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Altruism in populations at the extinction transition
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We study the evolution of cooperation as a birth-death process in spatially extended populations. The benefit
from the altruistic behavior of a cooperator is implemented by decreasing the death rate of its direct neighbors.
The cost of cooperation is the increase of a cooperator’s death rate proportional to the number of its neighbors.
When cooperation has higher cost than benefit, cooperators disappear. Then, the dynamics reduces to the contact
process with defectors as the single-particle type. Increasing the benefit-cost ratio above 1, the extinction
transition of the contact process splits into a set of nonequilibrium transitions between four regimes when
increasing the baseline death rate p as a control parameter: (i) defection only, (ii) coexistence, (iii) cooperation
only, (iv) extinction. We investigate the transitions between these regimes. As the main result, we find that full
cooperation is established at the extinction transition as long as benefit is strictly larger than cost. Qualitatively
identical phase diagrams are obtained for populations on square lattices and in pair approximation. Spatial
correlations with nearest neighbors only are thus sufficient for sustained cooperation.
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I. INTRODUCTION

Altruism or cooperativity [1] describe behavior that is more
in favor of others than of the actor herself. Alarm calls are an
example of altruistic behavior: Increasing the risk of becom-
ing prey itself first, one individual of a group warns the others
of a predator approaching [2]. At first glance, the observation
of altruism sustained over generations appears incompatible
with Darwin’s theory of natural selection, featuring the sur-
vival of the fittest [3,4]. If nonaltruists acting only to their
own benefit have an advantage over altruists in terms of
reproductive success, altruistic traits eventually disappear.

The question of sustained altruism and cooperativity has
been addressed in the framework of evolutionary game the-
ory, in particular by work on the Prisoner’s Dilemma and
Public Goods Games [5,6]. In these and other games, the
time evolution of the system is assumed to take place as a
sequence of two elementary steps: (i) the combined behavioral
choices of the participants lead to an assignment of a payoff
to each player which (ii) determines the choice of their future
strategies or roles. In the simplest case, with two possible
strategies, cooperation and defection, the dilemma arises as
follows. Regardless of the other agent’s move, an agent’s best
(highest payoff) move is always defection. On the other hand,
the sum of all players payoffs is maximal when all cooper-
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ate. Therefore, natural selection always favors defection [5],
despite cooperation is the best global strategy.

The aforementioned social dilemma is frequently analyzed
by means of the replicator equation [7–9] describing the time
evolution of the fraction of players holding one of the two
strategies. If the fitness of an individual equals its payoff,
the resulting replicator equation for the Prisoner’s Dilemma
has only two steady-state solutions, the only-defector and
the only-cooperator solutions, the former being the only sta-
ble one. Nevertheless, the prevalence of cooperation is still
possible within the context of evolutionary games, provided
appropriate reciprocity mechanisms are included in the dy-
namics [1,6,10–12]: direct reciprocity, indirect reciprocity, kin
selection, group selection, and network structure. If compared
to the well-mixed situation, the new mechanisms include
update rules that favor the interactions among cooperators.

The network structure mechanism was one of the first
reciprocity mechanisms studied in the literature. It refers to
the restriction of agents interactions among neighbors. In
a two-dimensional regular network, the survival of altruists
was explained in terms of their ability of preventing the
exploitation of defectors through the formation of clusters
[13–16]. Further progress in the field considered births and
deaths: The second step of the dynamics, the one that allows
a change of the strategy, is now interpreted as a death of
a player followed by a birth. The new ecologic perspective
allowed to assess the importance of new relevant issues,
such as the fluctuation of the population density [17–20],
the movement of agents [21–25], the spatial distribution of
neighbors and their number [26,27], among others. Recent
works also consider networks of interactions [7,12,28–32],
focus on the critical properties of the system [33–35], include
other novel dynamic rules [36–42], analyze the formation of
patterns [13,43–47], and evaluate the effect on the population
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growing as external pressure rises [48]. The latter aspect has
been widely analyzed in the context of competing species
[49,50], but has not received much attention in relation with
the prevalence of altruism.

Although general considerations about the prevalence of
altruism in the context of the Public Goods Games can be
inferred from the numerous studies on the topic [51,52], the
behavior of cooperation turns out to be very dependent on the
specific dynamics considered [53,54]. This is the case when
trying to evaluate the importance of the spatial heterogeneity
and the formation of clusters of cooperators: Many studies
[14,16,18,55,56] explain the coexistence of cooperation and
defection using the so-called pair approximation, an approach
that goes one step beyond mean field by tracking the dy-
namics of pairs of neighbors. However, pair approximation
still assumes spatial homogeneity of the system. Hence, there
is no need for the formation of clusters of cooperators for
explaining their long-term survival.

Recent works on the evolution of cooperation suggest the
need of giving up on certain common statements of evolution-
ary game theory [57–60]. Particularly, some experiments on
the dynamics of human cooperation show that people choose
their strategy regardless the payoff of others [61]. Similar
conclusions are given in the context of living beings [62].
See also recent experimental and numerical works on related
topics [63–66].

Here we study the evolution of cooperation in the frame-
work of interacting particle systems. We model birth and death
in a spatially extended population as a contact process and
ask the following: What is the phase diagram of the contact
process with an additional (cooperative) type of particle that
supports survival at neighboring sites? Our approach provides
a natural framework to assess the effects of different mech-
anisms on the behavior of the system and on the survival
of cooperativity, such as the dynamics of interactions, the
fluctuation in the population size, the presence or absence of
cooperation clusters, and the spatial variation of parameters,
among others.

