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Calculations of electronic and optical properties of solids at finite temperature including electron-phonon
interactions and quantum zero-point renormalization have enjoyed considerable progress during the past few
years. Among the emerging methodologies in this area, we recently proposed an approach to compute optical
spectra at finite temperature including phonon-assisted quantum processes via a single supercell calculation
[Zacharias and Giustino, Phys. Rev. B 94, 075125 (2016)]. In the present work we considerably expand
the scope of our previous theory starting from a compact reciprocal space formulation, and we demonstrate
that this improved approach provides accurate temperature-dependent band structures in three-dimensional
and two-dimensional materials, using a special set of atomic displacements in a single supercell calculation.
We also demonstrate that our special displacement reproduces the thermal ellipsoids obtained from x-ray
crystallography and yields accurate thermal averages of the mean-square atomic displacements. This enhanced
version of the special displacement method enables nonperturbative, robust, and straightforward ab initio
calculations of the electronic and optical properties of solids at finite temperature, and can easily be used as
a postprocessing step to any electronic structure code. To illustrate the capabilities of this method, we investigate
the temperature-dependent band structures and atomic displacement parameters of prototypical nonpolar and
polar semiconductors and of a prototypical two-dimensional semiconductor, namely Si, GaAs, and monolayer
MoS2, and we obtain excellent agreement with previous calculations and experiments. Given its simplicity
and numerical stability, the present development is suited for high-throughput calculations of band structures,
quasiparticle corrections, optical spectra, and transport coefficients at finite temperature.

DOI: 10.1103/PhysRevResearch.2.013357

I. INTRODUCTION

The calculation of the electronic and optical properties of
materials at finite temperature is a long-standing challenge
for ab initio electronic structure methods. In typical semi-
conductors, insulators, metals, and semiconductors, the key
mechanism leading to temperature dependent properties is the
thermal motion of the atoms in the crystal lattice, and the
effect of this motion on the electronic structure of the system.
Recent advances have made it possible to study these effects
from first principles with predictive accuracy [1].

In the case of semiconductors and insulators, one problem
that attracted considerable attention during the past decade
is the electron-phonon renormalization of band structures,
including both quantum zero-point effects and temperature
dependence [2–23]. This problem is becoming increasingly
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important as we strive to achieve close quantitative agreement
between ab initio calculations and experimental data. Further-
more this problem underpins calculations of many important
properties, from temperature-dependent optical absorption
[24–26] and emission spectra [27] to temperature-dependent
transport coefficients [28,29].

The calculation of temperature-dependent electronic and
optical properties has been demonstrated using both pertur-
bative approaches based on density functional perturbation
theory [30] (DFPT) calculations in the crystal unit cell,
and nonperturbative approaches based on density functional
theory (DFT) calculations in large supercells. In perturba-
tive methods the key ingredient of the calculations is the
electron-phonon matrix element, that is, the scattering ma-
trix element between two Kohn-Sham states which results
from the variation of the self-consistent potential associated
with a vibrational eigenmode. The matrix elements are em-
ployed to obtain temperature-dependent band structures in the
Allen-Heine (AH) method [31,32], and to compute indirect
optical absorption in the Hall, Bardeen, and Blatt theory
[33,34]. These approaches have enjoyed considerable success
during the past decade across a broad range of materials
[3–5,7–14,24,35–38].

Nonperturbative supercell-based methods offer an alter-
native approach to calculations of electronic and optical
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properties at finite temperature. The central idea of these
methods is that the interactions between electrons and
phonons can be described using large supercells where the
atoms are displaced to capture thermal disorder [39]. Super-
cell methods derive from earlier frozen-phonon approaches
[2,40] and do not require the explicit evaluation of electron-
phonon matrix elements. In order to sample thermal disorder,
the first attempts in this area relied on the Monte Carlo
sampling of quantum nuclear wave functions, either in the
atomic configuration space [25,41,42] or in the space of
normal vibrational modes [19,20,43]. The formal basis for this
approach is provided by a theory developed in the 1950s by
Williams [44] and Lax [45] to study defects in solids, and
recently extended by Zacharias et al. to finite-temperature
optical spectra, phonon-assisted optical processes, and band
gap renormalization [25].

The central idea behind Monte Carlo supercell methods
is that the temperature dependence of the dielectric function
ε(ω; T ) results from a multivariate Gaussian integral given by
[26]

ε(ω; T ) =
∏
ν

∫
dxν

exp
(−x2

ν/2σ 2
ν,T

)
√

2πσν,T

ε(ω; {xν}), (1)

where the product runs over the normal coordinates xν , and
each width σν,T of the independent Gaussians represents the
root mean-square displacement of the atoms at temperature T
along a phonon mode ν. The interpretation of Eq. (1) is that
the temperature dependence of the spectrum can directly be
obtained as an ensemble average over the spectra calculated
at fixed nuclear coordinates {xν}, whose probability density
function is a multivariate Gaussian.

