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We report a detailed theoretical model of a recently demonstrated magnetic trap system based on a pair
of magnetic tips. The model takes into account key parameters such as tip diameter, facet angle, and gap
separation. It yields quantitative descriptions consistent with experiments such as the vertical and radial
frequency, equilibrium position, and the optimum facet angle that produces the strongest confinement. We arrive
at the striking conclusion that a maximum confinement enhancement can be achieved at an optimum facet
angle θmax = arccos

√
2/3. We also discuss a critical gap which is the maximum gap between the tips for the

confinement enhancement effect to occur. This magnetic trap and its theoretical model serve as an interesting
example of a simple and elementary magnetic trap in physics.
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I. INTRODUCTION

Various electromagnetic trap systems play important roles
in physics for their ability to trap and isolate particles or
matter and have produced many applications and discoveries.
Examples are the Penning trap [1,2], optical dipole trap or
optical tweezer [3–5], magneto-optic trap [6,7], and various
diamagnetic traps [8–12]. For diamagnetic trap systems, a
high field-gradient product (B ∇B) is necessary to achieve
trapping or levitation [13]. A new approach is to use magnetic-
tip geometry as recently demonstrated by O’Brien et al. [14].
The tip geometry maximizes B ∇B at the trapped object,
which leads to stronger field confinement and thus high fre-
quency and a high quality factor (Q). These characteristics
are of high interest for research that explores macroscopic
limits of classical mechanics and quantum mechanics. Such
a magnetic trap also offers an interesting alternative to the
optical trap as the latter can lead to excessive heating and
encounters instabilities in vacuum [15]. The ability to achieve
high magnetic field gradients in a localized position using the
magnetic tip is also useful for other applications such as for
nuclear magnetic resonant imaging [16] and magnetic force
microscopy [17].

Currently, there is strong interest in magnetic trap systems
for various applications such as precision gravimetry [18],
study of displacement and velocity of Brownian particles [19],
gas temperature measurement [20], and research that ex-
plores the boundaries of the classical and quantum systems.
For example, trapped nanodiamonds can be used to inves-
tigate quantum mechanical properties such as superposition
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of states [21,22], control of electron spin of nanodiamond
nitrogen-vacancy centers, and observation of electron-spin-
resonance properties [23]. Such a trap could also serve an
important role to test quantum mechanical properties of
gravity [24,25].

In a recent demonstration of a magnetic-tip trap, O’Brien
et al. uses two cylindrical magnets with sharpened tips and
a microdiamond as the trapped object [14]. The tips are
separated by a gap d = 2a as shown in Fig. 1(a). The trapping
occurs due to diamagnetic repulsion that balances the gravity
of the diamond and the cylindrical symmetry that produces a
stable potential confinement in three dimensions. The study in
Ref. [14] has reported many important physical characteristics
of the trap such as the vertical and radial trap frequency, damp-
ing factor, and maximum field confinement at a certain facet
angle. However, the detailed field and potential distribution of
the magnetic trap have not been presented.

In this paper we present a theoretical model that provides
an analytical solution of the magnetic field of the trap along its
principal axis (z). The model leads to rich descriptions such as
equilibrium height, axial and radial oscillation frequency, the
optimum facet angle of the tip to achieve the “confinement en-
hancement,” and the “critical gap” beyond which such effect
no longer applies. Beyond the recent interest in various mag-
netic traps, this model also serves as an elementary example of
a simple magnetic trap system based on conical tip geometry.
This adds to the collection of various types of diamagnetic
trap systems that have been known in physics [8–12,26,27].