The organization of the work is as follows. In Sec. II we in-
troduce the agent-based model of a population of cooperators
and defectors living on a generic network. For later sections
the main focus is on the square lattice, where the system has
only three relevant parameters: the total number of sites N , the
death parameter p, and the cost-of-altruism parameter ε. Sec-
tion III includes stochastic simulations. We obtain the phase
diagram in the parameter space (p, ε) showing the steady-
state configurations of the system. The effect of p being
spatially dependent is also addressed. In Sec. IV the system
is described theoretically. Three complementary formulations,
using main-field or pair-approximation approaches, are given.
They aim at describing the system under different physical
conditions. Finally, a discussion and outlook of the main
results are included in Sec. V.

II. DEFINITION OF THE MODEL

The model describes the evolution of a population on an
arbitrary network with N nodes. The set of neighbors of a node
i is denoted by Ni. The network is symmetric (undirected), so
that j ∈ Ni implies i ∈ Nj ; also i /∈ Ni (no self-loops). Each

agent in the population is either a cooperator C or a defector
D, with ci and di being their respective numbers at node i.
A site or node of the network holds at most one agent (C or
D) but it may also be empty (E ), hence, 0 � ci + di � 1 and
cidi = 0. Thus, the state of the system S is given by

S = {ci, di}N
i=1 ≡ {xi}N

i=1, xi ∈ {ci, di}, (1)

where X is either a cooperator or a defector, and xi its number
at site i. Moreover, the number ei = 1 − xi gives 1 if site i is
empty and 0 if xi = 1. From condition cidi = 0 we also have
eixi = 0.

A state transition is either the birth or the death of one
agent at a site i. At the birth of a cooperator we set ci = 1
at a previously empty site i:

ei = 1
πb(ci,S)−−−−→ ci = 1. (2)

Likewise for the birth of a defector, di = 1 is set at an empty
site i:

ei = 1
πb(di,S)−−−−→ di = 1. (3)

These transitions occur at a rate proportional to the fraction of
neighboring sites occupied by the agent type to be born, as

πb(ci, S) = ei

∑
j∈Ni

c j/k j ≡ eic̃i, (4)

πb(di, S) = ei

∑
j∈Ni

d j/k j ≡ eid̃i, (5)

where ki = |Ni| is the degree (number of those neighbors) of
node i, and x̃i ≡ ∑

j∈Ni
x j/k j . The death of an agent is a state

transition setting ci = 0 or di = 0 at a previously occupied
site i,

ci = 1
πd (ci,S)−−−−→ ei = 1, (6)

di = 1
πd (di,S)−−−−→ ei = 1, (7)

with respective rates

πd (ci, S) = p[ciēi + (1 − ε)cic̄i + (2 − ε)cid̄i]

= pci{1 − [c̄i − (1 − ε)(c̄i + d̄i )]}, (8)

πd (di, S) = p(diēi + did̄i ) = pdi(1 − c̄i ), (9)

where now x̄i ≡ k−1
i

∑
j∈Ni

x j . Agents die at a baseline rate p.
This rate is reduced, however, by the fraction of adjacent sites
occupied by a cooperator. The death rate of a cooperator, on
the other hand, has an additional positive term proportional
(with factor 1 − ε) to the fraction of adjacent agents. This
way, the parameter ε accounts for the cost of the altruistic act,
the limit of ε = 0 corresponding to maximum cost where the
altruist definitely loses its life for saving that of its neighbor.
The other limit is costless altruism at ε = 1.

In the absence of cooperators, or in the absence of defectors
with ε = 0, the model reduces to the contact process [67,68]
equivalent to the SIS (susceptible-infected-susceptible) model
of epidemics [69,70]. The equivalence is obtained by mapping
each empty site to a susceptible individual and each site with
a defector to an infected individual.
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FIG. 1. Average densities of agents on a square lattice of 50 × 50
sites as a function of parameters p and ε (large center panel).
For each combination of parameters, the agents’ concentrations 〈c〉
and 〈d〉 are encoded by color. Red indicates high concentration of
cooperators; blue indicates high concentration of defectors; green
is for coexistence of the two types, and white for a low overall
concentration of agents. Arrows labeled with letters (a)–(e) indicate
parameter combinations further analyzed in Fig. 3. The panels in
the top row are snapshots of typical system states encountered for
p ∈ {0.2, 0.4, 0.7} (panels left to right) with ε = 0.75.

III. SIMULATIONS

Let us first illustrate and numerically analyze the dynamics
on periodic square lattices. As defined above, the model
features nonergodicity. Eventually, both types of agents go
extinct in a finite-size system. In the simulations in this
section, a slightly modified version of the model is employed:
We set to zero the death rate of an agent currently being
the only one of its type (C or D). This allows us to take
long-term measurements of concentrations and distributions
without having to restart the dynamics. Given the rates, sim-
ulations are performed with a standard Gillespie algorithm
[71,72].

A. Square lattice with homogeneous parameters

Figure 1 shows the parameter dependence of the stationary
mean concentrations of agents. At ε = 0, cooperators are
absent in the whole range of p, while the concentration
of defectors is positive for p < pc ≈ 0.62 and vanishes for

p > pc. Now, fixing 0 < ε < 1 and increasing p from 0 to
1, the concentration of defectors 〈d〉 still decreases with p.
Before 〈d〉 reaches zero, however, the concentration of coop-
erators 〈c〉 becomes positive. Simulations on square lattices of
smaller size (N = 202, N = 302) and checks with N = 1002

yield results almost identical to those of Fig. 1.
In the coexistence regime of cooperators and defectors

(green area in Fig. 1), the growth of cooperation outweighs the
decline of defection. Here, the total concentration of agents
grows with p,

∂ (〈c〉 + 〈d〉)

∂ p
> 0. (10)

Figure 2(a) explicitly shows this nonmonotonicity by plotting
〈c〉 + 〈d〉 versus p for different choices of ε.

