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Hydrodynamic clustering and emergent phase separation of spherical spinners
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We study the hydrodynamics of spherical spinners suspended in a Newtonian fluid at the inertial regime.
We observe a spontaneous condensation of the spinners into particle-rich regions, at low but finite particle
Reynolds numbers and volume fractions. The particle clusters have a coherent internal dynamics. The spinners
form colloidal vortices surrounded by the fluid depleted from the particles. The formation of vortices is observed
both in a periodic simulation box and when the spinners are confined between two flat walls. The stabilization of
the observed states relies only on hydrodynamic interactions between the spinners and requires a finite amount of
inertia. The observations pave the way for the realization of three-dimensional spinner materials, where coherent
structures and collective dynamics arise only from the rotational motion of the constituents.
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I. INTRODUCTION

Creating dynamic structures from motile units is ubiqui-
tous in the natural world. A topical example, in a micrometer
length scale, is provided by active materials [1]. The motile
units, such as bacteria [2] or phoretic Janus colloids [3], form
ordered states. Another example is provided by torque-driven
colloidal particles [4], where the particle rotation is achieved
by either magnetic [5–15], electric [16,17], acoustic [18,19],
or optical fields [20–23]. In a typical experimental realization,
the particle rotation is converted to a translational rolling
motion due to the presence of a surface [7–11,16,17,24].
The formation of various dynamical states, such as flocking
[11,16], complex motile structures [8,9], and vortical motion
both with [11,17] and without confinement [10], has been
observed by field-actuated particles.

Another possibility is provided by systems in which the dy-
namics of the individual building blocks is purely rotational.
Nature’s examples of this include the dancing of Volvox [25]
and the formation of vortex arrays [26] of spinning bacterial
cells. Previous studies of artificial colloidal spinner materi-
als [27–33] have concentrated on either very low Reynolds
numbers or two dimensions. At vanishing Reynolds numbers
and at high area fractions, simulations have predicted a phase
separation of binary mixtures [28–30], the emergence of edge
currents [31], as well as the stabilization of two-dimensional
(2D) crystals [32], while the presence of an odd viscosity
has been predicted for chiral active fluids [34]. Experiments
of circular disks spinning on a gas-liquid interface at finite
Reynolds numbers demonstrated a dynamic ordering aris-
ing from the competition between magnetic attraction and
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hydrodynamic repulsion [5,6]. While attractive interactions
have been observed for inertial spinners in a dense passive
medium [35,36] and ordered structures have been predicted
for spinning disks at finite Reynolds numbers in two dimen-
sions [33], the effects of inertia in 3D spinner solutions are
currently unknown.

We consider a simple 3D spinner system, consisting of
spherical particles suspended in a Newtonian fluid and sub-
jected to torques. Our results demonstrate that the initially uni-
form particle density is unstable: a spontaneous condensation
of particle-rich and particle-poor domains from the initially
uniform distribution of the spinners is observed. When both
the particle volume fraction and the Reynolds number are low
but finite, the spinners spontaneously organize into colloidal
vortices surrounded by a pure fluid. We demonstrate that the
observed emergent phase separation and the collective motion
originate solely from the hydrodynamic interactions between
the spinners, and they require a finite amount of inertia.

II. METHODS

We use a lattice Boltzmann method (LBM) [37] to
study the dynamics of suspensions of rotationally driven
spherical particles. The LBM was used to solve the quasi-
incompressible Navier-Stokes equation for the fluid flow [37].
The no-slip boundary condition on the particle surface is
realized by bounce back on links methods [38,39], which can
be modified to take into account the movement of the particles
[40]. We considered a density-matched solution ρ = ρfluid =
ρparticle. We set the LBM lattice spacing �x = 1, time unit
�t = 1, and density ρ = 1, as is customary in LBM. The
spinners were modeled as spherical particles, with radius R =
6�x (R = 2.1�x in Fig. 4), with a very short-range repulsion
between them to avoid particle-particle overlaps [32,41]. A
constant torque T [Fig. 1(a)] is applied on each particle. This
leads to a spinning motion around a unique axis (X ), which
gives the (particle) vorticity direction [Fig. 1(a)]. For a small
particle Reynolds number (Re), an isolated spinner reaches a
steady-state rotational frequency ω0 = T/8πμR3, where μ is
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FIG. 1. Rotating clusters formed by spinning spherical particles.
(a) The streamlines around a rotating particle driven by a constant
torque around the vorticity axis X at Re ≈ 10. (b) The simulations
are started with a random particle positions in a rectangular box
with a square cross section in Y Z plane. (c) Observed formation of
rotating clusters at a volume fraction φ ≈ 1.1% with Re ≈ 1.2. (The
yellow spheres mark the particles and the blue arrows show the fluid
flow field u. A periodic simulation box of 8R × 108R × 108R was
used.)