II. THEORY

We present a theoretical model of a pair of magnetic tips
system as shown in Fig. 1(a). Each magnetic tip consists of
a cylindrical segment of semi-infinite length and a conical
segment. The magnet has a uniform volume magnetization
M parallel to the cylindrical axis, however the two tips have
opposing magnetization. The cylindrical segment has a radius

2643-1564/2020/2(1)/013359(7) 013359-1 Published by the American Physical Society

https://orcid.org/0000-0002-7608-9262
https://orcid.org/0000-0001-9179-8422
https://orcid.org/0000-0002-7117-0037
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.013359&domain=pdf&date_stamp=2020-03-23
https://doi.org/10.1103/PhysRevResearch.2.013359
https://creativecommons.org/licenses/by/4.0/


GUNAWAN, KRISTIANO, AND KWEE PHYSICAL REVIEW RESEARCH 2, 013359 (2020)

R and the conical tip has a facet angle θ [28]. The magnetic
trap has a gap opening d = 2a. A diamagnetic object such as
a diamond bead can be trapped or levitates near the center of
the trap at equilibrium position z0.

We first consider the magnetic field along the principal
axis z due to the upper magnetic tip. We can calculate the

magnetic field by integrating the field contributions due to
bound surface current Kb = M × n̂ all around the conical and
the cylindrical segments, where n̂ is the normal of the surface
element (see Appendix A for detailed calculations). Interest-
ingly this leads to a closed-form solution. The magnetic field
due to the upper magnetic tip is given as

BU(z) = −μ0M

2

[
cos2 θ [1 − sin θ arctanh(sin θ )] + cos2 θ sin θ arctanh

(
R + (a − z) sin θ cos θ√

R2 + (a − z)2 cos2 θ + R(a − z) sin 2θ

)

+ z − a − R tan θ√
R2 + (a − z + R tan θ )2

+ (a − z) sin2 θ cos θ − R cos 2θ sin θ√
R2 + (a − z)2 cos2 θ + R(a − z) sin 2θ

]
ẑ. (1)

By exploiting the symmetry of the problem, the total
magnetic field due to the upper and lower tips is given as

BT(z) = BU(z) − BU(−z). (2)

An example of the total magnetic field plot along the z
axis (for R = 1 mm and a = 15 μm and θ = 35◦) is given
in Fig. 1(b). We observe that the field distribution near the
center of the trap is approximately linear, which leads to a
harmonic potential trap. The total potential (per unit volume)
of the trapped object due to magnetic interaction and gravity
is given as

UT (z) = − χ

2μ0
BT

2(z) + ρgz, (3)

where ρ is the density of the trapped object, χ is the magnetic
susceptibility, g is the gravitational acceleration, and μ0 is
the magnetic permeability in vacuum. We note that for a
spherical diamagnetic object we should replace χ/2 with
χ/(2 + χ ) [29], however the former is a good approximation
for very small χ as in the case of many diamagnetic materials
(with the exception of a superconductor where χ = −1).
For the magnetic-tip trap that we use in this paper [14],
the magnet is made of NdFeB with volume magnetization
M = 106 A/m, microdiamond as the trapped object with
χ = −2.2 × 10−5 [30], ρ = 3513 kg/m3 [31], R = 1 mm,

FIG. 1. (a) Geometry of the magnetic-tip trap with a trapped
diamond near the center. (b) Field distribution along the z axis for
the “reference magnetic trap” with θ = 35◦ (see text).

and a = 15 μm. We refer to this setup as the “reference
magnetic trap” in this paper. For further analysis we define
the “feature length” of the magnetic trap, given as λ0 =
|χ |μ0M2/ρg, which indicates the “strength” of the magnetic
trap relative to gravity. Larger λ0 means a stronger magnetic
trap where the diamagnetic repulsion force that equals to
gravity occurs at larger distance. λ0 can be derived from a
simple model of a diamagnet above a spherical magnet as
described in Appendix E. For the reference magnetic trap here
we have λ0 = 805 μm.