Let us now take a closer look at the transitions between
the regimes observed in Fig. 1. To this end, we record the
distributions in the number of agents (each type separately)
and consider their changes under parameter variation. Figure 3
shows this analysis for five transitions (a)–(e), also marked
in the bottom panel of Fig. 1. Transitions in Figs. 3(a) and
3(e) are extinctions of one type of agent in the absence of the
other type. However, the transitions are distinguishable by the
approximate exponents of the algebraic decay of distributions,
giving 1

4 for the extinction of defectors versus 3
7 for coopera-

tors. This indicates that, even in the absence of defectors and
close to the extinction transition Fig. 3(e), the dynamics of
cooperators is essentially different from the contact process.

Differences in the distributions of the order parameter
(Fig. 1), however, do not contradict transitions 3(a)–3(e)
belonging to the same universality class. Transitions 3(a),
3(b), and 3(e) fulfill the premises of the directed percolation
conjecture (cf. Sec. 3.3.6 in [73]). Transitions 3(c) and 3(d) do
not fulfill the assumption of a unique absorbing state because
only one type of agent goes extinct at the transition. In pre-
liminary numerical exploration (results not shown here), we
have found the scaling of the order parameter (concentration
of agents) compatible with the value 0.580(4) for exponent β

in directed percolation in two dimensions [74]. We conjecture
that all transitions 3(a)–3(e) belong to the universality class of
directed percolation.

B. Spatially dependent parameter p

Let us study a variation of the model with a spatial de-
pendence of the parameter p, a way of mimicking ecological
conditions [75,76]. For an agent at lattice site (x, y), x, y ∈
{1, . . . , L}, the death rate is based on the parameter value

p(x) =
{

2x−1
L if x � L/2,

2(L−x)+1
L otherwise.

(11)

For L even, the minimum value 1/L is assumed by p(x)
at x = 1 and L; its maximum value 1 − 1/L is obtained at
x = L/2 and L/2 + 1. The parameter ε remains spatially
homogeneous, here ε = 0.75.

Figure 4(a) shows the concentration of agents as a function
of lattice coordinate x, i.e., averaged over lattice coordinate
y and time. We see that the effect of parameter p is local.
The p dependence of 〈c〉 and 〈d〉 observed under spatially
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FIG. 2. Total concentration of agents (a) on square lattices with N = 50 × 50 sites and (b) from the numerical solution of the pair
approximation, Eqs. (47)–(51). In both (a) and (b), the three curves are for parameter values ε = 0.99, 0.75, 0.10 (top to bottom). The insets
zoom in on the curves for ε = 0.10. The inset of (a) shows these curves for different system sizes N = 30 × 30 (dotted curve), N = 50 × 50
(solid curve), and N = 100 × 100 (dashed curve).

homogeneous p in Sec. III A qualitatively matches that of the
scenario with spatially dependent p.

IV. ANALYTIC APPROXIMATIONS

In this section, we derive three complementary theoretical
descriptions of our model, defined in Sec. II. The first two
are based on a mean-field approximation, while the third one
uses the pair approximation. As will be shown, the different

approaches have different ranges of applicability and explain
the prevalence or extinction and even the coexistence of
altruism and defection under different physical and biological
conditions. In the case of the pair approximation, a very
similar phase diagram to the numerical one shown in Fig. 1
is obtained.

Our starting point is the master equation for the probability
P(S, t ) of finding the system in state S at time t . By means
of a probabilistic balance in the continuum time limit [77],

FIG. 3. Distributions of the number of agents on a square lattice with 50 × 50 sites. In the lower row, (c), (d), and (e), ε = 0.75. Each panel
describes a transition between presence and absence of a type of agent. The transitions are also marked in Fig. 1 with the panel identifiers
(a)–(e).
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FIG. 4. (a) Stationary mean concentrations for dynamics on a
square lattice where parameter p of the model varies with the
horizontal location x ∈ {1, 2, . . . , L} according to Eq. (11). Lattice
size is L × L with L = 100. Cooperators’ survival rate is ε = 0.75
constant in space. Showing the concentration dependence on x, each
plotted value is, for a given x, a uniform average over the y coordinate
of the lattice and over time t ∈ [0, 106]. (b) Snapshot of a state in the
simulation as described for (a).

and using the rates given by Eqs. (4)–(9), the master equation
reads as

∂t P(S, t ) =
N∑

i=1

∑
xi∈{ci,di}

{(
E−

xi
− 1

)
[πb(xi, S)P(S, t )]

+ (
E+

xi
− 1

)
[πd (xi, S)P(S, t )]

}
, (12)

where the operators E±
xi

act on a generic function
f (x1, . . . , xi, . . . , xN ) as E±

xi
f (x1, . . . , xi, . . . , xN ) =

f (x1, . . . , xi ± 1, . . . , xN ), with xk ∈ {ck, dk}, k = 1, . . . , N .
By taking moments of the master equation (12) we can

derive equations for the mean numbers of cooperators and
defectors in site i, 〈ci〉, and 〈di〉. After using the relation

ei = 1 − ci − di and some manipulations, we obtain

d

dt
〈ci〉 = 〈πb(ci ) − πd (ci )〉

= 〈c̃iei〉 − p[〈ciēi〉 + (1 − ε)〈cic̄i〉 + (2 − ε)〈cid̄i〉]
= −p〈ci〉 + 〈c̃i〉 − [〈cic̃i〉 − εp〈cic̄i〉