The disadvantages of stochastic supercell approaches are
that (i) it is difficult to control the rate of convergence with
the number of random samples, and (ii) the final outcome of
the calculations is a distribution of values at each temperature,
e.g., band gaps, rather than a unique value as in perturbative
methods. Furthermore, performing stochastic sampling on
large supercells can be prohibitively costly from the compu-
tational standpoint. In order to overcome these limitations, in
Ref. [26] we demonstrated that it is possible to replace the
stochastic sampling of the nuclear wave functions by a single
supercell calculation with a precise choice of atomic displace-
ments. The possibility of studying electronic and optical spec-
tra at finite temperature using a single supercell calculation
enabled several interesting applications. For example, in Ref.
[26] we reported temperature-dependent phonon-assisted op-
tical spectra of Si, diamond, and GaAs based on this method;
Refs. [46–48] applied this method to the dielectric function
of Zn2Mo3O8, metallic hydrogen, and BaSnO3, respectively;
Ref. [23] used this technique to compute GW quasiparticle
band gaps at finite temperature for diamond, BN, SiC, Si, AlP,
ZnO, GaN, ZnS, GaP, AlAs, ZnSe, CdS, GaAs, Ge, AlSb,
CdSe, ZnTe, and CdTe; Ref. [49] calculated exciton-phonon
couplings in hexagonal boron nitride; and Refs. [28,29]
demonstrated calculations of finite-temperature carrier mobil-
ities in silicon n-i-n and p-n junctions using this approach. In
retrospect, these successes across a broad range of applica-
tions are not too surprising, since the method of Ref. [26] is
designed to provide, in the limit of large supercell, the exact

thermodynamic average of any property that can be expressed
in the form of Fermi’s golden rule: this includes in principle
photoelectron spectra (hence band gaps and band structures),
optical spectra, tunneling spectra, and transport coefficients.

One potential limitation of Ref. [26] is that the theory
was developed using a �-point formalism, therefore phonon
calculations to determine the vibrational eigenmodes in the
supercell are demanding. Furthermore, by addressing only
�-point properties, the calculations are limited to angle-
integrated spectra, such as density-of-states (DOS) and optical
absorption spectra. Finally, it has been pointed out that the
choice of the special displacement employed in Ref. [26]
might be improved to reduce the size of the supercell required
to achieve convergence [23].

In this paper, we significantly expand the scope of the
methodology introduced in Ref. [26] by formulating the the-
ory within a compact reciprocal space formulation and ex-
ploiting translational invariance and time-reversal symmetry.
This upgrade allows us to determine the special supercell dis-
placement using quantities that are computed in a crystal unit
cell via DFPT. In a nutshell, we demonstrate that a supercell
calculation where the atoms are displaced according to

�τ pκ =
∑

q∈B,ν

Sqν

[
h̄

2NpMκωqν

(2nqν,T + 1)

] 1
2

× 2 Re[eiq·Rpeκ,ν (q)] (2)

yields the exact thermodynamic average of electronic and
optical properties at the temperature T in the adiabatic and
harmonic approximations. In the above expressions �τ pκ

indicates the displacement of the atom κ with mass Mκ in
the unit cell with lattice vector Rp, and Np is the number of
unit cells in the supercell. eκ,ν (q) is the phonon polarization
vector of the normal mode (normalized within the unit cell)
with wave vector q, branch index ν, frequency ωqν , and
Bose-Einstein occupation nqν,T . The quantities Sqν are signs,
+ or −, which depend on the normal mode, as specified in
Sec. IV. The summation is restricted to phonon wave vectors
that are not time-reversal partners. In particular, we define
this group of phonons as set B. The real part in the equation
arises from grouping together a phonon with wave vector
q ∈ B and its partner −q. Phonon wave vectors that coincide
with their time-reversal partners are grouped in a finite set A,
and their contribution to the atomic displacements vanishes in
the limit of dense Brillouin-zone sampling. This partitioning
is discussed in greater detail in Sec. II.

Equation (2) reduces to our previous prescription provided
in Ref. [26] if we perform �-point sampling but is much more
powerful since the construction of the special displacement
relies on DFPT calculations in the unit cell. Therefore the only
expensive step is one calculation of the desired property in a
large supercell. To demonstrate the power of this approach, we
report complete temperature-dependent band structures based
on Eq. (2) for both three-dimensional semiconductors, Si and
GaAs, and two-dimensional semiconductors (MoS2), and we
show that this method delivers an accuracy comparable to per-
turbative techniques, without requiring the so-called rigid-ion
approximation of the Debye-Waller self-energy [12,14]. We
also demonstrate that Eq. (2) reproduces very accurately the
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thermal displacement ellipsoids measured by x-ray diffraction
(XRD).

