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Long-distance dissipation-assisted transport of entangled states via a chiral waveguide
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Quantum networks provide a prominent platform for realizing quantum information processing and quantum
communication, with entanglement being a key resource in such applications. Here we describe the dissipative
transport protocol for entangled states, where entanglement stored in the first node of a quantum network can
be transported with high fidelity to the second node via a one-dimensional chiral waveguide. In particular, we
exploit the directional asymmetry in chirally coupled single-mode ring resonators to transport entangled states.
For the fully chiral waveguide, Bell states, multipartite W states, and and Dicke states can be transported with
fidelity as high as 0.954, despite the fact that the communication channel is noisy. Our proposal can be utilized
for the long-distance distribution of multipartite entangled states between the quantum nodes of an open quantum
network.
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I. INTRODUCTION

Quantum networks [1,2] are essential for realizing dis-
tributed quantum computing and large-scale quantum com-
munication, with entanglement being a key resource in such
applications. In this context, the main task and at the same
time an outstanding challenge is the high-fidelity transfer
of quantum states over long distances despite having noise
and dissipation present in the quantum channel [3]. It is
well known that in open quantum systems, dissipation arises
as a result of the system coupling with the reservoir [4],
which consequently causes decoherence in the system. In
this paper we show that the dissipative channel can be used
for transporting entangled states. In general, long-distance
processes in open quantum systems are challenging because
of non-Markovian effects due to the non-negligible time delay
between the nodes of a quantum network. Non-Markovianity
has been shown to be detrimental to both quantum state
transfer and entanglement generation between the nodes [5,6].

There have been several theoretical proposals [7–17] as
well as actual experimental realizations [18–20] for the quan-
tum state transfer (QST) of a single qubit in quantum optical
networks, where fast information transfer is achieved with the
help of photons (flying qubits). In all the above proposals,

*waikeong_mok@u.nus.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

there are a few demanding requirements that are hard to meet
experimentally: external control pulses that have nontrivial
temporal shapes (photonic wave packets are required to be
time symmetric) and time-dependent cavity-atom and fiber-
atom interaction strengths. Moreover, there are no existing
protocols for long-distance entanglement transfer in the op-
tical frequency domain.

On the other hand, spin chains can alleviate the issue of
sensitive control of system parameters and realize quantum
systems with minimal control (coupling constants are fixed
in time) and entanglement transfer has been demonstrated
in several theoretical papers [21–28] in Heisenberg-type
spin chains. However, these systems can only realize short-
distance state transfer, as experimentally one is limited by the
number of spins. It is also widely believed that increasing the
length of a spin chain will worsen transfer fidelities due to
dispersion effects [28].

Quite remarkably, using chiral waveguides, the merits of
quantum optical networks (fast information transfer with fly-
ing qubits) and spin chain networks (minimal control over
system parameters) can be combined. In quantum optics, chi-
rality arises, for instance, in atom-waveguide coupled systems
when the symmetry of photon emission in the left and right
directions is broken [29]. This effect appears as a result of
spin-orbit coupling and has been experimentally demonstrated
in photonic waveguides [30]. Chiral systems have been shown
to be fruitful for realizing quantum networks [14,31,32]. In
Ref. [33] it was argued that the maximum achievable concur-
rence between two atoms is 1.5 times higher as compared to
the nonchiral counterparts.

Interestingly, systems with perfect chirality realize the
paradigm of cascaded systems [34–36], where two systems
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are coupled unidirectionally without information backflow.
Cascaded systems, even when separated by long distances,
can then be described under the Born-Markov approximation
with retardation effects accounted for by a simple redefinition
of the time and phase of the second node [36] such that
the resulting Markovian master equation does not contain
source retardation. Physically, the time delay between the two
nodes is not important for cascaded systems since there is no
backaction from the target to the source, by definition. Here
we exploit the Markovianity provided by cascaded systems
as a suitable platform to achieve high-fidelity entanglement
transfer, despite the noise being present in the quantum chan-
nel.