III. ANALYSES AND RESULTS

We now perform the analysis in the limit of a very strong
trap (i.e., λ0 � a) where the diamagnetic object will be
trapped near the center (z0 ∼ 0). As the magnetic field is
reasonably linear at the center of the trap [Fig. 1(b)], the
potential can be well approximated by harmonic potential
model UT (z) ≈ kzz2/2, where kz is the “spring constant” given
as kz = ∂2UT /∂z2. We can obtain a very compact expres-
sion for the potential spring constant kz (per unit volume of
the trapped object) in the strong magnetic trap limit where
z0 ∼ 0:

kz = − χμ0M2R4 cos6 θ (a + R tan θ )2

a2(R2 + a2 cos2 θ + aR sin 2θ )3
. (4)

We show that this theoretical model provides rich descrip-
tions of the magnetic trap characteristics that yields reason-
able agreement with the experimental observation [14]. First,
the model allows us to calculate the natural frequency of
the vertical oscillation of the trapped object: fz = √

kz/ρ/2π ,
which yields fz = 348 Hz. This is within the range of the
reported frequency of fz = 323 to 411 Hz, at pressure of
760 and 0.16 Torr, respectively [14]. Note that the observed
trapped frequency at room pressure (760 Torr) is lower due
to significant damping effect. Equation (4) predicts frequency
that diverges as the gap decreases; in reality the smallest gap
is determined by the size of the trapped particle, space for
harmonic and Brownian motion of the particle, and space for
optical detection. For example, the smallest nanodiamonds
used in a trapping study are in the range of 20–500 nm [32].
Thus practically the smallest gap cannot be less than 1 μm. As
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a reference, the frequency of a magnetic-tip trap with 1-μm
gap for this reference magnetic trap is 10.9 kHz.

Second, we can calculate the equilibrium position of the
trapped object that yields z0 = −ρg/kz = −2.1 μm, which is
small compared to the gap d = 30 μm; in other words the
object (microdiamond) remains near the center of the trap
as observed [14]. We note that, theoretically, stable levitation
always exists irrespective of the gap due to the magnetic field
characteristics that diverge near the tip as shown in Fig. 1(b).
When the gap is large, the object will levitate lower until
it is balanced by the diamagnetic repulsion force, which is
proportional to B dB/dz. However, due to the finite size, the
diamagnetic object will eventually touch the lower tip when
the gap is large.

Third, the spring constant kz or the vertical trap frequency
fz depends on the half gap a, the magnet cylindrical radius
R, and the facet angle θ . For a given a and R, a maximum
frequency can be achieved at an optimum facet angle θmax.
We can calculate this optimum facet angle, which is given as
(see Appendix B)

θmax = arccos

√
2R2(2a2 + 2

√
2aR + 3R2)

4a4 + 4a2R2 + 9R4
. (5)

We note that in the strong magnetic trap limit (λ0 > a)
the optimum facet angle depends only on the geometrical
factor of the magnetic tip, i.e., a/R and none of the physical
properties of the magnet or the trapped object (M, χ, ρ). For
the reference magnetic trap here, we obtain θmax = 34.7◦,
which is quite close to the reported value based on numerical
calculation of the boundary integral method for flat facet tips
that yields θmax = 28◦ [14]. In the limit of a very small gap
(a � R, λ0), Eq. (5) reduces to a very simple expression:
θmax = arccos

√
2/3 = 35.3◦. This result is striking as this

result does not depend on the geometry of the magnetic tip
(R and a) and serves as a very simple guideline in designing
the magnetic-tip trap.

Fourth, the experimental study also reported the frequency
of the horizontal (radial) oscillation mode, which is half of
the vertical frequency, i.e., fx = fy = fz/2 = 198 Hz [14].
This is a special characteristic of this magnetic-tip trap that
occurs due to cylindrical symmetry and the fact that the
magnetic field is nearly linear along the z axis at the center
of the trap. The characteristic that fr/ fz = 1/2 can be derived
using divergence-free (∇ · B = 0) and curl-free (∇ × B = 0)
properties of the magnetic field and considering second-order
expansion of the radial (Br) and axial (Bz) components of
the field in the cylindrical coordinate as described in Ap-
pendix C [33].