The method of Ref. [26] was originally named “one-shot
configuration,” but subsequently it has variably been referred
to as the “WL-HA” method [47] or the “STD” method [28].
In order to avoid a proliferation of acronyms, in this paper
we will refer to the general theory as the special displacement
method (SDM) and to Eq. (2) as the ZG displacement.

The paper is organized as follows. In Sec. II we describe
the Williams-Lax theory that underpins our method, and we
write the key equations using a reciprocal-space formulation.
In Sec. III we establish the connection between the ZG
displacement and thermal ellipsoids. Section IV is devoted
to the construction of the ZG displacement and the deter-
mination of the mode signs Sqν in Eq. (2). In Sec. V we
provide all computational details of the present calculations,
including the unfolding of bands and spectral functions. In
Sec. VI we briefly outline the procedure that we follow to
determine the ZG displacement, and we demonstrate our main
computational results. We show the temperature-dependent
thermal ellipsoids, band structures, and band gaps of Si, GaAs,
and monolayer MoS2 using the SDM. Here we also provide
detailed convergence tests and show that accurate results can
be obtained even with relatively small supercells. In Sec. VII
we summarize our key findings and discuss future directions.
More technical aspects are left to the Appendixes.

II. THE WILLIAMS-LAX THEORY

A. General remarks

The theoretical framework underlying our present method-
ology was laid out in two works by Williams [44] and Lax [45]
in the 1950s, which we refer to collectively as the Williams-
Lax theory. This theory starts from the Herzberg-Teller rate
[42,50] that describes transitions between coupled electron-
phonon states driven by an external field and replaces the
final quantum nuclear states by a semiclassical continuum.
Formally this step corresponds to neglecting commutators
involving the nuclear kinetic energy operator and is related
(albeit not identical) to the adiabatic Born-Oppenheimer ap-
proximation [42].

If we denote a Born-Oppenheimer quantum state using the
ket |αn〉, with the Greek letter referring to the electronic part
and the integer to the nuclear part [42], then the Williams-
Lax theory provides a semiclassical approximation for the
transition rate from an initial state |αn〉 to all final states
|βm〉 with the same β and every possible vibrational state m,
evaluated using Fermi’s golden rule:

�αn→β (ω) =
∫

dτ |χαn({τ })|2 �
{τ }
α→β (ω). (3)

In this expression ω is the frequency of the driving external
field, the χαn({τ }) are the quantum nuclear wave functions
for the potential energy surface associated with the electronic
state α, and {τ } denotes the set of all atomic coordinates.
�

{τ }
α→β (ω) is the transition rate evaluated with the atoms

clamped in the positions {τ }:

�
{τ }
α→β (ω) = 2π

h̄

∣∣M{τ }
α→β

∣∣2
δ
(
E {τ }

β − E {τ }
α − h̄ω

)
, (4)

where E {τ }
α , E {τ }

β , and M{τ }
α→β denote the energies of the initial

and final electronic states and the associated transition ma-
trix elements, respectively, all evaluated at clamped atoms.
For example, �

{τ }
α→β (ω) can represent the optical transition

rates for light absorption or the charge current in electron
tunneling. Equation (3) formalizes the intuitive concept that
the transition rate including quantum nuclear effects can be
obtained by averaging “static” clamped-ion rates over the
nuclear probability distributions |χαn({τ })|2 of the initial state.

The transition rate at a finite temperature T is obtained
from Eq. (3) by carrying out a canonical average over the
vibrational quantum numbers of the initial state [26,42,45]:

�α→β (ω, T ) = 1

Z

∑
n

exp(−Eαn/kBT ) �αn→β (ω), (5)

where kB stands for the Boltzmann constant and
Z = ∑

n exp(−Eαn/kBT ) is the canonical partition function.
Here Eαn denotes the vibrational energy of the state |αn〉. This
approach has been used in a number of investigations and is
well established by now [23,25,26,42,44–46,51–53].