+p(1 − ε)〈cid̄i〉 + 〈c̃idi〉], (13)

d

dt
〈di〉 = 〈πb(di ) − πd (di )〉

= 〈d̃iei〉 − p[〈diēi〉 + 〈did̄i〉]
= −p〈di〉 + 〈d̃i〉 − [〈cid̃i〉 − p〈c̄idi〉 + 〈did̄i〉], (14)

for i = 1, . . . , N . Since the first moments are coupled to the
second ones through correlations between neighbors, it is also
convenient to derive equations for the two node correlations
for neighboring sites, i.e., 〈xix j〉 with j ∈ Ni:

d

dt
〈cic j〉 = 〈ciπb(c j ) + πb(ci )c j − ciπd (c j ) − πd (ci )c j〉

= 〈cie j c̃ j〉 + 〈c̃ieic j〉 − p〈cic j (ēi + ē j )〉
−p(1 − ε)〈cic j (c̄i + c̄ j )〉
−p(2 − ε)〈cic j (d̄i + d̄ j )〉, (15)

d

dt
〈cid j〉 = 〈ciπb(d j ) + πb(ci )d j − ciπd (d j ) − πd (ci )d j〉

= 〈cie j d̃ j〉 + 〈c̃ieid j〉 − p〈ēicid j〉
−p〈cid j (ē j + d̄ j )〉 − p(1 − ε)〈c̄icid j〉
−p(2 − ε)〈d̄icid j〉, (16)

d

dt
〈did j〉 = 〈diπb(d j ) + πb(di )d j − diπd (d j ) − πd (di )d j〉

= 〈die j d̃ j〉 + 〈d̃ieid j〉 − p〈did j (ēi + ē j )〉
− p〈did j (d̄i + d̄ j )〉, (17)

where x̃i and x̄i are defined just after Eqs. (5) and (9), respec-
tively. The two remaining moments 〈cie j〉 and 〈die j〉 can be
obtained from the previous ones by means of the identity 1 =
ei + ci + di, as 〈cie j〉 = 〈ci〉 − 〈cic j〉 − 〈cid j〉 and 〈die j〉 =
〈di〉 − 〈did j〉 − 〈dic j〉.

Although the system of Eqs. (13)–(16) are exact and valid
for any structure of neighbors (network), it is not closed, due
to the presence of three node correlations. Therefore, in order
to have a closed set of equations, three approximations are
explored. The first two ones make use of the mean-field ap-
proximation, where two node correlations are ignored, and the
third one uses pair approximation. Furthermore, we restrict
ourselves to regular networks where ki = k for all i, so as to
simplify the description (now x̃i = x̄i = k−1 ∑

j∈Ni
x j).

A. Exact relations

Before proceeding with the approximations, some exact
relations will be derived. They apply for homogeneous steady-
state configurations.

Consider first the case of only defectors. Since 〈c〉 = 0, we
also have 〈cc〉 = 〈cd〉 = 〈ce〉 = 0. Using Eq. (14), together
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with 〈de〉 = 〈d〉 − 〈dd〉, we have

〈dd〉 = (1 − p)〈d〉, (18)

and, with Eq. (17) and the identity 〈dde〉 + 〈ddd〉 = 〈dd〉,
p[1 − k(1 − p)]〈d〉 + (k − 1)〈ded〉 = 0, (19)

which implies, in order to have positive solutions, 1 − k(1 −
p) � 0, that is

p � 1 − 1

k
. (20)

This is an overestimation of the extinction probability of
defectors, for all ε ∈ [0, 1]. For ε = 0, where the model is
the SIS model, and the square lattice (k = 4), the previous
estimation is 0.75 while the one from the simulations is around
0.62 [78,79] (see also Fig. 1).

For the only-cooperator case, it is 〈d〉 = 0 and 〈dd〉 =
〈cd〉 = 〈de〉 = 0. Using Eq. (13) together with 〈ce〉 = 〈c〉 −
〈cc〉, we get

〈cc〉 = 1 − p

1 − εp
〈c〉, (21)

and, with Eq. (15) and the identity 〈cce〉 + 〈ccc〉 = 〈cc〉,
p

1 − εp
[p(1 − ε) − (k − 1)(1 − p)]〈c〉

+ (k − 1)(〈cec〉 + pε〈ccc〉) = 0, (22)

which now implies p(1 − ε) − (k − 1)(1 − p) � 0 or

p � 1 − 1 − ε

k − ε
� 1 − 1

k
. (23)

Again, this is an overestimation of the critical probability
extinction when there are only cooperators in the system. The
critical value here is bigger or equal to the one of Eq. (20),
as expected due to the altruistic benefit. Equation (23) also
provides an estimation of the dependence of the critical prob-
ability on ε. In particular, it tends to 1 for ε → 1, in agreement
with the numerical simulations of Fig. 1.

Equations (20) and (23), and also the other relations, are
the same for ε = 0 provided we interchange the types of
particles because the model with only defectors and only
cooperators coincide in this limit. This can be seen from the
rates defining the dynamics in Eqs. (4)–(9): The rates for
defectors in the absence of cooperators are the same as the
rates for cooperators in the absence of defectors at ε = 0.