We now extend our analysis to the impact of a wide range
of geometrical and physical parameters (a, R, θ, χ, ρ, M) on
the trap characteristics. We perform numerical calculation
to obtain the vertical trap frequency which represents the
strength of the trap confinement. First we start with the ref-
erence magnetic trap (λ0 = 805 μm) and calculate the equi-
librium position z0 of the trapped object in the magnetic trap
by numerically solving ∂UT /∂z = 0, and then we calculate
the spring constant kz at that position (z0). The equilibrium
position z0 as a function of half gap a and facet angle θ

is plotted in Fig. 2(a). We observe that for a fixed a value
we achieve maximum z0 at θ ≈ 35◦ (black circles). This
maximum behavior apparently applies to all values of a/R,
which implies that the magnetic trap always yields a higher
levitation position z0 at an optimum facet angle θmax. Next
we study the levitation height z0 behavior with respect to
half gap a at varying strength of the magnetic trap (λ0 =
0.1R, R, and 10R) as shown in Fig. 2(c). We observe that
the strongest magnetic trap (i.e., λ0 = 10R) yields the highest
levitation height z0 compared to the others (λ0 = R and 0.1R)
at any a. For the magnetic trap with λ0 = 10R at small gap
(a/R < 0.1) the levitation height z0 is near zero (near the
center of the trap) and it starts to drop off at large gaps where
a/R > 0.1.

Next, after obtaining z0 in Fig. 2(a) we now numerically
calculate the trap frequency fz = √

kz/ρ /2π as a function
of a, θ , and z0 and plot it in Fig. 2(b). First we observe a
behavior similar to Fig. 2(a) for a small gap (a/R < 0.07), i.e.,
the magnetic trap achieves a maximum frequency at θmax due
to the confinement enhancement effect of the magnetic tip.
This plot resembles the plot from numerical computation in
Fig. 1(b) of Ref. [14]. However, we also observe an interesting
behavior: for a large gap beyond the “critical value” ac this
confinement enhancement effect no longer applies; i.e., when
we plot fz vs θ at constant a, there is now a minimum near θmax

instead of a maximum. For the magnetic trap with a very large
gap (a > ac), to achieve high frequency one can use a low or
high facet angle that corresponds to no tip or a very sharp
tip, respectively. The latter is not desirable as the sharp tip
will be very fragile. In practice we want to use a smaller gap
(a < ac) to achieve a higher frequency, but not too small to
provide some space for the trapped object and to allow optical
detection.

Finally we study the dependence of this critical half gap
ac with respect to varying strength of the magnetic trap by
repeating the analysis in Figs. 2(a) and 2(b) at different values
of λ0. The result is shown in Fig. 2(d). We calculate ac

using numerical calculations by finding the value a where
∂2 fz/∂θ2 = 0, the data of which are shown as red points in
Fig. 2(d). We observe a reasonable trend that the critical half
gap ac increases monotonically with increasing strength of the
magnetic trap (or λ0).

Furthermore we have also attempted to derive the theoret-
ical relationship of this critical gap as a function of λ0 using
series expansion of kz as a function of z up to the fourth order
evaluated at the equilibrium point z0. Then we calculated the
critical gap as detailed in Appendix D. We arrive at a simple
relationship:

ac

R
=

λ0
(√

129.9R2 + 3.74λ2
0 − λ0

)
153.86R2 + 3.24λ2

0

. (6)

This relationship allows us to quickly estimate the critical
gap below which the confinement enhancement effect still ap-
plies in this magnetic-tip trap. However, we also note that for a
strong magnetic trap (λ0/R > 2) discrepancy occurs between
the theoretical model and the numerical calculation due to
higher orders of a that were omitted in the theoretical model in
Eq. (6). We also note that for practical purposes the optimum
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FIG. 2. (a) The equilibrium height (z0) dependence on the half gap (a) and the facet angle (θ ) for the magnetic trap with strength λ0 =
805 μm. The white dashed curve is the theoretical optimum facet angle [Eq. (5)] and the black circles are the maximum point for z0/a. The
star is the data point for the reference magnetic trap. (b) The trap frequency ( fz) dependence with respect to the half gap (a) and facet angle (θ )
for λ0 = 805 μm. (c) The equilibrium height (z0) vs half gap (a) with various magnetic trap strength (λ0 = 10R, R, and 0.1R). (d) The critical
half gap (ac) beyond which the confinement enhancement effect no longer applies, plotted with respect to the magnetic trap feature length λ0

(at θmax = 35.3◦). The theory [Eq. (6)] fits well for λ0/R < 2.

facet angle θmax = arccos
√

2/3, which is calculated in the
limit of a strong trap, applies very well to most situations
where a < ac.