Motivated by Refs. [9,33], we couple ring cavities with
chiral waveguides to obtain unidirectional effective coupling
between the cavities. In particular, we benefit from Markovian
dynamics due to the cascaded systems naturally arising from
the high chirality. Each node of our quantum network consists
of an N-particle atomic ensemble which is coupled to the ring
cavity. It is important to highlight that ring cavities introduce
greater control over the system compared to the bare-atom–
fiber coupled case, where the transport fidelity is significantly
lowered due to all-to-all long-range interactions between the
atoms. By suitably optimizing over the system parameters, we
demonstrate the transport of maximally entangled Bell states,
Dicke states, and W states for up to 20 qubits. For clarity, we
remark that the entanglement transport here is not necessarily
QST, although the transport of W states and Bell states can
be applied to the QST of unknown qubit and qutrit states,
respectively.

Compared to other schemes, our minimal control proposal
has various advantages. First, the scheme works in the weak-
coupling regime with no external driving field required. Also,
the optimal transport of entanglement occurs dynamically.
This potentially can lead to faster transport compared to
steady-state schemes [31]. Moreover, the entanglement trans-
port is not dependent on the distance between the atoms.

II. CHIRAL WAVEGUIDE QED SYSTEM

The system in consideration comprises two nodes coupled
to a one-dimensional (1D) waveguide, shown in Fig. 1(a).
Each node comprises N qubits coupled to a single cavity mode
where the transition frequencies of the qubits and resonant
frequency of the cavity are ω

( j)
l and ωc j , respectively. The

atom-cavity coupling strength is given by g( j)
l . The bosonic

operators for the cavity mode are a†
j and a j , satisfying the

canonical commutation relation [a j, a†
j′ ] = δ j j′ . The waveg-

uide is treated as a common reservoir, with bosonic oper-
ators b†λ(ω) and bλ(ω) satisfying the commutation relation
[bλ(ω), b†λ′ (ω′)] = δλλ′δ(ω − ω′). The interaction strength be-
tween the cavities and the waveguide (at position x j) is
characterized by the decay rate γλ. Here we assume that cavity
losses into nonwaveguide modes are negligible, which can be
realized in photonic waveguides with β factors close to unity
[37]. The spontaneous decay of the qubits is described by an
interaction with independent baths at a decay rate � jl , where
the first index denotes the cavity and the second index denotes

FIG. 1. (a) Proposed setup for entanglement transport. Each node
comprises N qubits (N = 2 in the figure) coupled to a single cavity
mode. Chirality is enforced by setting γL �= γR. Concurrence and
fidelity are shown for the transport of the Bell state |�+〉, with C1a,1b

and C2a,2b denoting the qubit concurrence in the left and right nodes,
respectively. (b) Chiral coupling with γL = 0. (c) Nonchiral coupling
with γL = γR and kD = π . Cavity-atom coupling is set at the optimal
value g1 = g2 = 0.3γR.

the qubit. The bath operators c( j)†
l (ω) and c( j)

l (ω) satisfy the

commutation relation [c( j)
l (ω), c( j′ )†

l ′ (ω′)] = δ j j′δll ′δ(ω − ω′).
By tracing out the waveguide mode and applying the Born-

Markov approximation, the Lindblad master equation for the
system can be found as [31] (setting h̄ = 1, details in the
Appendix)

ρ̇ = − i[Heff, ρ] + γLD[eikx1 a1 + eikx2 a2]ρ

+ γRD[e−ikx1 a1 + e−ikx2 a2]ρ +
∑

j,l

� jlD
[
σ

( j)
l

]
ρ, (1)

with the effective Hamiltonian

Heff =
∑

j,l

[
ω

( j)
l σ

( j)†
l σ

( j)
l +ωc ja j

†a j + g( j)
l

(
a j

†σ ( j)
l + H.c.

)]

− i
γL

2
(eikDa†

1a2 − H.c.) − i
γR

2
(eikDa†

2a1 − H.c.), (2)

where D = |x2 − x1| is the distance between the nodes. The
Lindblad superoperator in the master equation is given by
D[Ô]ρ = OρO† − 1

2 {O†O, ρ}. In the following, we will
study the transport of entangled qubit states between the
nodes mediated by the waveguide. The case of N = 2 is first
presented to illustrate Bell state transport.