B. Global mean-field approximation

For the global mean-field case, equivalent to the dynamics
on a complete graph in the limit of infinite system size,
correlations among nodes are absent. In general, assuming the
mean-field approximation implies the following two approxi-
mations:

〈xix j〉 � 〈xi〉〈x j〉, i 	= j (24)

〈xi〉 � 〈x j〉 ≡ 〈x〉, for all i. (25)

This is also a good approximation when there is no correlation
expected between the agents, for instance, when there is one

kind of agent and the distribution of empty sites is homoge-
neously distributed. Then, the concentrations 〈c〉 and 〈d〉 of
cooperators and defectors evolve, according to Eqs. (13) and
(14), as

d

dt
〈c〉 = 〈c〉{(1 − p) − (1 − εp)〈c〉 − [1 + p(1 − ε)]〈d〉},

(26)

d

dt
〈d〉 = 〈d〉[(1 − p) − (1 − p)〈c〉 − 〈d〉]. (27)

The system (26) and (27) can be used now to analyze the
homogeneous steady-state solutions. Requiring stationarity,
d
dt 〈c〉 = d

dt 〈d〉 = 0, we find the trivial solution 〈c〉 = 〈d〉 = 0
(all sites empty) and, two other, nontrivial ones, namely,

〈c〉 = 0 and 〈d〉 = 1 − p, (28)

〈c〉 = 1 − p

1 − εp
and 〈d〉 = 0. (29)

The trivial solution is clearly unstable since the coefficient
1 − p of the less degree terms in Eqs. (26) and (27) is
positive for p < 1. However, it is an absorbing state, and their
presence becomes important for small system sizes, as already
mentioned in Sec. III.

In order to assess the stability of the solution with only
defectors, consider the perturbation of Eq. (28): 〈c〉 = 0 +
〈c〉1 and 〈d〉 = 1 − p + 〈d〉1 with 〈c〉1 ∼ 〈d〉1. Then, up to
linear order in the perturbations, we have

d

dt
〈c〉1 � −p(1 − p)(1 − ε)〈c〉1, (30)

d

dt
〈d〉1 � −(1 − p)[(1 − p)〈c〉1 + 〈d〉1]. (31)

The first equation, and hence the second one, have 〈c〉1 =
〈d〉1 = 0 as the steady solution, revealing the stable character
of (28). Proceeding similarly with the only-cooperators solu-
tion [Eq. (29)], we obtain the system

d

dt
〈c〉1 � − 1 − p

1 − εp
{(1 − εp)〈c〉1 + [1 + p(1 − ε)]〈d〉1},

(32)

d

dt
〈d〉1 � p(1 − p)

1 − ε

1 − εp
〈d〉1, (33)

which now reveals the unstable character of the solution
since the solution of Eq. (33) increases exponentially with
time. According to this analysis, in well-mixed populations,
cooperators go extinct.

C. Local mean-field approximation

We can go one step beyond the global mean-field approx-
imation by considering situations where the concentrations
of cooperators and defectors change from site to site. In
particular, we suppose situations where the site dependence
can be encoded through a vector r, which is nothing but the
vector of space position in a regular graph. This way, we
deduce in the sequel a macroscopic description that removes
one of the approximations of the global mean field, namely,
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that of Eq. (25), but still neglects correlations, Eq. (24). The
procedure is similar to the one used in Ref. [80].

By looking at the dynamics on a length scale L much
larger than the typical distance between sites l , the relevant
quantities become local concentrations:

κ (r) ≡ 〈ci〉, (34)

δ(r) ≡ 〈di〉. (35)

In a regular graph in Rd , for example, κ (r) and δ(r) give the
number of cooperators and defectors inside a region of volume
ld centered at position r. The new quantities are assumed to be
smooth functions of r, a property that allows us to relate any
density of site j ∈ Ni and position l, say χ (r + l) = κ (r + l)
or χ (r + l) = δ(r + l) at position r, with that of site i, χ (r),
as

χ (r + l) � χ (r) + ∇χ (r) · l + 1
2∇∇χ (r) : ll. (36)

Hence, we have

〈x̄i〉 = 1

ki

∑
k∈Ni

χ (r + lk ) � χ (r) + ∇2
r χ (r), (37)

where we have assumed
∑

k∈Ni
lk � 0, which is an exact

expression for a regular square lattice and quiet a good ap-
proximation for isotropic configurations. Moreover,

∇2
r χ (r) ≡ 1

2ki

∑
k∈Ni

∇∇χ (r) : lklk � l2

2d
∇2χ (r), (38)

which is valid, again, under isotropic configurations of sites.
With approximations (24), (37), and (38), the exact system

(13) and (14) becomes the following reaction-diffusion sys-
tem:

∂tκ = κ{(1 − p) − (1 − εp)κ − [1 + p(1 − ε)]δ}
+ [1 − (1 − εp)κ − δ]∇2

r κ − p(1 − ε)κ∇2
r δ, (39)

∂tδ = δ{(1 − p) − (1 − p)κ − δ}
+ [1 − κ − δ]∇2

r δ + pδ∇2
r κ. (40)

As expected, we recover the mean-field description for ho-
mogeneous solutions, hence, we still have the solutions given
in Eqs. (28) and (29). However, an important benefit of the
present description, if compared to that of the global mean-
field approximation, is the possibility of studying the latter so-
lutions under local perturbations, in contrast to homogeneous
and global ones done in the previous subsection.

Consider the homogeneous solution of Eq. (28), κ0 = 0
and δ0 = 1 − p. Following the standard linear stability anal-
ysis, we seek solutions of the form κ = κ0 + κ1 and δ = δ0 +
δ1, with κ1 ∼ δ1 � δ0. After linearizing and seeking solutions
of the form χ1 = χ̃1eiξ·r, system (40) and (39) becomes

∂t κ̃1 = −p

[
(1 − p)(1 − ε) + l2

2d
ξ 2

]
κ̃1, (41)

∂t δ̃1 = −
[

(1 − p) + p
l2

2d
ξ 2

]
[(1 − p)κ̃1 + δ̃1]. (42)

The steady-state solution for any wavelength ξ is the trivial
one, meaning that the solution of only defectors is linearly
stable: any initial and small spatial perturbation in the number
of defectors (and also cooperators) tends to zero as time
increases.