IV. CONCLUSION

In closing, compared to other existing electromagnetic
trap systems known in physics [1–12], this magnetic-tip sys-
tem [14] presents a simple and elementary type of magnetic
trap based on conical geometry. The model that we have
developed provides a rich theoretical understanding of the
system that will help advance further development and ap-
plications. For example, an interesting next step is to cool
down the mechanical motion of the trapped diamond towards
its quantum ground state using a negative feedback cooling
system and an ultrahigh vacuum environment similar to what
has been done in optical traps [34–36] or other magnetic
trap systems [11,15]. The ability to tune and achieve high
frequency (e.g., up to kilohertz range) in this magnetic-tip trap
to raise the quantum ground-state energy is also attractive to
make the quantum regime more accessible. This magnetic-tip

trap system could also be useful as inertial sensor to sense
vibration or seismic activities.

APPENDIX A: MAGNETIC FIELD CALCULATION

We calculate the magnetic field along the principal axis
(z) of a pair of magnetic tips as shown in Fig. 1(a). First

FIG. 3. (a) A magnetic-tip model. (b) Current loop on the cone
surface.
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we consider a single magnetic tip as shown in Fig. 3(a).
The magnetic-tip system can be modeled as a semi-infinite
cylindrical section and a conical tip. The magnet has a uni-
form magnetization M with direction along the principal axis
pointing toward the tip. The cylindrical section has radius R.
The conic section has a “facet angle” θ and the tip is located
at z = a, as shown in Fig. 3.

We divide the magnetic field calculation into two parts: the
conical tip section (Bc) and the cylindrical section (Bs). We
first consider the conical tip that has a bound surface current
element at z = u due to uniform magnetization M. The surface
current forms an elemental current loop with radius r =
(u − a) cot θ and surface area dS which produces a magnetic

field:

dBc = −μ0

2

r2 dI

(r2 + �z2)3/2
ẑ

= −μ0

2

(u − a)2 cot2 θ dI

[(u − a)2 cot2 θ + (u − z)2]3/2
ẑ. (A1)

The surface current element on the conical surface can be
calculated as Kb = M × n̂ where n̂ is the surface normal. The
current element is given as dI = Kb dS, where K = M sin θ

and dS = du/ sin θ . As a result, the current element is equal
to dI = M du. The magnetic field produced by the conical tip
section at point P is given by

Bc(z) = −μ0M

2

∫ a+R tan θ

a

(u − a)2 cot2 θ du

[(u − a)2 cot2 θ + (u − z)2]3/2
ẑ. (A2)

The integral yields an analytical result:

Bc(z) = −μ0M

2

[
(a − z) sin2 θ cos θ − R cos 2θ sin θ√
R2 + (a − z)2 cos2 θ + R(a − z) sin 2θ

− cos2 θ sin θ arctanh(sin θ )

+ cos2 θ sin θ arctanh

(
R + (a − z) sin θ cos θ√

R2 + (a − z)2 cos2 θ + R(a − z) sin 2θ

)
− sin2 θ

]
ẑ. (A3)

Next we calculate the magnetic field due to the cylindrical
sheath, which is straightforward. Consider a bound surface
current element at z = u with radius R and current dI = M du,
as shown in Fig. 3(a). The magnetic field produced by the
cylindrical sheath at point P is given by

Bs(z) = −μ0M

2

∫ ∞

a+R tan θ

R2 du

[R2 + (u − z)2]3/2
ẑ

= −μ0M

2

[
1 + z − a − R tan θ√

R2 + (a + R tan θ − z)2

]
ẑ. (A4)

The total magnetic field due to the conical tip and the
sheath is BU(z) = Bc(z) + Bs(z), which is also given in
Eq. (1). Finally, by exploiting the symmetry of the problem we
can calculate the total magnetic field of the upper and lower
magnetic tip as [Eq. (2)] BT(z) = BU(z) − BU(−z).