Since Eqs. (3)–(5) involve the calculations of transition
rates for displaced atomic configurations {τ }, the results auto-
matically incorporate the effect of electron-phonon couplings,
because the method probes the change in the electronic en-
ergies and wave functions upon displacing the atoms. We
emphasize that Eqs. (3)–(5) apply to any property that can
be obtained from the Fermi golden rule, in particular opti-
cal spectra, photoemission spectra, transport coefficients, and
tunneling spectra. Furthermore, these equations provide the
formal basis for computing temperature-dependent electronic
eigenvalues. Indeed, if we consider transitions from an elec-
tronic state |αn〉 of a solid into free electron states, as in
photoemission experiments, the final free electron states are
independent of atomic positions, therefore the first frequency
moment of the transition rates,

∫
dω ω �α→β (ω, T ), yields the

temperature-dependent electronic energy of the initial state:

Eα (T ) = 1

Z

∑
n

exp(−Eαn/kBT )
∫

dτ |Xαn({τ })|2E {τ }
α . (6)

This relation states that, in the Williams-Lax theory, the
temperature-dependent electronic energy Eα (T ) can be ob-
tained by averaging the position-dependent energy E {τ }

α over
thermal fluctuations. This observation forms the basis for
all nonperturbative supercell calculations of temperature-
dependent electronic properties and is also at the basis
of the adiabatic formulation of the Allen-Heine theory of
temperature-dependent band structures [31].

An important implication of Eq. (6) is that, if we describe
ions classically, then Eα (T ) corresponds to averaging elec-
tronic energies over the snapshots of a molecular dynamics
trajectory. This concept has been used extensively in the
literature, but to the best of our knowledge the connection to
the Williams-Lax theory is still not fully appreciated.

B. Reciprocal space formulation

In this section we recast Eqs. (3)–(5) in a language ap-
propriate for ab initio calculations in periodic crystals. From
now on we assume the harmonic approximation, so that we
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can define phonons in the usual way. We employ the same
standard notation as in Ref. [1], and we choose the convention
for the phase of vibrational eigenmodes as in Ref. [54].

We consider a Born–von Kármán supercell containing Np

unit cells with M atoms each. The position vector of the atom
κ in the unit cell p at zero temperature is τκ p = Rp + τκ ,
where Rp indicates a direct lattice vector, and τκ is the
position vector in the primitive unit cell, with Cartesian com-
ponents τpκα . The atomic displacements from equilibrium are
written as a linear combination of normal vibrational modes
[1]:

�τpκα = N−1/2
p

(
M0

Mκ

)1/2 ∑
qν

eiq·Rpeκα,ν (q) zqν, (7)

where the zqν are the complex-valued normal coordinates [55].
The inverse relation is

zqν = N−1/2
p

∑
pκα

(
Mκ

M0

)1/2

e−iq·Rpe∗
κα,ν (q) �τpκα . (8)

In both equations M0 is an arbitrary reference mass, usually
chosen to be the proton mass, and the summations run over all
the 3MNp atomic degrees of freedom. For completeness, in
Appendix A we give the standard textbook relations between
normal modes.

If we write zqν = xqν + iyqν , with xqν and yqν being the
real normal coordinates, Eq. (8) and time-reversal symmetry
imply x−qν = xqν and y−qν = −yqν . Therefore only half of the
real normal coordinates are independent. The wave vectors
q of these independent coordinates occupy half of the first
Brillouin zone. This is illustrated in Fig. 1, where we consider
a regular q-grids of size 8 × 8. This grid can be partitioned
in three sets, A, B, and C, following Appendix B of Ref. [1].
Set A includes the q-points that are invariant under inversion,
modulo a reciprocal lattice vector. Therefore the q-points in
this set correspond to the center of the Brillouin zone, the
centers of its faces, and the corners, as shown by the filled
disks in Fig. 1. Set B includes all the q-points that are not
inversion partners (modulo a reciprocal lattice vector), as
shown by the empty circles in Fig. 1. Set C is obtained by
changing the sign of all the points in B and is denoted by
crossed filled circles in Fig. 1. Using this partitioning we can
write the atomic displacements in terms of independent real
normal coordinates as

�τpκα = N−1/2
p

(
M0

Mκ

)1/2
⎡
⎣ ∑

q∈A,ν

eκα,ν (q)xqνcos(q · Rp)

+ 2Re
∑

q∈B,ν

eiq·Rpeκα,ν (q)(xqν + iyqν )

⎤
⎦. (9)

Equation (9) allows us to write the total quantum nuclear wave
function of the state |αn〉 in the harmonic approximation [56]:

χn({τ pκ + �τ pκ})

=
∏

q∈A,ν

χnqν
(xqν )

∏
q∈B,ν

χnqν
(xqν )χnqν

(yqν ). (10)