the dynamic viscosity of the fluid. When Re is increased, a
deviation from ω0 is expected due to inertial effects with the
observed ω < ω0 [42–44]. For the Re � 20 considered in this
work, the deviation is reasonably small (Fig. 2), thus ω0 was
used to calculate the particle Reynolds numbers used in the
text. The particles are placed in a three-dimensional periodic
rectangular box with a square cross section in the Y Z plane

FIG. 2. Validation of the numerical method. The measured
Reynolds number from the simulations (black symbols) as a func-
tion of the theoretical predictions calculated using Stokes’ limit
ω0 = T/8πμR3. At values Re � 3 the measured values start to
deviate from the Stokes limit (green dotted line), following a pre-
diction T/8πμωR3 = 1 + Re2/1200 − 15 647Re4/20 744 640 000
(blue dashed line) as expected [42–44]. Throughout this work, the
Reynolds number based on the Stokes limit Re = ρω0R2/μ is used
for clarity. The simulation box is 27R × 27R × 27R in this validation.

and squashed along the vorticity direction X [Fig. 1(b)] [ two
parallel solid walls are added in the Y Z plane in Figs. 7(a),
7(b) and 7(c)].

The dynamical state of the system is characterized by
the particle Reynolds number Re = ρω0R2

μ
and the particle

volume fraction φ = N 4/3πR3

LX LY LZ
× 100%, where LX |Y |Z are the

simulation box lengths.
Assuming a particle with a radius 100 μm and using the

kinematic viscosity of water 10−6 m2/s, a Re = 1 would
require a spinning frequency ω0 = 100 Hz. Using these val-
ues, we can map a single simulation time unit to �t ≈ 5 ×
10−5 s. A typical simulation run consisting of 106 LB steps
corresponds to 50 s in real time.

III. RESULTS

When starting from a random initial position [Fig. 1(b)],
we observe that the hydrodynamic coupling between the spin-
ners leads to the formation of small clusters and eventually
to a phase separation [Fig. 1(c)]. The particles spontaneously
organize themselves into rotating clusters surrounded by clear
fluid when φ ∼ 1% and Re ∼ 1 [see, e.g., Fig. 1(c) for φ ≈
1.1% and Re ≈ 1.2; as well as Movie 1 in [45]].

To characterize the formation dynamics of the vortices,
simulations with a periodic box of 8R × 54R × 54R were
implemented (Fig. 3). Here, the formation of only a single-
particle vortex is observed [Fig. 3(a)]. In the steady state, the
vortices span the periodic boundary along the vorticity direc-
tion, and the particles translate around the center of the cluster
with a tangential velocity Vθ (r) [Fig. 3(a)]. The spinners
entrain the fluid leading to the formation of a liquid vortex
with the same handedness as the particle one [blue arrows in
Fig. 1(c)]. Inside the vortex, a solid body rotation Vθ (r) ∼ r
is observed for both the particles and the surrounding fluid
[symbols and solid lines in Fig. 3(b), respectively]. At the
edge of the vortex, the particle velocities drop slightly, while
the fluid velocities start to decay [Fig. 3(b)]. The particles ex-
hibit random motion along the vorticity direction (X ) showing
diffusionlike dynamics [Figs. 3(d) and 3(e)], while a spiral
motion is observed in the Y Z plane [Fig. 3(c) and Movie 2
in [45]].