APPENDIX B: OPTIMUM FACET ANGLE

The total trap potential per unit volume of the trapped
object can be approximated as a harmonic potential due
to magnetic interaction plus a gravitational term: UT (z) =
1
2 kzz2 + ρgz, where kz is the spring constant per unit volume:
kz = ∂2UM/∂z2 and UM is the magnetic energy potential per
unit volume given as χB2

T (z)/2μ0, assuming the material is
a weak diamagnet (χ � 1). Using BT from Eq. (2), we can
obtain kz as shown in Eq. (4).

The optimum facet angle θmax is obtained from dkz/dθ =
0. This allows us to solve for θmax:

d

dθ

[
cos6 θ (a + R tan θ )2

(R2 + a2 cos2 θ + aR sin 2θ )3

]
= 0. (B1)

Using η = a/R we have

(9 + 4η2 + 4η4) cos4 θmax − (12 + 8η2) cos2 θmax + 4 = 0.

(B2)

This yields a solution for θmax as

θmax = arccos

√
2(3 + 2η2 + 2

√
2η)

9 + 4η2 + 4η4
, (B3)

which is also shown in Eq. (5). In the limit of a small gap
(a � R), the optimum facet angle reduces to a very simple
expression:

θmax ≈ arccos
√

2/3 = 35.3◦. (B4)

APPENDIX C: FREQUENCY RATIO OF THE
RADIAL AND AXIAL MODES

We will find a relationship between the frequencies of the
axial and radial oscillation modes in the magnetic-tip trap. A
similar problem has been discussed by McDonald [33] for a
magnetic levitation system of a diamagnet above a magnetized
disk that also has a cylindrical symmetry. We summarize
the key findings and extend them to our magnetic-tip trap
system. The approach starts by using Maxwell’s equations,
∇ · B = 0 and ∇ × B = 0, and then relating the magnetic
field components Br and Bz in the cylindrical coordinates.

The magnetic field components up to the second order in r
and z can be expressed as [33]

Bz(r, z) = b0 + b1(z − z0) + b2(z − z0)2

+ b3r + b4r2 + b5r(z − z0), (C1)
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Br (r, z) = c0 + c1(z − z0) + c2(z − z0)2

+ c3r + c4r2 + c5r(z − z0). (C2)

Using Maxwell equations in cylindrical coordinates,

∇ · B = 1/r ∂ (rBr )/∂r + ∂Bz/∂z = 0, (C3)

(∇ × B)φ = ∂Br/∂z − ∂Bz/∂r = 0. (C4)

Using these equations we can relate the coefficient cn to
bn as detailed in Ref. [33]. To evaluate the oscillation at the
equilibrium point we evaluate B2 up to second order in r
and z:

B2 = B2
z + B2

r = b2
0 + 2b0b1(z − z0)

+ (
b2

1 + 2b0b2
)
(z − z0)2 + (

b2
1/4 − b0b2

)
r2. (C5)

Now we can calculate the ratio of the radial and axial
frequencies: fr/ fz = √

kr/kz. The spring constants for the
axial mode (kz) and radial mode (kr) are given as

kz = ∂2UT /∂z2 ∝ ∂2B2(r, z)/∂z2 = b2
1 + 2b0b2, (C6)

kr = ∂2UT /∂r2 ∝ ∂2B2(r, z)/∂r2 = b2
1/4 − b0b2. (C7)

Then we have

fr/ fz =
√

kr/kz =
√(

b2
1/4 − b0b2

)
/
(
b2

1 + 2b0b2
)
. (C8)

For an object near the center of the trap, the field is small:
B(0, z0) ∼ 0, thus b0 ∼ 0 and the magnetic field is nearly
linear with z, thus b2 ∼ 0 [see Fig. 1(b)]. Therefore we have
b0b2 � b2

1 and the last equation can be simplified to fr/ fz =
1/2, which is consistent with the experimental observation.