Proceeding similarly with the solution of Eq. (29), we get

∂t κ̃1 = −
[

(1 − p)(1 − ε) + p
l2

2d
ξ 2

]
κ̃1

− 1 − p

1 − εp

[
1 + p(1 − ε)

(
1 − l2

2d
ξ 2

)]
δ̃1, (43)

∂t δ̃1 = p(1 − ε)

1 − εp

[
(1 − p) − l2

2d
ξ 2

]
δ̃1. (44)

In this case, the stability of the system depends on the value
of ξ . Setting ξ = 2π/L, the smallest allowed value for the
given boundary conditions, the solution (29) is stable for p <

p∗
c with

p∗
c = 1 − 2π2l2

dL2
� 1 − 2π2

dN
2
d

, (45)

where we have used the approximation L/l � N1/d . This
means that, under this approximation, the only-cooperators
solution is stable for systems small enough. For N → ∞ it is
p∗

c → 1, and the solution is always unstable, and we recover
the result of mean field.

Although the local mean-field approximation could in prin-
ciple be seen as very crude, it shows the importance of taking
into account the system size while describing altruism, as
already pointed out in Ref. [60]. In this case, the inclusion
of spatial dependence, while still neglecting correlations, sta-
bilizes the only-cooperators solution for p < p̃c. Moreover,
the results suggest the existence of other solutions, spatially
nonhomogeneous ones, and the possibility of discontinuous
(first-order) transitions among them. This is because the only-
defectors solution keeps always linearly stable, with no other
stable solution close to it.

D. Pair approximation

The previous mean-field approaches are expected to fail
when the concentration of defectors and cooperators are lo-
cally correlated. Since births occur among neighboring sites,
correlations are expected to be important, in general. Hence,
we reconsider system (13)–(17), and try to express the three
node moments as a function of the one and two node mean
values. Although different approaches are possible (see for
instance [80]), we explore here the so-called pair approxi-
mation. Pair approximation has been extensively applied to
a variety of stochastic processes defined on a network, aiming
at describing different situations as diverse as spin dynamics
[81,82], opinion dynamics [83–87], epidemics [88–90], and
population dynamics [14,16,18,55,56]. In each of the cases,
the pair approximation assumes that the probability of a given
node quantity xi conditioned to the values of a neighboring
site x j and to a next-neighboring site xk is independent of
the latter [91]: Prob(xi|x jxk ) � Prob(xi|x j ). In other words,
the state of a neighbor of a given node is considered to be
independent of the state of another neighbor. In our model,
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where xi ∈ {c, d, e} takes the values 0 or 1, the mean values
〈xix j〉 and 〈xix jxk〉 are essentially the respective probabilities
of the given quantities, hence, under the pair approximation
〈xix jxk〉 = Prob(xi|x jxk )Prob(x jxk ) � P(xi|x j )Prob(x jxk ), we
have

〈xix jxk〉 � 〈xix j〉〈x jxk〉
〈x j〉 . (46)

Note that the order of appearance of the variables inside
the brackets is important: xi refers to a node which is a
neighbor of x j and x j is a neighbor of xk . Observe that the
pair approximation keeps the correlations regardless of the
occupancy of the middle node, namely,

∑
x j∈{c,d,e} 〈xix jxk〉 =

〈xi1xk〉 � ∑
x j∈{c,d,e}

〈xix j〉〈x j xk〉
〈x j〉 	= 〈xi〉〈x j〉, in general.

For simplicity, we consider homogeneous situations for
which system (13)–(17), within the pair approximation of
Eq. (46), becomes

d

dt
〈c〉 = (1 − p)〈ce〉 − p(1 − ε)〈cc〉 − p(2 − ε)〈cd〉, (47)

d

dt
〈d〉 = (1 − p)〈de〉 − p〈dd〉, (48)

k

2

d

dt
〈cc〉 = 〈ce〉 − p(1 − ε)〈cc〉

+ (k − 1)

{ 〈ce〉2

〈e〉 − p

[ 〈cc〉〈ce〉
〈c〉

+ (1 − ε)
〈cc〉2

〈c〉 + (2 − ε)
〈cc〉〈cd〉

〈c〉
]}

, (49)

k
d

dt
〈cd〉 = −p(2 − ε)〈cd〉 + (k − 1)

{
2
〈ce〉〈ed〉

〈e〉

− p

[ 〈ec〉〈cd〉
〈c〉 + 〈cd〉〈de〉

〈d〉 + 〈cd〉〈dd〉
〈d〉

+ (1 − ε)
〈cc〉〈cd〉

〈c〉 + (2 − ε)
〈cd〉2

〈c〉
]}

, (50)

k

2

d

dt
〈dd〉 = 〈de〉 − p〈dd〉 + (k − 1)

[ 〈de〉2

〈e〉

− p

( 〈dd〉〈de〉
〈d〉 + 〈dd〉2

〈d〉
)]

, (51)

where 〈xy〉 is for any two adjacent nodes with particles x and
y. Hence, 〈xy〉 = 〈yx〉.

1. Steady-state solutions

The system (47)–(51) has several steady-state solutions.
The most obvious one is the trivial solution, without particles,
〈c〉 = 〈d〉 = 0. This is the absorbing state we have already
mentioned. By setting all time derivatives of Eqs. (47)–(51)
to zero and c = 0, we obtain the steady-state solution for
defection only:

〈d〉 = (1 − p)k − 1

k − (1 + p)
, (52)

valid for

p � 1 − 1

k
. (53)

Observe that the previous inequality is the same as the one
in Eq. (20), derived using exact relations. However, in this
case, p = 1 − 1/k is the exact critical value for the extinction
of defectors in the absence of cooperators, within the pair
approximation.