III. TRANSPORT OF BELL STATES WITH
CHIRAL COUPLINGS

Here we exploit the directional asymmetry by using a
chiral light-matter interface, with γL = 0 and γR �= 0 [9].
Here chirality is defined as χ ≡ (γR − γL )/(γR + γL ), with
the perfectly chiral case corresponding to χ = 1. Using chiral
couplings, the setup is essentially a cascaded quantum system
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[34] where the first node is coupled to the second node
unidirectionally without backflow of information. In this case,
the setup we consider can be used to study long-distance en-
tanglement transport despite the Born-Markov approximation
used, since retardation effects in a cascaded quantum system
are accounted for by a simple redefinition of the time and
phase of the second node [36].

For simplicity, we assume that the qubit decay rates are
much smaller than the cavity decay rates and can be neglected,
and the nodes are identical, i.e., ω

( j)
l = ω0, ωc j = ωc, and

g( j)
l = g j for all j, l ∈ {1, 2}. The qubits in the first node

are denoted by 1a, 1b while the qubits in the second node
are denoted by 2a, 2b. We first prepare the qubits 1a, 1b in
the Bell state |�+〉 = 1√

2
(|eg〉 + |ge〉) and consider resonant

conditions ωc = ω0 with cavity coupling strength g1 = g2 =
0.3γR. For the case of N = 2, the entanglement of the two-
qubit mixed state ρ is measured by the concurrence, which is
defined as

C = max(0, λ1 − λ2 − λ3 − λ4), (3)

where λi, i = 1, 2, 3, 4, are the eigenvalues of the matrix√√
ρρ̃

√
ρ in decreasing order, with ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗

σy) the spin-flipped state [38].
As shown in Fig. 1(b), the concurrence of 1a, 1b decreases

to nearly zero at some time, while concurrence of 2a, 2b
increases from zero to a maximum of around 0.91. The state
fidelity of 2a, 2b compared to the initial Bell state is around
0.954. This shows that good entanglement transport can be
accomplished. For the case of perfect chirality (χ = 1), due
to the cascaded nature of the system, this result is independent
of the distance D between the qubits. For the nonchiral case
in Fig. 1(c) where γL = γR, the maximum concurrence is
only around 0.58, even with the optimal distance of kD = π ,
where k is the wave number of the photon k = 2π/λ, with
λ the corresponding wavelength. Comparing the fidelity of
the qubit state of 2a, 2b [denoted by ρ2(t )] with the initial
entangled state of 1a, 1b [denoted by ρ1(0)] such that F =
[Tr

√√
ρ1(0)ρ2(t )

√
ρ1(0)]2, Fig. 1(b) shows that the maxi-

mum fidelity transported Fmax is around 0.951 (green dashed
line), a significant improvement over the nonchiral case in
Fig. 1(c), which gives Fmax ≈ 0.78. Thus, chiral coupling
drastically improves the entanglement transport between the
nodes.

To find the optimal coupling g1 = g2 = g, we plot the
maximum transported concurrence Cmax of 2a, 2b against g1

and g2. As shown in Fig. 2(a), the transported concurrence is
maximal (Cmax ≈ 0.905) around g1 = g2 ≈ 0.3γR. Intuitively,
for small couplings, the entanglement does not transport effec-
tively to the cavity, and thus the transport is weak. For strong
couplings however, the Rabi oscillations between the cavity
and the qubits become more significant, which is detrimental
to the transport of entanglement via the waveguide. It can also
be seen from Fig. 2(a) that g1 = g2 is an optimal condition for
good entanglement transport.