Here we omitted the subscript α for notational simplicity.
χnqν

(x) represents the wave function of a quantum harmonic

FIG. 1. Partition of the Brillouin zone grid in sets A, B, and C.
Shown is an 8 × 8 two-dimensional �-centered grid. Wave vectors
which are invariant with respect to time reversal −q = q + G belong
to set A (filled disks), The other wave vectors are separated into a set
B which does not contain the time-reversal partner of any element
(empty circles), and set C obtained by reversing the sign of the wave
vectors in set B (crossed empty circles).

oscillator with frequency ωqν and quantum number nqν ; in
particular, for q ∈ A we have

χnqν
(x) =

(
4π l2

qν

)−1/4√
2nqν nqν!

e−x2/8l2
qν Hnqν

(x/2lqν ), (11)

while for q ∈ B we have

χnqν
(x) =

(
π l2

qν

)−1/4√
2nqν nqν!

e−x2
qν/2l2

qν Hnqν
(x/lqν ). (12)

Here lqν = (h̄/2M0ωqν )1/2 is the zero-point vibrational am-
plitude, and Hm(x) denotes the Hermite polynomial of order
m. The total energy of the state χn is given by the standard
expression

En =
∑
qν

(nqν + 1/2)h̄ωqν . (13)

By substituting Eqs. (10)–(13) inside Eqs. (3) and (5), and
using Mehler’s sum rule for Hermite functions [57], we obtain
the compact expression [42]

�α→β (ω, T ) =
∏

q∈A,ν

∫
dxqν

2
√

πσqν

e
− x2

qν

4σ2
qν

∏
q∈B,ν

∫
dxqνdyqν

πσ 2
qν

× e
− (x2

qν+y2
qν )

σ2
qν �

{xqν ,yqν }
α→β (ω), (14)

013357-4



THEORY OF THE SPECIAL DISPLACEMENT METHOD FOR … PHYSICAL REVIEW RESEARCH 2, 013357 (2020)

where σqν is the mean-square displacement of the normal
mode at the temperature T and is given by

σ 2
qν = l2

qν (2nqν,T + 1). (15)

Here nqν,T = [exp(h̄ωqν/kBT ) − 1]−1 is the Bose-Einstein
occupation of the mode with frequency ωqν .

Equation (14) states that the temperature-dependent transi-
tion rate �α→β (ω, T ) is obtained by averaging the transition
rates calculated at clamped atoms for a variety of atomic
configurations specified by the normal coordinates {xqν, yqν},
and that the average is to be taken using a multidimensional
Gaussian importance function. In this context the temperature
T sets the width of each Gaussian via Eq. (15). As a sanity
check, we note that if �

{τ }
α→β (ω) does not depend on the

atomic coordinates, Eq. (14) yields the correct temperature-
independent rate.

The core of the special displacement method described in
this paper is to identify one set of atomic displacements so that
a single evaluation of �

{xqν ,yqν }
α→β (ω) yields the same result as the

multidimensional integral in Eq. (14). From this perspective,
the task of finding the ZG displacement is similar to finding
the mean value point of a definite integral; the only difference
is that we are dealing with a multidimensional integral with
hundreds to thousands of variables.

III. ZG DISPLACEMENT AND THERMAL ELLIPSOIDS

In this section we discuss the physical meaning of the ZG
displacement in Eq. (2). In particular we prove rigorously that
the ZG displacement reproduces the displacement autocorre-
lation function obtained from the quantum canonical average
[58] and therefore encodes information about the thermal
ellipsoids measured via XRD. Furthermore, using explicit
calculations, we demonstrate that the ZG displacement yields
the correct thermal distribution of the atomic coordinates.

When a harmonic crystal is in thermodynamic equilibrium
at the temperature T , the atomic displacements �τpκα follow
a normal distribution. This a direct consequence of the fact
that the marginal distribution of a multivariate normal is also
normal. In particular we have [cf. Eq. (7.2.21) of Ref. [59]]

P(�τpκα; T ) = 1√
2πσκα (T )

exp

[
− �τ 2

pκα

2σ 2
κα (T )

]
, (16)

where the width σκα (T ) of the Gaussian is given by [cf.
(Eq. 7.2.5) of Ref. [59]]

σ 2
κα (T ) = 2

Np

∑
q∈B,ν

|eκα,ν (q)|2 h̄

2Mκωqν

(2nqν,T + 1). (17)

Here the limit of dense Brillouin-zone sampling is implied; in
this limit the contribution to the sum of phonons with q ∈ A
vanishes. The width σκα (T ) is a particular case of the tensor of
anisotropic displacement parameters (ADPs), defined as [60]

Uκ,αβ (T ) = 〈�τpκα�τpκβ〉T , (18)

where 〈·〉T denotes the canonical average over vibrational
quantum states. In fact, by combining Eqs. (18) and (16) it fol-
lows directly that σ 2

κα (T ) = Uκ,αα (T ). The ADPs of Eq. (18)
are the values employed to generate thermal ellipsoids when
visualizing crystal structures at finite temperature.