The only-cooperators solution is obtained from Eqs. (47)–
(51) as a steady-state solution with d = 0. Now,

〈c〉 = (1 − p)k − (1 − εp2)

[k − (1 + p)](1 − εp)
, (54)

for

p � k −
√

k2 − 4ε(k − 1)

2ε
� 1 − 1

k
. (55)

The equality of the last relation holds for ε → 0. For the other
limiting value of ε, i.e., ε → 1, the upper allowed value of p
is 1, as we also obtained exactly.

Other steady-state solutions describing coexistence, but
close to the previous ones, can also be found as follows. First,
we notice that the system (47)–(51), under the steady-state
condition, can be reduced to a nonlinear system of only two
equations with 〈c〉 and 〈d〉 as unknown quantities. Second,
we seek solutions close to the one-type ones, i.e., 〈c〉 �
1−k(1−p)−εp2

(1−k+p)(1−εp) and 〈d〉 � 0 for the only-cooperators case and

〈c〉 � 0 and 〈d〉 � 1−k(1−p)
1−k+p for the only defectors. For the

former case, the resulting equations are linear and nontrivial
solutions appear below the following line:

εc(p) = A(p)B(p)

C(p) +
√

C2(p) − A2(p)B(p)
, (56)

with

A(p) = 2p(1 − p)(k − 1 − kp), (57)

B(p) = [k + 1 − (k + 2)p + 2p2]/[p(1 − p)], (58)

C(p) = k(k − 1) − (2k2 − 3k + 2)p

+ (k2 − 3k + 1)p2 + (k + 2)p3 − 2p4. (59)

For the only-defectors case, the resulting set of equations is
nonlinear, but one can still find a condition for a nontrivial
solution to exist. Now, the nontrivial solutions are above
εd (p), which has the following approximate expression:

εd (p) � E (p)

F (p)

[
1 −

√
1 − 2G(p)F (p)

E2(p)

]
, (60)

with

E (p) = (k − 1)3 + (k − 1)(4k2 − 7k + 8)p − {k[5k(k − 5)

+ 28] − 3}p2 − (13k − 5)kp3, (61)

F (p) = 2p{(k − 1)(2k2 − 3k + 2) − (2k3 − 14k2

+ 14k − 1)p − (9k − 4)kp2}, (62)

G(p) = (k − 1 − kp)[(k − 1)2

+ (3k2 − 7k + 10)p + 2(3k − 1)p2]. (63)
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FIG. 5. Phases in pair approximation. The extinction transition
between the regime of only cooperators (red area) to the empty
system (white area) is given by the expression in p and ε in Eq. (55).
The transition between coexistence (green area) and the regime
of only cooperators is described by Eq. (56) using expressions
(57)–(59). The transition between coexistence and the regime of
only defectors (blue area) has an approximate description (dashed
curve) in Eq. (60) using expressions (61)–(63). The exact solution
(boundary between blue and green area) has been obtained as well,
details given elsewhere.

Since εc(p) � εd (p), the coexistence solutions are in the
region in-between the two lines, as shown in Fig. 5 for the
square lattice (k = 4).

Finally, there may be other solutions describing coexis-
tence not necessarily close to the only-cooperator nor only-
defectors ones. This can be shown explicitly for ε = 1, for
which we can obtain explicit expressions. After some algebra,
we get

〈c〉 = 2(k − 1)(2k − 3)(1 − 3p)

(1 − p)[4(k − 1)(k − p − 2) + p + 1]
, (64)

〈d〉 = (2k − 3)[(4k − 5)p − 1]

4(k − 1)(k − p − 2) + p + 1
, (65)

〈cd〉 = 4(k − 1)(k − p − 2) + p + 1

2(k − 1)(2k − 3)
〈c〉〈d〉, (66)

valid for

1

4k − 5
� p � 1

3
. (67)

Moreover, it can be seen that this solution is linearly unstable,
with only one unstable mode. However, the characteristic time
of the unstable mode is much slower than the others, meaning
that the system can stay close to the solution for a long time.

2. Stability of the steady-state solutions

The stability of the only-defectors and only-cooperators
solutions have been studied by means of a modified linear
stability analysis of system (47)–(51), following several steps.
First, using the identities 〈ce〉 = 〈c〉 − 〈cc〉 − 〈cd〉 and 〈de〉 =
〈d〉 − 〈cd〉 − 〈dd〉, all mean values are expressed in terms
of 〈c〉, 〈d〉, 〈cc〉, 〈cd〉, and 〈dd〉. Second, the homogeneous
solution is linearly perturbed as

u = u0 + γ u1, (68)

with u = (〈c〉, 〈d〉, 〈cc〉, 〈cd〉, 〈dd〉) the vector of the homo-
geneous solutions, u0 is the vector of the unperturbed so-
lutions, u1 is the perturbation vector, and γ a perturbative
parameter. Third, the proposed solution is replaced in (47)–
(51) and the resulting system is expanded up to linear order
in γ . Contrary to the usual linear perturbation schemes, we
obtain a nonlinear closed system of equations for the unknown
perturbation quantities u1,i, for i = 1, . . . , 5. For both, the
only-cooperators and only-defectors solutions, the equation
for the perturbation can be written as

d

dt
u1 = M(β )u1, (69)

with M being a matrix and β a linear function of 〈cc〉/〈c〉,
〈cd〉/〈c〉, 〈cd〉/〈d〉, and 〈dd〉/〈d〉, whose explicit form de-
pends on the solution considered. In any case, β is a bounded
function since 0 � 〈xy〉/〈x〉 � 1 for x, y ∈ {c, d}. Finally, the
asymptotic behavior of u1(t ) for t → ∞, hence, the stable or
unstable character of u0, can be determined from the spectra
of M(β ) for any β, using the following lemma.