To illustrate the effect of chirality on the transport, we
compare the maximum transported concurrence for different
chirality. We comment that although non-Markovian effects
should in general be taken into account if one considers
long distances with imperfect chirality, this is not required

FIG. 2. (a) Maximum concurrence of 2a, 2b against g1, g2 show-
ing the optimal point g1 = g2 = 0.3γR. (b) Maximum concurrence
of 2a, 2b against internodal distance D. (c) Maximum fidelity of
2a, 2b against various initial states |ψα〉. (d) Maximum fidelity of
2a, 2b against various initial states |ψβ〉. The other parameters are
g1 = g2 = 0.3γR, and� jl = 0.

as long as the entanglement is transported much faster than
the timescale for information backflow to occur. For example,
if the distance between the nodes is such that the time delay
τ � γ −1

R , then the non-Markovian effects do not appear at
the much shorter system timescale. As a result, the decay
rate γL �= 0 can be simply regarded as additional leakage of
excitation from the second node. Our results indicate that
such conditions can be easily achieved for sufficiently long
waveguides. Figure 2(b) shows the comparison for differ-
ent chirality. For the fully chiral waveguide (χ = 1), Cmax

is independent of the internodal distance D, as previously
mentioned. This is simply due to the cascaded nature of the
setup. However, when γL �= 0, Cmax depends on the distance
between the nodes. The peak at D = 0.5λ is a result of
the spatial localization of the photon wave function between
the nodes [5], resulting in less detrimental scattering effects,
which contributes to excitation leakage. The sensitivity of
Cmax to fluctuations around this optimal point decreases as
χ gets closer to 1. In general, the entanglement transport
worsens with decreasing chirality. Intuitively, this can be due
to two factors: (i) leakage of excitation from the first node
through the left port via γL, which decreases the probability of
the second node being excited, and (ii) information backflow
from the second node back to the first node, which can be
detrimental to the transport process. Thus, using chirality, both
problems can be addressed simultaneously, leading to good
entanglement transport.

Next we look at the maximum transported fidelity with
different initial states of 1a, 1b. To this end, we prepare the
qubits in system 1 in the state

|ψα〉 = cos θ |eg〉 + eiφ sin θ |ge〉 , θ ∈ [0, π ], φ ∈ [0, 2π ],

(4)
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while the qubits in system 2 are initially in the ground state.
The cavities are all in the vacuum state initially. In Fig. 2(c),
the maximum transported fidelity (Fmax = 0.951) occurs near
(φ = 0, θ = π/4), which corresponds to the Bell state |�+〉.
The case of Fmax = 0 occurs near (φ = π, θ = π/4), which
corresponds to the Bell state |�−〉. This is because |�−〉 is a
dark state and thus does not decay with time. However, |�−〉
can be easily transported with the same fidelity of Fmax =
0.951 by imposing a π phase difference between the two
cavity-qubit couplings in the same node, i.e., g( j)

1 = −g( j)
2 . We

also consider the initial state

|ψβ〉 = cos θ |gg〉
+ eiφ sin θ |ee〉 , θ ∈ [0, 2π ], φ ∈ [−π, π ], (5)

with the Bell states |�+〉 = 1√
2
(|gg〉 + |ee〉) and |�−〉 =

1√
2
(|gg〉 − |ee〉). As shown in Fig. 2(d), the maximum trans-

ported fidelity is independent of φ. The transported fidelity
Fmax ≈ 0.954 at (θ = π/4, φ = 0) and (θ = π/4, φ = π )
corresponds to the Bell states |�±〉, respectively. The lowest
Fmax ≈ 0.88 occurs at θ = π/2, which is reasonable since
that corresponds to the case of transporting a two-excitation
state |ee〉, and the probability of excitation leakage via dissi-
pation to the right waveguide port increases when transferring
higher-excitation states. Overall, we have shown that good
transport of entanglement is possible for all the Bell states.

IV. TRANSPORT OF MULTIPARTITE ENTANGLEMENT
WITH CHIRAL COUPLINGS

Here we demonstrate a generalization of the entanglement
transport scheme by using N qubits per node. Intuitively,
it is clear that states with permutation invariance and low
excitations can be transported well using this scheme. In
Fig. 3(a) we show the transport of Dicke states denoted by
|NDk〉, which is an equal superposition of k excitations over
N qubits. It can be seen that the three-qubit W state |W3〉 =
|3D1〉 is transported with a fidelity of Fmax ≈ 0.954, while the
two-excitation states |3D2〉 and |4D2〉 are transported with a
lower fidelity of 0.905 due to increased leakage of excitation
from the second node of the quantum network. The W states
are extremely useful for quantum information and communi-
cation applications as they are more robust states for encoding
single-qubit states. Moreover, W states have the unique prop-
erty (contrary to, say, Greenberger-Horne-Zeilinger states)
that even if one particle is lost, the rest of the N − 1 qubits
will remain in the entangled state. In Fig. 3(b) the optimal
g j for the transport of |WN 〉 is plotted. We numerically show
that the optimal transport condition for any |WN 〉 is given by√

