. Sau, and S. Das Sarma, Phys. Rev. B 95,

054502 (2017).
[106] G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B

25, 4515 (1982).
[107] M. P. Anantram and S. Datta, Phys. Rev. B 53, 16390 (1996).
[108] F. Setiawan, P. M. R. Brydon, J. D. Sau, and S. Das Sarma,

Phys. Rev. B 91, 214513 (2015).
[109] T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma, Phys. Rev.

B 84, 144522 (2011).
[110] T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma, Phys. Rev.

B 90, 085302 (2014).
[111] D. Roy, C. J. Bolech, and N. Shah, Phys. Rev. B 86, 094503

(2012).
[112] C. Qu, Y. Zhang, L. Mao, and C. Zhang, arXiv:1109.4108

[cond-mat].

013377-32

https://doi.org/10.1103/PhysRevB.63.224204
https://doi.org/10.1103/PhysRevB.63.224204
https://doi.org/10.1103/PhysRevB.63.224204
https://doi.org/10.1103/PhysRevB.63.224204
https://doi.org/10.1103/PhysRevB.84.144526
https://doi.org/10.1103/PhysRevB.84.144526
https://doi.org/10.1103/PhysRevB.84.144526
https://doi.org/10.1103/PhysRevB.84.144526
https://doi.org/10.1103/PhysRevLett.107.196804
https://doi.org/10.1103/PhysRevLett.107.196804
https://doi.org/10.1103/PhysRevLett.107.196804
https://doi.org/10.1103/PhysRevLett.107.196804
https://doi.org/10.1103/PhysRevB.88.064506
https://doi.org/10.1103/PhysRevB.88.064506
https://doi.org/10.1103/PhysRevB.88.064506
https://doi.org/10.1103/PhysRevB.88.064506
https://doi.org/10.1103/PhysRevB.101.045405
https://doi.org/10.1103/PhysRevB.101.045405
https://doi.org/10.1103/PhysRevB.101.045405
https://doi.org/10.1103/PhysRevB.101.045405
https://doi.org/10.1134/S1063776114120176
https://doi.org/10.1134/S1063776114120176
https://doi.org/10.1134/S1063776114120176
https://doi.org/10.1134/S1063776114120176
https://doi.org/10.1088/0959-7174/9/2/303
https://doi.org/10.1088/0959-7174/9/2/303
https://doi.org/10.1088/0959-7174/9/2/303
https://doi.org/10.1088/0959-7174/9/2/303
https://doi.org/10.1016/S0370-1573(00)00065-X
https://doi.org/10.1016/S0370-1573(00)00065-X
https://doi.org/10.1016/S0370-1573(00)00065-X
https://doi.org/10.1016/S0370-1573(00)00065-X
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1016/0370-1573(85)90070-5
https://doi.org/10.1016/0370-1573(85)90070-5
https://doi.org/10.1016/0370-1573(85)90070-5
https://doi.org/10.1016/0370-1573(85)90070-5
https://doi.org/10.1103/PhysRevB.101.024506
https://doi.org/10.1103/PhysRevB.101.024506
https://doi.org/10.1103/PhysRevB.101.024506
https://doi.org/10.1103/PhysRevB.101.024506
https://doi.org/10.1103/PhysRevB.97.214502
https://doi.org/10.1103/PhysRevB.97.214502
https://doi.org/10.1103/PhysRevB.97.214502
https://doi.org/10.1103/PhysRevB.97.214502
https://doi.org/10.1103/PhysRevB.86.100503
https://doi.org/10.1103/PhysRevB.86.100503
https://doi.org/10.1103/PhysRevB.86.100503
https://doi.org/10.1103/PhysRevB.86.100503
https://doi.org/10.1103/PhysRevB.98.144511
https://doi.org/10.1103/PhysRevB.98.144511
https://doi.org/10.1103/PhysRevB.98.144511
https://doi.org/10.1103/PhysRevB.98.144511
https://doi.org/10.21468/SciPostPhys.7.5.061
https://doi.org/10.21468/SciPostPhys.7.5.061
https://doi.org/10.21468/SciPostPhys.7.5.061
https://doi.org/10.21468/SciPostPhys.7.5.061
https://doi.org/10.1103/PhysRevB.100.155429
https://doi.org/10.1103/PhysRevB.100.155429
https://doi.org/10.1103/PhysRevB.100.155429
https://doi.org/10.1103/PhysRevB.100.155429
https://doi.org/10.1088/0022-3719/17/33/015