Lemma. If all eigenvalues of M(β ) have negative real parts
for all values of β, then u0 is linearly stable.

Proof. Given a time t > 0 and an integer n > 0, we define
ti = t

M i for i = 0, . . . , n. Thanks to the mean value theorem,
it is u1(ti ) = (I + M1

t
n )u(ti−1) for i � 1, where Mi is the

value of M for a time in (ti−1, ti ) and use has been made of
Eq. (69) to evaluate the time derivative. By iteration, u1(ti) =
[
∏i

k=1 (I + Mk
t
n )]u0. Denoting by ‖ · ‖ any vector norm,

we have ‖u1(t )‖ = ‖[
∏n

k=1(I + Mk
t
n )]u0‖ � ‖(I + M̃ t

n )nu0‖
where M̃ is such that ‖(I + M̃ t

n )u0‖ = maxk ‖(I + Mk
t
n )u0‖.

Taking n → ∞, ‖u1(t )‖ � ‖eM̃t u0‖ which tends to zero as
t → ∞, as all eigenvalues of M̃ have negative real parts. �

Using the lemma, we see that the only-cooperators solution
is stable above line εc(p) given by Eq. (56), and the only-
defectors solution is stable below line εd (p) given approxi-
mately by Eq. (60). This implies that the instability of the one-
type solutions is due to the presence of coexistence solutions
which become stable. Numerical evaluation of the time evolu-
tion of system (47)–(51) confirms the theoretical analysis.

V. DISCUSSION

As the root of this work, we introduce a basic stochastic
model of a spatially extended population of altruistic and
nonaltruistic agents, called cooperators and defectors. The
population evolves by a birth-death process. In line with
the considerations by Huang and colleagues [19], an agents’
interaction with another agent influences the death rates only.
Agents’ interactions are altruistic acts. They lower the death
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rate of the recipient while increasing the death rate of the
donor, relative to a baseline death rate p for agents in isolation,
p being one of two parameters of the model. The benefit-cost
ratio of the altruistic is encoded in the second parameter ε.

Results are obtained as (1) stochastic simulations of finite
systems and (2) stationary solutions and their stability in
approximate descriptions by rate equations. The pair approx-
imation, neglecting all spatial correlations except those of
nearest neighbors, yields our main result: For any benefit-cost
ratio above 1, the stable stationary solutions in dependence of
baseline death rate p display (i) a regime of coexistence of
cooperators and defectors and (ii) a regime of a population of
cooperators only. In the (p, ε) parameter plane, these regimes
and the related transitions appear as a continuation of the
known extinction transition for a spatial population without
cooperative interaction (also known as contact process, asyn-
chronous SIS model). The latter case corresponds to benefit-
cost ratio of exactly 1 (ε = 0).

The phase diagram from pair approximation is fully quali-
tatively consistent with that from stochastic simulation with fi-
nite square lattices. Simulations of sufficiently large instances
of k-regular random graphs yield an equivalent phase diagram
(results not shown here); this holds also for preliminary
simulation results on other graphs, including scale-free [92]
and small-world networks [93]. Thus, we speculate that the
observed type of (p, ε) phase diagram is generic, holding
for most types of connected sparse graphs. For dense graphs,
however, we expect mean-field behavior without stable coop-
eration seen in Sec. IV B.

Consider a spatially extended population subject to a de-
cline in livability, which in reality may be a reduction of
food resources or an increase of predators. In our model, this
scenario is represented by increasing p and comes with the
following prediction. Initially without cooperators, the con-
centration of agents decreases until reaching a transition point
with the onset of coexistence. In this regime, the concentration
of defectors further decreases; this decrease is overcompen-
sated by the increase in cooperators. Thus, in the coexistence
regime, there is net population growth under increasing p
[48]. Further increase of p first leads to a regime with a
population containing cooperators only and then an extinction
phase where zero population size is the only stable solution.

From earlier studies, both theoretical [48] and experimen-
tal, increasing baseline death rate has been known to enhance

cooperation. Perturbing populations of yeast cells by dilution
shocks, Sánchez and Gore find populations with larger
fractions of cooperative cells (providing digestive enzyme
to the population) more likely to survive [94]. Datta and
coauthors observe cooperation promoted when a population
expands the space it occupies, cooperators forming a wave of
invaders [95]. According to the rule by Ohtsuki and colleagues
[51], cooperation supersedes defection when the benefit-cost
ratio is larger than the agent’s number of neighbors z. While
their theory assumes a population of constant size and
each agent with a constant number z of neighbors, we here
see cooperation enhanced when the number of neighbors
(occupied adjacent sites) is reduced dynamically due to a
shrinking population density. When the population most
“needs” it, i.e., at low density close to extinction, cooperation
appears as a stable stationary solution for any benefit-cost
ratio above 1. Future work may check if a rule relating
benefit-cost ratio and neighborhood size characterizes the
appearance of stable cooperation also in the present model
with varying population size. For experimentally testing the
present model’s predictions, the unperturbed steady state of a
population would have to be observed.

Giving up the spatial homogeneity of the baseline death
rate p, we have investigated the scenario of a gradient between
low p (high livability) and high p (low livability). The regimes
encountered previously by tuning p for the whole system
are now found simultaneously at their corresponding spatial
position. In particular, high concentration of cooperators is
found next to the region uninhabited due to large death rate
p. There is a region of coexistence where total population
concentration increases with p also spatially. Cooperation
arises when and where needed to avoid extinction.
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