The normalized rotational frequency [the slope of
Vθ (r)/ω0R in Fig. 3(b)] stays constant when the global vol-
ume fraction φ is increased [black and green symbols in
Fig. 3(b)], but decreases when Re is increased [blue symbols
in Fig. 3(b)]. This implies that the energy conversion between
particle rotation and translational motion is more efficient at
lower Reynolds numbers. This is also manifested by the local
volume fraction of the cluster [Fig. 3(a)]: increasing the global
volume fraction φ leads to a larger cluster at a constant Re [top
three panels in Fig. 3(a)], while increasing Re with a constant
φ results in less dense clusters [bottom two panels in Fig. 3(a);
see also Fig. 4 for detailed density maps].

The drive T gives a rotational energy input into the sys-
tem, which is damped by hydrodynamic friction. The total
energy of the particles is defined as the sum of the ro-
tational and translational energies: Etot = Erot + Etra. These
are given by Etra = ∑i=N

i=1
1
2 mV 2

i and Erot = ∑i=N
i=1

1
2 Iω2

i =∑i=N
i=1

1
5 m(ωiR)2. The m and I are the mass and moment of
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FIG. 3. Phase diagram for the vortex formation in a thin peri-
odic box (8R × 54R × 54R). (a) Examples of the observed rotating
clusters. [The gray arrows show the velocity of the particles. The
black arrow defines a tangential velocity Vθ (r) at a distance r from
the vortex center.] (b) The tangential velocity Vθ as a function of
the distance r for different Reynolds numbers and volume fractions
corresponding to the states in (a) ( symbols and lines, for particles
and fluid, respectively). (c), (d) Examples of the steady-state particle
trajectories in the vortex state (φ ≈ 2.2% and Re ≈ 1.2) (c) in the Y Z
plane perpendicular to the vorticity axis X and (d) along the vorticity
axis. (e) The mean-square displacement (MSD) along the vorticity
axis. (f), (g) The ratio between the translational and the total energies
Etra/Etot of the particles as a function of (f) the Reynolds number for
φ ≈ 2.2% and (g) the volume fraction φ for Re ≈ 1.2.

inertia of a spinner. The instantaneous velocity Vi and the
rotational frequency ωi for a particle i are measured from
the simulations. When the vortex formation is observed, the
total energy is dominated by the translational motion of the
particles. In a steady state, a typical value Etra/Etot ∼ 0.8
is observed [Fig. 3(f)]. In the absence of the vortices, the
total energy Etot is dominated by the rotation of the spinners
[Fig. 3(f)].

Using the ratio Etra/Etot as an order parameter, we esti-
mate the range of the vortex formation in the thin samples,
when either Re is varied for a constant volume fraction
φ or as a function of the φ for a constant Re. When the
volume fraction is fixed at φ ≈ 2.2%, the vortex formation
is observed for 0.3 � Re � 10 [Fig. 3(f)]. Conversely, for a
constant Reynolds number Re ≈ 1.2, a vortex is formed for
φ � 8% [Fig. 3(g)]. For very low volume fractions φ � 2%,
the translational energy remains finite, typically Etrans/Erot ∼
0.5 [Fig. 3(g)], and the formation of small clusters is observed.

A. Inertial effects

The spinning particles of radius R are coupled to the sur-
rounding fluid velocity field u by a no-slip boundary condition

FIG. 4. The local particle volume fraction maps and the averaged
local volume fraction ρc(r) as a function of the distance r from
the center of the vortex, in the plane perpendicular to the particle
vorticity direction (X axis), for various Reynolds numbers Re and
global particle volume fractions φ. For a steady state in the phase
separation regime, we observe a rotating cluster with a local particle
volume fraction ρC ∼ 0.1 surrounded by a pure fluid depleted from
the particles. Both the radial and azimuthal particle density are
isotropic and reasonably constant inside the vortex with a small peak
at the periphery.

at the particle surface. When the flow is slow (Re ≈ 0), an
isolated particle creates a rotating flow field with only an
azimuthal component [27,46],

uθ (r) =
[
ωR3

r2
sin ψ + O(Re2)

]
êθ , (1)

where ψ and θ are the polar and azimuthal angles in spherical
polar coordinates. This leads to a constant rotational motion
of a particle pair around a central point [27,46]. As it does
not include attraction or repulsion, it is not expected to lead
to clustering. Indeed, no clustering is reported in simulations
of spinners at low Re and φ [27,28] in agreement with our
simulations [Fig. 3(f)].