https://doi.org/10.1088/0022-3719/17/33/015
https://doi.org/10.1088/0022-3719/17/33/015
https://doi.org/10.1088/0022-3719/17/33/015
https://doi.org/10.1103/PhysRevB.81.241310
https://doi.org/10.1103/PhysRevB.81.241310
https://doi.org/10.1103/PhysRevB.81.241310
https://doi.org/10.1103/PhysRevB.81.241310
https://doi.org/10.1103/PhysRevB.82.094522
https://doi.org/10.1103/PhysRevB.82.094522
https://doi.org/10.1103/PhysRevB.82.094522
https://doi.org/10.1103/PhysRevB.82.094522
https://doi.org/10.1021/acs.nanolett.6b00051
https://doi.org/10.1021/acs.nanolett.6b00051
https://doi.org/10.1021/acs.nanolett.6b00051
https://doi.org/10.1021/acs.nanolett.6b00051
https://doi.org/10.1038/s41467-017-00315-y
https://doi.org/10.1038/s41467-017-00315-y
https://doi.org/10.1038/s41467-017-00315-y
https://doi.org/10.1038/s41467-017-00315-y
https://doi.org/10.1103/PhysRevLett.123.107703
https://doi.org/10.1103/PhysRevLett.123.107703
https://doi.org/10.1103/PhysRevLett.123.107703
https://doi.org/10.1103/PhysRevLett.123.107703
https://doi.org/10.1103/PhysRevB.100.125407
https://doi.org/10.1103/PhysRevB.100.125407
https://doi.org/10.1103/PhysRevB.100.125407
https://doi.org/10.1103/PhysRevB.100.125407
https://doi.org/10.1103/PhysRevB.94.035143
https://doi.org/10.1103/PhysRevB.94.035143
https://doi.org/10.1103/PhysRevB.94.035143
https://doi.org/10.1103/PhysRevB.94.035143
https://doi.org/10.1090/qam/42792
https://doi.org/10.1090/qam/42792
https://doi.org/10.1090/qam/42792
https://doi.org/10.1090/qam/42792
https://doi.org/10.1038/nnano.2014.306
https://doi.org/10.1038/nnano.2014.306
https://doi.org/10.1038/nnano.2014.306
https://doi.org/10.1038/nnano.2014.306
https://doi.org/10.1038/nmat4176
https://doi.org/10.1038/nmat4176
https://doi.org/10.1038/nmat4176
https://doi.org/10.1038/nmat4176
https://doi.org/10.1103/PhysRevB.95.205439
https://doi.org/10.1103/PhysRevB.95.205439
https://doi.org/10.1103/PhysRevB.95.205439
https://doi.org/10.1103/PhysRevB.95.205439
https://doi.org/10.1103/PhysRevB.96.014510
https://doi.org/10.1103/PhysRevB.96.014510
https://doi.org/10.1103/PhysRevB.96.014510
https://doi.org/10.1103/PhysRevB.96.014510
https://doi.org/10.1103/PhysRevB.99.054507
https://doi.org/10.1103/PhysRevB.99.054507
https://doi.org/10.1103/PhysRevB.99.054507
https://doi.org/10.1103/PhysRevB.99.054507
https://doi.org/10.1103/PhysRevB.97.165302
https://doi.org/10.1103/PhysRevB.97.165302
https://doi.org/10.1103/PhysRevB.97.165302
https://doi.org/10.1103/PhysRevB.97.165302
https://doi.org/10.1103/PhysRevB.98.155314
https://doi.org/10.1103/PhysRevB.98.155314
https://doi.org/10.1103/PhysRevB.98.155314
https://doi.org/10.1103/PhysRevB.98.155314
https://doi.org/10.1103/PhysRevB.88.165111
https://doi.org/10.1103/PhysRevB.88.165111
https://doi.org/10.1103/PhysRevB.88.165111
https://doi.org/10.1103/PhysRevB.88.165111
https://doi.org/10.1103/PhysRevB.87.024515
https://doi.org/10.1103/PhysRevB.87.024515
https://doi.org/10.1103/PhysRevB.87.024515
https://doi.org/10.1103/PhysRevB.87.024515
https://doi.org/10.1103/PhysRevB.89.220507
https://doi.org/10.1103/PhysRevB.89.220507
https://doi.org/10.1103/PhysRevB.89.220507
https://doi.org/10.1103/PhysRevB.89.220507
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1103/PhysRevB.86.224511
https://doi.org/10.1103/PhysRevB.86.224511
https://doi.org/10.1103/PhysRevB.86.224511
https://doi.org/10.1103/PhysRevB.86.224511