APPENDIX D: CRITICAL GAP

In order to find the critical gap, i.e., the gap beyond which
there is no more confinement enhancement effect, we can
expand the magnetic energy up to the fourth order:

UM (z) ≈ −χ

8
μ0M2(αz2 + βz4), (D1)

α = 32R4 cos4 θ (a cos θ + R sin θ )2

a2(a2 + 2R2 + a2 cos 2θ + 2aR sin 2θ )3
, (D2)

β = 8R4 cos4 θ (a cos θ + R sin θ )

3a4(a2 + 2R2 + a2 cos 2θ + 2aR sin 2θ )5

× [2a(60a4 + 47a2R2 + 28R4) cos θ

+ a(60a4 − 77a2R2 − 56R4) cos 3θ

+ a3(12a2 − 65R2) cos 5θ

+ 2R(44a4 + 49a2R2 + 16R4) sin θ

+ 3a2R(44a2 + 21R2) sin 3θ

+ a2R(44a2 − 35R2) sin 5θ ]. (D3)

The equilibrium height of diamond z0 is the solution of
χμ0M2αz0/4 + ρg = 0, so we can express z0 in terms of
λ0 = |χ |μ0M2/ρg and α: z0 = 4/λ0α. The spring constant up
to leading order in z0 is

kz(θ, z0) = −χ

4
μ0M2(α + 6βz0

2). (D4)

Confinement enhancement exists if there is an optimum
angle θmax where the spring constant kz becomes maximum.
However, there is a critical gap (or half gap ac) beyond which
there is no θ between 0◦ and 90◦ that yields maximum kz.
The condition for the critical gap is ∂2kz/∂θ2 = 0, evaluated
at optimum angle θmax = 35.3◦. The relation between ac, R,
and λ0 that satisfies this condition is

−7.108

a2
c

+ 16.839

acR
+ 1295.442

(
R2 + 0.021λ2

0

)
R2λ2

0

= 0. (D5)

Hence, the critical gap is

ac

R
=

λ0
(√

129.9R2 + 3.74λ2
0 − λ0

)
153.86R2 + 3.24λ2

0

. (D6)

APPENDIX E: MAGNETIC TRAP FEATURE LENGTH

The magnetic trap feature length λ0 can be considered
as the characteristic length or size of a magnet where the
maximum diamagnetic repulsion force balances the gravity.
Larger λ0 indicates a stronger magnetic trap which can lev-
itate a diamagnetic object at longer distance. In the simplest
model one could use a spherical magnet. The feature length
is approximately the radius of a spherical magnet when the
diamagnetic repulsion force of a diamagnetic object balances
the gravity near the magnet’s surface, where the maximum
repulsion force occurs. To calculate this feature length, con-
sider a small diamagnetic object (with mass density ρ and
magnetic susceptibility χ ) constrained in a vertical z axis
above a spherical magnet (with magnetization M pointing to
+z) centered at z = 0. We start with the magnetic potential
energy per unit volume of the diamagnetic object: UM =
|χ |B2/2μ0, where B is the magnetic field along the z axis:
B = μ0m/2πz3 and m is the magnetic dipole moment of the
magnet.

The diamagnetic repulsion force per unit volume of the
diamagnetic object is given as

F ′
M = −∂UM

∂z
= 3|χ |μ0m2

4π2z7
, (E1)

and when this force balances the gravity we have F ′
M = ρg.

The maximum repulsion force occurs near the surface of the
magnet: z = R, which sets the feature length. Using m =
4πR3M/3, we obtain the radius of the magnet:

R = 4|χ |μ0M2

3ρg
. (E2)

As the magnetic trap feature length is used as the reference
length scale and often only order-of-magnitude information
is necessary, we can ignore the coefficient 4/3. Thus the
magnetic trap feature length is given as λ0 = |χ |μ0M2/ρg.
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