Ngopt/γR ≈ 0.43. In fact, any |WM〉 can be mapped onto any
|WN 〉 (M �= N in general) with the same fidelity of 0.954 as
long as this condition is satisfied on each node. To study the
effects of detuning on W -state transport, we add a random
fluctuation �a ∈ [−δa, δa] to the qubit frequencies in Fig. 3(c)
and �c ∈ [−δc, δc] to the cavity frequencies in Fig. 3(d). The
result shows that while the scheme is more robust against
fluctuations in cavity frequencies, good transport can also be
achieved for δa � 0.1γR.

FIG. 3. (a) Transport of Dicke states |W3〉 (g1 = g2 = 0.248γR),
|3D2〉 (g1 = g2 = 0.248γR), and |4D2〉 (g1 = g2 = 0.215γR). (b) Op-
timal g1 = g2 for |WN 〉. (c) Effect of random fluctuations in qubit
frequencies on fidelity. (d) Effect of random fluctuations in cavity
frequencies on fidelity. The other parameters are γL = 0 and � jl = 0.

V. ROLE OF IMPERFECTIONS

The analysis in the previous sections neglected qubit losses
by assuming that the decay rate of the cavity is much larger
than that of the qubit decay rates. Here we look at the entan-
glement transport with qubit losses. Specifically, we prepare
the initial state of 1a, 2a in the Bell state |�+〉 and set all qubit
decay rates to be equal (� jl = �) for simplicity. The optimal
case (from optimization over system parameters) is presented
for each value of �. In general, for larger �, the probability
of spontaneous emission of the initially excited qubits in the
first node increases. Thus, in order to transport the excitation
effectively, the excitation should be transferred to the ring
cavity before significant qubit decay occurs, resulting in larger
optimal coupling gopt.

Increasing the qubit decay rate, the fidelity decreases as
shown in Fig. 4(b). Here we set the internodal distance to
be at the optimal point kD = π . A comparison between the
chiral (χ = 1) and nonchiral (χ = 0) cases shows that as
long as the qubit decay rate is within � < 0.1γR, the chiral
system remains advantageous over the ideal nonchiral case

FIG. 4. Effects of qubit losses on entanglement transport of
|�+〉. (a) Fidelity of 2a, 2b with chiral coupling. (b) Maximum
fidelity of 2a, 2b against qubit decay rate. The optimized case is
shown for each value of �.
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in terms of entanglement transport. As mentioned earlier, the
entanglement transport at kD = π is also relatively insensitive
to small imperfections in chirality. Thus, perfect chirality is
not required for the transport scheme to work well.

VI. PROPOSAL FOR EXPERIMENTAL
IMPLEMENTATIONS

Our scheme can be experimentally realized in two different
platforms. First, the authors in Ref. [39] recently established
a photonic interface of chiral cavity QED using the coupled
photonic crystal (PC) and plasmon nanoparticle structure. In
this system, the rate of circularly polarized photons emitting
into the PC waveguide is one order of magnitude larger than
that without the nanoparticle, with about 95% of photons
propagating unidirectionally along the waveguide. In par-
ticular, a silver nanoparticle which serves as a nanocavity
is embedded inside the W1 PC where the electric field is
mainly located with an antisymmetric local helicity distri-
bution. The efficient chiral coupling is controlled by the
relative position between the emitter and silver nanoparticle.
By applying a strong magnetic field and suitably choosing the
laser frequency, two circularly polarized states of the atoms
or quantum dots can be generated to emit only clockwise or
counterclockwise photons [30].