https://doi.org/10.1088/1367-2630/15/5/055019
https://doi.org/10.1088/1367-2630/15/5/055019
https://doi.org/10.1088/1367-2630/15/5/055019
https://doi.org/10.1088/1367-2630/15/5/055019
https://doi.org/10.1103/PhysRevB.88.205402
https://doi.org/10.1103/PhysRevB.88.205402
https://doi.org/10.1103/PhysRevB.88.205402
https://doi.org/10.1103/PhysRevB.88.205402
https://doi.org/10.1103/PhysRevLett.110.146404
https://doi.org/10.1103/PhysRevLett.110.146404
https://doi.org/10.1103/PhysRevLett.110.146404
https://doi.org/10.1103/PhysRevLett.110.146404
https://doi.org/10.1103/PhysRevB.89.144506
https://doi.org/10.1103/PhysRevB.89.144506
https://doi.org/10.1103/PhysRevB.89.144506
https://doi.org/10.1103/PhysRevB.89.144506
https://doi.org/10.1103/PhysRevB.88.020502
https://doi.org/10.1103/PhysRevB.88.020502
https://doi.org/10.1103/PhysRevB.88.020502
https://doi.org/10.1103/PhysRevB.88.020502
https://doi.org/10.1103/PhysRevB.92.174512
https://doi.org/10.1103/PhysRevB.92.174512
https://doi.org/10.1103/PhysRevB.92.174512
https://doi.org/10.1103/PhysRevB.92.174512
https://doi.org/10.1103/PhysRevB.44.9667
https://doi.org/10.1103/PhysRevB.44.9667
https://doi.org/10.1103/PhysRevB.44.9667
https://doi.org/10.1103/PhysRevB.44.9667
https://doi.org/10.1088/0953-8984/7/47/002
https://doi.org/10.1088/0953-8984/7/47/002
https://doi.org/10.1088/0953-8984/7/47/002
https://doi.org/10.1088/0953-8984/7/47/002
https://doi.org/10.1103/PhysRevB.73.220502
https://doi.org/10.1103/PhysRevB.73.220502
https://doi.org/10.1103/PhysRevB.73.220502
https://doi.org/10.1103/PhysRevB.73.220502
https://doi.org/10.1103/PhysRevB.83.184520
https://doi.org/10.1103/PhysRevB.83.184520
https://doi.org/10.1103/PhysRevB.83.184520
https://doi.org/10.1103/PhysRevB.83.184520
https://doi.org/10.1103/PhysRevB.85.140513
https://doi.org/10.1103/PhysRevB.85.140513
https://doi.org/10.1103/PhysRevB.85.140513
https://doi.org/10.1103/PhysRevB.85.140513
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevB.96.184520
https://doi.org/10.1103/PhysRevB.96.184520
https://doi.org/10.1103/PhysRevB.96.184520
https://doi.org/10.1103/PhysRevB.96.184520
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1103/PhysRevB.95.054502
https://doi.org/10.1103/PhysRevB.95.054502
https://doi.org/10.1103/PhysRevB.95.054502
https://doi.org/10.1103/PhysRevB.95.054502
https://doi.org/10.1103/PhysRevB.25.4515
https://doi.org/10.1103/PhysRevB.25.4515
https://doi.org/10.1103/PhysRevB.25.4515
https://doi.org/10.1103/PhysRevB.25.4515
https://doi.org/10.1103/PhysRevB.53.16390
https://doi.org/10.1103/PhysRevB.53.16390
https://doi.org/10.1103/PhysRevB.53.16390
https://doi.org/10.1103/PhysRevB.53.16390
https://doi.org/10.1103/PhysRevB.91.214513
https://doi.org/10.1103/PhysRevB.91.214513
https://doi.org/10.1103/PhysRevB.91.214513
https://doi.org/10.1103/PhysRevB.91.214513
https://doi.org/10.1103/PhysRevB.84.144522
https://doi.org/10.1103/PhysRevB.84.144522
https://doi.org/10.1103/PhysRevB.84.144522
https://doi.org/10.1103/PhysRevB.84.144522
https://doi.org/10.1103/PhysRevB.90.085302
https://doi.org/10.1103/PhysRevB.90.085302
https://doi.org/10.1103/PhysRevB.90.085302
https://doi.org/10.1103/PhysRevB.90.085302
https://doi.org/10.1103/PhysRevB.86.094503
https://doi.org/10.1103/PhysRevB.86.094503
https://doi.org/10.1103/PhysRevB.86.094503
https://doi.org/10.1103/PhysRevB.86.094503
http://arxiv.org/abs/arXiv:1109.4108