Expanding to small but finite Reynolds numbers gives rise
to a secondary flow due to inertia [42,43,46],

ur (r) =
[
−ωR3

8r2
(3 cos2 ψ − 1)

(
1 − R

r

)2

Re

]
êr, (2)

uψ (r) =
[
ωR4

4r3

(
1 − R

r

)
sin ψ cos ψ Re

]
êψ. (3)

The radial component [Eq. (2)] creates an advection toward
the particle in polar regions |ψ | � 55◦, while at the equator
the fluid is advected away from the particle [Fig. 5(a)]. The
effects of the secondary flow have been attributed to the re-
pulsion between two spheres spinning side-by-side [35,36,46]
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FIG. 5. Hydrodynamic interactions of a spinner pair. (a) The
observed flow field of an isolated spinner at Re ≈ 10 at the particle
midplane (XY ) (the particle rotates around the X axis). (b) Schematic
defining �r and �h between the two spinners. Observed trajectories
of a particle pair in �r-�h space: for (c) Re ≈ 1.2 and (d) Re ≈ 20
(simulations were carried out in a cubic periodic box of 40R × 40R ×
40R). Examples of the trajectories in the Y Z plane perpendicular to
the vorticity axis (X ), for (e) Re ≈ 1.2 and (f) Re ≈ 20 for both
of the particles in the pair (solid and dashed lines, respectively;
the green dots mark the initial positions). (g) Observed trajectories
in the �r-�h space, from short simulations (t = 20 000�t) for
approximately 100 different initial conditions for different Reynolds
numbers (the colors corresponds to different initial conditions).

as well as to an attraction of a single spinner toward a flat wall
along the vorticity direction [43].

The stabilization of the clusters requires the formation
of structures via hydrodynamic interactions at Re ∼ 1. As a
smallest possible building block, we considered a spinner pair
[Figs. 5(c)–5(f)]. We measured the vertical �h and radial �r
separations between the two particles [Fig. 5(b)]. The trajec-
tories show a general trend akin to the single-particle flow
fields: an attraction along the vorticity direction and repulsion
at the equatorial region [Figs. 5(c) and 5(d)]. However, for a
Re ≈ 1.2 the appearance of a limit cycle in the �h-�r space
is observed [Fig. 5(c); Movie 3 in [45]]. The inertial forces
stabilize the particles into circular orbits around each other
in the plane perpendicular to the vorticity [Fig. 5(e)], while
�h and �r undergo periodic oscillations. When the Reynolds
number is increased, the inertial repulsion between the spin-
ners increases and the limit cycle becomes less pronounced
and eventually disappears: no hydrodynamic bound state was
observed for Re > 10 [Figs. 5(d), 5(f) and 5(g)].

In the thin periodic simulation boxes, the formation of
columnar vortices along the vorticity direction was observed
(Fig. 1) and the particles have 3D trajectories inside the cluster
[Figs. 3(c) and 3(d)]. These suggest complex 3D flow effects
and the importance of the interactions along the vorticity
direction. To highlight the importance of the third dimension,
we implemented a simulation in which the particles were

initialized randomly in a monolayer perpendicular to the
vorticity axis (Fig. 6). In this case, no vortex condensation was
observed: the randomly distributed particles stay as a mono-
layer and initially explore the 2D space due to the mutual
advection from the azimuthal flow fields. The radial repulsion
leads to the formation of a stable hexagonal spinner crystal
with no translational motion Etra ≈ 0 [see time ω0t = 7700 in
Figs. 6(a) and 6(b)]. At ω0t ≈ 8000, a small perturbation of
two particles along the vorticity axis (X ) was introduced. This
renders the monolayer unstable, and the onset of vertical par-
ticle motion arising from the interactions along the vorticity
direction is observed. The spinner trajectories become three-
dimensional and the formation of small hydrodynamically
bound clusters is observed. Eventually, the hydrodynamic
interactions lead to the formation of a stable spinner vortex
(see ω0t > 8000 in Fig. 6).