If we start from the ZG displacement, and we take the
mean-square displacement of the atom κ over all the unit cells
of the supercell, then we obtain precisely the thermodynamic
average given by Eq. (17). In fact, by replacing the ZG
displacement of Eq. (2) inside the sum

∑
p �τ 2

pκα/Np, and
using the sum rule in Eq. (A5), we find immediately

1

Np

∑
p

�τ 2
pκα

= 2

Np

∑
q∈B,ν

|eκα,ν (q)|2 h̄

2Mκωqν

(2nqν,T + 1)

+ 2

Np

M0

Mκ

ν �=ν ′∑
q∈B

SqνSqν ′ Re[eκα,ν (q)e∗
κα,ν ′ (q)]σqνσqν ′

+ 1

Np

∑
q∈A

[· · · ]. (19)

The third line contains terms associated with q ∈ A phonons.
As we prove below in Sec. IV D, all contributions arising
from q ∈ A phonons vanish in the limit of the large supercell.
Furthermore, the choice of signs Sqν in the ZG displacement
guarantees that the second line of Eq. (19) also vanishes in
the thermodynamic limit. Therefore in this limit we recover
precisely the mean-square displacements σ 2

κα (T ) of Eq. (17).
In Sec. VI A we show that these results are confirmed by

explicit calculations on Si, GaAs, and MoS2.

IV. THE ZG DISPLACEMENT

In this section, using a rigorous reciprocal space formu-
lation, we prove that the ZG displacement given by Eq. (2)
yields the correct Williams-Lax transition rates of Eq. (5)
in the limit of large supercell. The key ingredients of our
derivation are (i) the translational invariance of the lattice,
(ii) time-reversal symmetry, and (iii) a smooth connection
between vibrational eigenmodes at nearby wave vectors.

The strategy that we follow is similar to our previous work
[26], that is we choose a displacement defined by normal
mode coordinates of magnitude |xqν | = √

2 σqν for q ∈ A,
and |xqν | = |yqν | = σqν/

√
2 for q ∈ B. These choices leave

us with the freedom to select appropriate signs that define in
which direction the normal coordinates are being displaced
(±). In Ref. [26] we considered a �-point formalism, the
vibrational modes were ordered by increasing energy, and
the choice of signs was simply the sequence +,−,+, · · · ;
see Eq. (5) of Ref. [26]. In the present work the situation is
more complicated, because we now have to deal with phonon
wave vectors q and phonon branch indices ν. As we discuss
below, in this case a simple sequence of alternating signs is
not sufficient to recover the correct Williams-Lax rate, and a
more structured choice is necessary. The following sections
describe how we make this choice and why.

A. The simplest case: One vibrational mode

Before proceeding with the derivations, it is useful to ex-
amine the key idea of this method using the simplest example:
a hypothetical system with only one vibrational mode. We
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rewrite Eq. (14) by replacing the transition rate with a generic
“observable” O{x}, and we call the WL thermal average of this
quantity O(T ). For definiteness we consider the form of the
integral corresponding to q ∈ A in Eq. (14):

O(T ) = 1

2
√

πσ

∫
dx e−x2/4σ 2

O{x}. (20)

By expanding O{x} in powers of x near the equilibrium coor-
dinates x = 0 and evaluating the integrals, we find

O(T ) = O{0} + ∂2O{x}

∂x2

∣∣∣∣
x=0

σ 2, (21)

which is correct to fourth order in σ . Alternatively, we can
evaluate O{x} for the normal coordinate x = √

2 σ . This pro-
cedure yields

O{x=σ/
√

2} = O{0} + ∂O{x}

∂x

∣∣∣∣
0

√
2 σ + ∂2O{x}

∂x2

∣∣∣∣
0

σ 2 + · · · .

(22)

If we now average the expansions for x = ±√
2 σ we obtain

1

2
[O{x=+√

2 σ } + O{x=−√
2 σ }] = O{0} + ∂2O{x}

∂x2

∣∣∣∣
0

σ 2, (23)

up to fourth order in σ . By comparing Eq. (21) and (23) we
see that two evaluations of the observable O{x} at clamped
nuclei are sufficient to reproduce the thermal average given
by Eq. (20).

If we now consider the form of the integral corresponding
to q ∈ B in Eq. (14), we arrive at a similar result. In this case
the integral yielding the thermal average is to be replaced by
two evaluations of the property O{x} at x = ±σ/

√
2.