PHYSICAL MECHANISMS FOR ZERO-BIAS CONDUCTANCE … PHYSICAL REVIEW RESEARCH 2, 013377 (2020)

[113] D. Roy, C. J. Bolech, and N. Shah, arXiv:1303.7036 [cond-
mat].

[114] T. Ö. Rosdahl, A. Vuik, M. Kjaergaard, and A. R. Akhmerov,
Phys. Rev. B 97, 045421 (2018).

[115] E. Dumitrescu, B. Roberts, S. Tewari, J. D. Sau, and S. Das
Sarma, Phys. Rev. B 91, 094505 (2015).

[116] J. Stenger and T. D. Stanescu, Phys. Rev. B 96, 214516 (2017).
[117] M. Büttiker, Phys. Rev. B 46, 12485 (1992).
[118] C.-X. Liu, F. Setiawan, J. D. Sau, and S. Das Sarma, Phys.

Rev. B 96, 054520 (2017).

[119] G. L. R. Anselmetti, E. A. Martinez, G. C. Ménard, D.
Puglia, F. K. Malinowski, J. S. Lee, S. Choi, M. Pendharkar,
C. J. Palmstrøm, C. M. Marcus, L. Casparis, and A. P.
Higginbotham, Phys. Rev. B 100, 205412 (2019).

[120] G. C. Ménard, G. L. R. Anselmetti, E. A. Martinez, D. Puglia,
F. K. Malinowski, J. S. Lee, S. Choi, M. Pendharkar, C. J.
Palmstrøm, K. Flensberg, C. M. Marcus, L. Casparis, and A. P.
Higginbotham, Phys. Rev. Lett. 124, 036802 (2020).

[121] W. S. Cole, S. Das Sarma, and T. D. Stanescu, Phys. Rev. B
92, 174511 (2015).

013377-33

http://arxiv.org/abs/arXiv:1303.7036
https://doi.org/10.1103/PhysRevB.97.045421
https://doi.org/10.1103/PhysRevB.97.045421
https://doi.org/10.1103/PhysRevB.97.045421
https://doi.org/10.1103/PhysRevB.97.045421
https://doi.org/10.1103/PhysRevB.91.094505
https://doi.org/10.1103/PhysRevB.91.094505
https://doi.org/10.1103/PhysRevB.91.094505
https://doi.org/10.1103/PhysRevB.91.094505
https://doi.org/10.1103/PhysRevB.96.214516
https://doi.org/10.1103/PhysRevB.96.214516
https://doi.org/10.1103/PhysRevB.96.214516
https://doi.org/10.1103/PhysRevB.96.214516
https://doi.org/10.1103/PhysRevB.46.12485
https://doi.org/10.1103/PhysRevB.46.12485
https://doi.org/10.1103/PhysRevB.46.12485
https://doi.org/10.1103/PhysRevB.46.12485
https://doi.org/10.1103/PhysRevB.96.054520
https://doi.org/10.1103/PhysRevB.96.054520
https://doi.org/10.1103/PhysRevB.96.054520
https://doi.org/10.1103/PhysRevB.96.054520
https://doi.org/10.1103/PhysRevB.100.205412
https://doi.org/10.1103/PhysRevB.100.205412
https://doi.org/10.1103/PhysRevB.100.205412
https://doi.org/10.1103/PhysRevB.100.205412
https://doi.org/10.1103/PhysRevLett.124.036802
https://doi.org/10.1103/PhysRevLett.124.036802
https://doi.org/10.1103/PhysRevLett.124.036802
https://doi.org/10.1103/PhysRevLett.124.036802
https://doi.org/10.1103/PhysRevB.92.174511
https://doi.org/10.1103/PhysRevB.92.174511
https://doi.org/10.1103/PhysRevB.92.174511
https://doi.org/10.1103/PhysRevB.92.174511