It should be noted that stabilization of rotating clusters
has been predicted to occur through hydrodynamic attraction
between spinning disks in strictly two dimensions [33]. How-
ever, when the third dimension is opened, the interactions be-
come repulsive [33]. Our results indicate that spheres spinning
in three dimensions are markedly different. The single-particle
flow field gives rise to a hydrodynamic attraction along the
vorticity direction and to a repulsion at the equatorial plane.
The pair dynamics show more complex inertial effects. A
hydrodynamic bound state is obtained for Re ∼ 1 in the
rotating (�r, �h) frame [Figs. 5(c) and 5(g)]. The particles
move around a central point with a velocity corresponding to
a translational Reynolds number ReT ∼ 0.1. Similar states are
also observed at early times in the bulk simulations (see, e.g.,
Movie 1 in [45]). The stabilization of the large clusters likely
relies on more complex inertial many-body interactions in the
presence of large-scale vortical motion. In the stable vortex
state, both the rotational and translational particle Reynolds
numbers are Re ∼ 1 (see Appendix A). The spinners do
not have clear pair dynamics, but instead the particles have
helical trajectories on the plane perpendicular to the vorticity
axis, while diffusive behavior is observed along the vorticity
direction [Figs. 3(c), 3(d) and 3(e)].

B. Role of boundaries

To highlight the robustness of our predictions and exclude
periodic effects along the (attractive) vorticity direction as a
driving force behind the condensation, we carried out simula-
tions using a large rectangular box with two flat walls in the
Y Z plane perpendicular to the spinning direction X , as well
as with periodic boundary conditions (Fig. 7). Similarly to
the thin samples, a spontaneous condensation of particle-rich
and particle-poor regions is observed for Re ∼ 1 and φ ∼ 1%
(Fig. 7).

When the spinners are confined [Fig. 7(a)], a reentrant
dynamics where a large-scale vortical motion appears peri-
odically is observed [Figs. 7(a), 7(b) and 7(c); see also Movie
4 in [45]]. In the case of a high Reynolds number, the system
remains isotropic [see the orange line in Fig. 7(a) for Re ≈ 19
and the φ ≈ 2% sample]. Spinning spheres have been shown
to be attracted to the no-slip surfaces perpendicular to the
spinning direction [43]. This can have an effect on the stability
and the formation dynamics of the vortices. The ratio Etra/Etot,
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FIG. 6. (a) The time evolution of the ratio between the translational and the rotational energies Etra/Erot and (b) snapshots of the
configuration at different times. The simulations were initialized with the particles in a monolayer at t = 0. In this case, the particles do not
leave the monolayer and only experience in-plane hydrodynamic repulsion, leading to the formation of a two-dimensional hexagonal structure
at ω0t = 7700. A small perturbation along X for two particles was introduced at ω0t ≈ 8000. This leads to an onset of vertical particle motion,
where the spinners start to explore the full three-dimensional space (snapshots at ω0t = 8800 and 9900). The particle three-dimensional
hydrodynamic interactions lead initially to the formation of small and short-lived clusters (snapshots at ω0t = 11 000–16 500). Eventually, the
formation of a stable rotating cluster is observed at ω0t = 24 750. (The simulations were carried with Re ≈ 1.2 and φ ≈ 2.2% using a periodic
simulation box 8R × 54R × 54R.)

calculated for the particles far away from the confining surface
(wall-particle distance >8R) [Fig. 7(a)], is lower than in
the case of a periodic box [Fig. 7(d)] and, it shows strong
oscillations corresponding to the spontaneous appearance and
disappearance of large-scale vortices [blue and green lines in
Fig. 7(a)]. These suggest that our predictions should be readily
observable through experiments on density-matched colloidal
or granular spinner suspensions confined in Hele-Shaw-type
geometries.