Another possibility to realize our proposal is by coupling a
single 85Rb atom with a microbottle resonator, which is inter-
faced with a silica nanophotonic tapered fiber. As experimen-
tally demonstrated in Refs. [40,41], chirality naturally arises
in such a system due to the strong transverse confinement of
the light in the microbottle resonator, which results in different
circular polarizations for the clockwise and counterclockwise
TM modes in the whispering-gallery mode microresonator.
The selection rules for dipole transitions prevent the atom
from emitting light into the counterpropagating TM mode.
Consequently, the chirality arises because the atom has dif-
ferent interaction cross sections (up to one order of magnitude
difference) for the two orthogonal circular polarizations. For
our proposal, it suffices to initialize the atoms in the second
node in the outermost mF = 3 Zeeman sublevel of the F = 3
hyperfine ground state. The excited state corresponds to the
F ′ = 4, mF = 4 state. Similarly, we can prepare the ensemble
of atoms in the first node in the entangled state. A magnetic
field of B = 4.5 G can be applied along the resonator axis to
lift the degeneracy.

VII. CONCLUSION

In this paper we have proposed a protocol for transporting
entanglement between the two nodes in an open quantum

network, where we demonstrated that dissipation can be use-
ful to achieve the task, contrary to the common notion that
dissipation creates decoherence. By coupling ring cavities
with a chiral 1D waveguide, we demonstrated entanglement
transport, with the entangled state stored in the atomic en-
sembles which are coupled to the ring cavities. Consequently,
our scheme can be implemented experimentally, by coupling a
photonic waveguide with ring cavities which are then coupled
to an atomic ensemble, to realize the elementary unit of a
quantum node. The communication channel is realized by the
chiral waveguide. We have found optimal system parameters
for the transport of maximally entangled Bell states and for
up to 20-qubit W states. As an application of our results,
the quantum transport of W states and Bell states can be
exploited to achieve QST of unknown qubit and qutrit states,
respectively. We highlight that our proposal requires minimal
control over the system parameters, contrary to other propos-
als which require external pulses with demanding temporal
shapes and time-dependent cavity couplings [7–16]. More-
over, since the entanglement transport is achieved dynami-
cally, it is faster compared to its steady-state counterparts,
which requires timescales on the order of 102γ −1

R [31,42,43].
Finally, our protocol can easily be applied to long-distance
transport by utilizing the Markovianity in cascaded systems.
This can potentially be significant for the efficient distribution
of entanglement within a quantum network.
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APPENDIX: DERIVATION OF THE EFFECTIVE MASTER
EQUATION

In this Appendix we derive the effective master equation
from tracing out the degrees of freedom of the common bath,
which in this case is the 1D waveguide. Note that this deriva-
tion is similar to the approach taken in [9]. For simplicity, we
neglect qubit decays here and assume that the ring resonators
are at a common frequency ωc. The Hamiltonian is given by
H = HB + HS + HSB, where

HS =
2∑

j=1

N∑
l=1

[
ω

( j)
l σ

( j)†

l σ
( j)
l + ωc ja

†
j a j + g( j)

l

(
a†

jσ
( j)
l + H.c.

)]
,

HB =
∑

λ=L,R

∫
dω ωb†λ(ω)bλ(ω) +

2∑
j=1

N∑
l=1

∫
dω ωc( j)†

l (ω)c( j)
l (ω),

HSB = i
2∑

j=1

∑
λ=L,R

∫
dω

√
γλ

2π
[b†λ(ω)e−ikx j a j − H.c.] + i

2∑
j=1

N∑
l=1

∫
dω

√
� jl

2π

[
c( j)†

l (ω)σ ( j)
l − H.c.