In the case of a real system with many vibrational modes,
our strategy is to exploit the same mechanism leading to
Eq. (23), by leveraging the cancellation between “similar”
modes, i.e., modes of the same branch at adjacent q-points.
In the case of many vibrational modes, the displacements can
be chosen so as to reproduce the thermal average with only
one atomic configuration.

B. Thermal average of an observable
in the Williams-Lax formalism

In this section we derive the expression for the WL thermal
average of an observable O{τ } which depends parametrically
on the atomic positions {τ }, starting from Eq. (14) and follow-
ing the same steps that lead from Eq. (20) to Eq. (21).

To second order in the displacements �τpκα from equilib-
rium, the observable O{τ } reads

O{τ } = O{0} +
∑
pκα

∂O{τ }

∂τpκα

�τpκα

+ 1

2

∑
pκα

p′κ ′α′

∂2O{τ }

∂τpκα∂τp′κ ′α′
�τpκα�τp′κ ′α′ , (24)

where O{0} indicates the observable evaluated at the equilib-
rium configuration. We can express the displacements in term
of the real normal coordinates using Eq. (9) and the chain rule.
The result for the linear variation is∑

pκα

∂O{τ }

∂τpκα

�τpκα =
∑

q∈A,ν

∂O{τ }

∂xqν

xqν

+
∑

q∈B,ν

[
∂O{τ }

∂xqν

xqν + ∂O{τ }

∂yqν

yqν

]
, (25)

while the result for the quadratic variation is

∑
pκα

p′κ ′α′

∂2O{τ }

∂τpκα∂τp′κ ′α′
�τpκα�τp′κ ′α′ =

∑
q∈A, ν

q′∈A, ν ′

∂2O{τ }

∂xqν∂xq′ν ′
xqνxq′ν ′ + 2

∑
q∈A, ν

q′∈B, ν ′

[
∂2O{τ }

∂xqν∂xq′ν ′
xqνxq′ν ′ + ∂2O{τ }

∂xqν∂yq′ν ′
xqνyq′ν ′

]

+
∑

q∈B, ν

q′∈B, ν ′

[
∂2O{τ }

∂xqν∂xq′ν ′
xqνxq′ν ′ + ∂2O{τ }

∂yqν∂yq′ν ′
yqνyq′ν ′ + 2

∂2O{τ }

∂xqν∂yq′ν ′
xqνyq′ν ′

]
. (26)

The derivation of Eqs. (25) and (26) is lengthy but straightforward.
We now replace the transition rate �

{τ }
α→β (ω) in Eq. (14) with the generic observable O{τ }, we use Eqs. (25) and (26), and we

evaluate the integrals in the real normal coordinates xqν and yqν . There are only two types of integrals, those that are odd in xqν

or yqν , which vanish identically, and those that involve the powers x2
qν or y2

qν . The latter are standard Gaussian integrals of the

form
∫

dx x2e−x2 = √
π/2. The resulting expression for the WL thermal average of O{τ }, correct to third order in σqν , is

O(T ) = O0 +
∑

q∈A,ν

∂2O{τ }

∂x2
qν

σ 2
qν + 1

4

∑
q∈B,ν

[
∂2O{τ }

∂x2
qν

+ ∂2O{τ }

∂y2
qν

]
σ 2

qν . (27)

This result constitutes the generalization to many q-points and many phonon branches of the result in Eq. (21) for the single-mode
model.

Here we see that all odd powers in the normal coordinates and all second order cross-terms with q �= q′ or ν �= ν ′ vanish upon
integration.
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C. Taylor expansion of an observable in normal coordinates

1. Linear variations

Now we perform a step similar to Eq. (22), but for the
general case of many q-points and many phonon branches.
Although we already derived the required Taylor expansion in
Eqs. (24)–(26), it is convenient to find equivalent expressions
which are easier to handle and where the translational invari-
ance and time-reversal symmetry are built in from the outset.

Translational invariance implies that the derivative of O{τ }
with respect to an atomic displacement be the same for every
unit cell:

∂O{τ }

∂τpκα

= ∂O{τ }

∂τ0κα

. (28)

This property can be used to prove that

∂O{τ }

∂xqν

= ∂O{τ }

∂yqν

= 0 if q ∈ B. (29)

To see this we write the derivatives using the chain rule and
we employ Eq. (9). For q ∈ B we find

∂O{τ }

∂xqν

=
∑
pκα

∂O{τ }

∂τpκα

(
M0

NpMκ

)1/2

2Re[eκα,ν (q)eiq·Rp]. (30)

Now using Eq. (28) we have

∂O{τ }

∂xqν

=
∑
κα

∂O{τ }

∂τ0κα

(
M0

NpMκ

)1/2

2Re

[
eκα,ν (q)

∑
p

eiq·Rp

]
.