IV. CONCLUSIONS

Using large-scale numerical simulations, we have studied
a simple spinner system consisting of spherical particles spin-
ning in a Newtonian fluid at weakly inertial regime in three
dimensions. Our results demonstrate an unexpected instability

where the rotational dynamics of the colloidal spinners leads
to a large spatial density and velocity variations of the initially
uniform suspension. At low but finite Reynolds numbers and
volume fractions, we observe a spontaneous phase separation
between particle-rich and particle-poor areas. The formation
of colloidal vortices rotating in the same direction as the
spinners is observed. The clustering is due to complex 3D
flow fields and it requires a finite amount of fluid inertia.
At early times, the simulations demonstrate the formation of
small hydrodynamically bound clusters [early times at Movie
1 in [45]; see also Fig. 5(c) and Movie 3 for a bound state of an
isolated spinner pair]. More complex many-body interactions
then lead to the onset of collective motion and eventually to
the formation of particle vortices.

The predictions should be readily observable in
any density-matched spinner suspension, provided that
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FIG. 7. (a)–(c) The vortex formation between two parallel walls.
(a) The time evolution of the ratio Etra/Etot between the translational
and total energies for the case of vortex formation [Re ≈ 0.7 and
φ ≈ 2% (blue line) and Re ≈ 0.7 and φ ≈ 1.5% (green line)] and
for the isotropic case [Re ≈ 19 and φ ≈ 2% (orange line)]. (b), (c) A
snapshot showing the cluster for Re ≈ 0.7 with φ ≈ 1.5%: (b) side
view and (c) top view. (d), (e) An example of the observed conden-
sation in a periodic simulation box (d) The time evolution of the
ratio Etra/Etot and (e) a snapshot of the cluster. [The simulation box
was 57R × 172R × 172R in (a)–(c) and 57R × 228R × 228R in (d)
and (e).]

hydrodynamic interactions are dominant. The simulations
of the confined samples (Fig. 7) suggest that interesting
experimental possibilities are provided by reasonably large
PMMA particles in transformer oil rotating due to the
Quincke effect [47] or millimeter-sized particles with an
embedded magnet in a rotating magnetic field [48], confined
in a microfluidic chambers.
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APPENDIX A: CALCULATION OF THE TRANSLATIONAL
REYNOLDS NUMBERS IN THE VORTEX STATE

In the vortex state, a solid body rotation is observed
where the particles translate around the vortex center with
a tangential velocity Vθ ∼ r, where r is the distance from
the vortex center, as shown in Fig. 2(b) in the main text.
For a particle inside the vortex, we can define a translational
Reynolds number as ReT = Vθ l/η, where l is a characteristic
length scale and η is the kinematic viscosity of the fluid. Using
a typical observed value Vθ ≈ 1ω0R from Fig. 2(b) in the
main text, we arrive at a translational Reynolds number ReT =
ReR

l
R , where ReR ≡ Re is the rotational particle Reynolds

number used in the main text. Now we get a single particle
ReT ≈ 1 and ReT ≈ 12 for a cluster of size l ∼ 12R.

APPENDIX B: SUPPLEMENTARY MOVIE CAPTIONS

Movie 1: The formation of four spinner vortices. The
Reynolds number is Re ≈ 1.2, and the volume fraction is φ ≈
1.1%. The simulation uses N = 240 particles in a rectangular
box 8R × 108R × 108R.

Movie 2: High time resolution movie of the internal dy-
namics of the particles in the cluster (N = 120 particles in a
rectangular box 8R × 54R × 54R, Re ≈ 1.2, and φ ≈ 2.2%).
One of the particles is colored purple to aid the visualization.
The blue points on the sphere mark a fixed position on the
particle surface to show the spinning of the particle.

Movie 3: The formation of a hydrodynamically bound
particle pair (Re ≈ 1.2, in a cubic periodic box 40R × 40R ×
40R).

Movie 4: Vortex condensation between two parallel walls
(N = 6000 particles in a rectangular box 57R × 172R ×
172R, Re ≈ 0.7, and φ ≈ 1.5% with particle radius R = 2.1).
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