]
. (A1)
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Setting � jl = 0 from the Hamiltonian in Eq. (A1), choosing a frame rotating with the cavity and bath, i.e., U =
exp{i[∑ j ωc ja

†
j a j + ∑

λ

∫
dω ωb†λ(ω)bλ(ω)]}, and applying the transformation H = UHU † − iU̇U †, we have

H̃SB(t ) = i
∑
λ, j

∫
dω

√
γλ

2π

[
b†λ(ω)a je

i(ω−ωc )t e−iωx j/v − ei(ω−ωc )t eiωx j/va†
j bλ(ω)

]
. (A2)

From the Heisenberg equations of motion we have

ḃλ(ω, t ) = i[H, bλ(ω, t )] =
∑
j=1,2

√
γλ

2π
a j (t )ei(ω−ωc )t e−iωx j/v, (A3)

which can be formally integrated to obtain

bλ(ω, t ) = bλ(ω, 0) +
∫ t

0
ds

∑
j

√
γλ

2π
a j (s)ei(ω−ωc )se−iωx j/v. (A4)

For an arbitrary system operator X (t ), the Heisenberg equation reads

Ẋ (t ) =
∑
λ, j

∫
dω

√
γλ

2π
{b†λ(ω, t )ei(ω−ωc )t e−iωx j/v[X (t ), a j (t )] − bλ(ω, t )e−i(ω−ωc )t eiωx j/v[X (t ), a†

j (t )]}. (A5)

Substituting bλ(ω, t ) into Ẋ (t ) and defining bλ(t ) ≡ 1√
2π

∫
dω bλ(ω)e−i(ω−ω j )t and k = ω0/v, we have

Ẋ (t ) =
∑
λ, j

∑
λ, j

√
γλb†λ(t − x j/v)e−ikx j [X (t ), a j (t )] − [X (t ), a†

j (t )]bλ(t − x j/v)eikx j

+
∑
λ, j,l

γλ

2π

∫ t

0
ds

∫
dω ei(ω−ωc )(t−s)e−iωx jl /va†

l (s)[X (t ), a j (t )] − e−i(ω−ωc )(t−s)eiωx jl /val (s)[X (t ), a†
j (t )]. (A6)

We can perform the Born-Markov approximation by treating the time delay x jl/v between the two atoms to be very small. Thus,

∑
l

1

2π

∫ t

0
ds

∫
dω ei(ω−ω j )(t−s)e−iωx jl /va†

l (s) =
∑

l

∫ t

0
ds δ(t − x jl/v − s)e−ikx jl a†

l (s) ≈ 1

2
a†

l (t ) +
∑

l

θ (x jl/v)e−ikx jl a†
l (t ),

(A7)

where the first term is the contribution from x jl/v < 0 and the second term is from x jl/v > 0. The Markov approximation is also
applied to the second term σ

†
l (t − x jl/v) → σ

†
l (t ). Next we substitute this into the equation for Ẋ (t ) and take averages. Since

the bath is initially in the vacuum, 〈bλ(t )〉 = 0. Thus,

〈Ẋ (t )〉 =
∑
λ j

γλ

2
{〈a†

j (t )[X (t ), a j (t )]〉 − 〈[X (t ), a†
j (t )]a j (t )〉}+

∑
λ jl,x j>xl

γλ{e−ikx jl 〈a†
l (t )[X (t ), aj (t )]〉 − eikx jl 〈[X (t ), a†

j (t )]al (t )〉}.

(A8)

To obtain the master equation, we first note that the average is the same in both the Schrödinger picture and the Heisenberg
picture, and thus Tr[X (t )ρ(0)] = Tr[Xρ(t )], that is, we can move the time dependence from the system operator to the density
operator. For example, the first term on the right-hand side can be written as

〈a†
j (t )[X (t ), a j (t )]〉 = Tr[a†

j Xa jρ(t ) − a jXa†
jρ(t )] = Tr{X [aj, ρ(t )a†

j ]} (A9)

using the cyclic property of trace. Doing this for all the terms and noting that the equation holds for all X (t ), we have

ρ̇(t ) = −i[HS, ρ(t )] +
∑
λ j

γλ

2
{[a j, ρ(t )a†

j ] − [a†
j , a jρ(t )]} +

∑
λ jl,x j>xl

γλ{e−ikx jl [σ j, ρ(t )a†
l ] − eikx jl [a†

j , alρ(t )]}, (A10)

where the last term describes the effective long-range interactions between the two resonators mediated by the waveguide. By
separating the interaction term into coherent and incoherent parts, the effective master equation described in the main text is
obtained.
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