(31)

The sum rule in Eq. (A5) requires q = 0 for the sum over p to
be nonzero, but this condition cannot be fulfilled when q ∈ B.
The same argument applies to derivatives with respect to yqν .
This proves the result in Eq. (29). The main consequence of
this result is that the linear variation of the observable O{τ } in
Eq. (25) takes the simple form

∑
pκα

∂O{τ }

∂τpκα

�τpκα =
∑

q∈A,ν

∂O{τ }

∂xqν

xqν, (32)

where the right-hand side contains only phonons with q ∈
A. This result indicates that, if we perform a supercell cal-
culation with atoms displaced away from equilibrium, then
the contribution to the observable O{τ } which is linear in
the displacements comes entirely from phonons with wave
vectors q ∈ A.

2. Quadratic variations

Here we employ again translational invariance to simplify
the expression for the quadratic variations of the observable
O{τ } appearing in Eq. (26). In this case translational invariance
dictates

∂2O{τ }

∂τpκα∂τp′κ ′α′
= ∂2O{τ }

∂τ0κα∂τp′−p,κ ′α′
, (33)

where the unit cell p′ − p corresponds to the lattice vector
Rp′ − Rp. We now rewrite the second derivatives in Eq. (26)
in terms of the real normal coordinates xqν and yqν using the
chain rule and Eq. (9). After some lengthy but straightforward
algebra we obtain

∂2O{τ }

∂xqν∂xq′ν ′
= δq,q′

∑
κα,κ ′α′

(
M2

0

MκMκ ′

)1/2 ∑
p

∂2O{τ }

∂τ0κα∂τp,κ ′α′
{δq∈A eκα,ν (q)eκ ′α′,ν ′ (q)cos(q · Rp)

+ δq∈B 2Re[eiq·Rpe∗
κα,ν (q)eκ ′α′,ν ′ (q)]}, (34)

∂2O{τ }

∂xqν∂yq′ν ′
= −δq,q′

∑
κα,κ ′α′

(
M2

0

MκMκ ′

)1/2 ∑
p

∂2O{τ }

∂τ0κα∂τpκ ′α′
δq∈B 2Im[eiq·Rpe∗

κα,ν (q)eκ ′α′,ν ′ (q)], (35)

∂2O{τ }

∂yqν∂yq′ν ′
= δq,q′

∑
κα,κ ′α′

(
M2

0

MκMκ ′

)1/2 ∑
p

∂2O{τ }

∂τ0κα∂τpκ ′α′
δq∈B 2Re[eiq·Rpe∗

κα,ν (q)eκ ′α′,ν ′ (q)], (36)

where δq∈A = 1 for q ∈ A and 0 otherwise, and similarly for δq∈B. From these expressions we see that, as a consequence of
translational invariance, all derivatives with q �= q′ vanish identically. By comparing Eqs. (34) and (36) we have

∂2O{τ }

∂yqν∂yq′ν ′
= ∂2O{τ }

∂xqν∂xq′ν ′
if q, q′ ∈ B. (37)

Furthermore, by using translational invariance in Eq. (35) it can be verified that

∂2O{τ }

∂xqν ′∂yq′ν
= − ∂2O{τ }

∂xqν∂yq′ν ′
. (38)

These properties allow us to simplify Eq. (26) as follows:

1

2

∑
pκα

p′κ ′α′

∂2O{τ }

∂τpκα∂τp′κ ′α′
�τpκα�τp′κ ′α′ = 1

2

∑
q∈A,νν ′

∂2O{τ }

∂xqν∂xqν ′
xqνxqν ′ + 1

2

∑
q∈B,νν ′

∂2O{τ }

∂xqν∂xqν ′
(xqνxqν ′ + yqνyqν ′ )

+ 1

2

∑
q∈B,ν �=ν ′

2
∂2O{τ }

∂xqν∂yqν ′
xqνyqν ′ . (39)
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As in the case of the linear variations in Sec. IVC1, for the
quadratic variations as well the contribution from phonons
with q ∈ A vanishes in the limit of dense Brillouin zone
sampling.

D. Choice of normal coordinates for the ZG displacement

The last step of the procedure outlined in Sec. IV A is to
choose the values of the normal coordinates xqν and yqν so
that Eqs. (32) and (39) reproduce the WL average given by
Eq. (27) in the limit of dense Brillouin-zone sampling.

By comparing Eq. (27) with Eq. (39) it is evident that
the magnitude of the normal coordinates must be |xqν | =√

2 σqν for q ∈ A, and |xqν | = |yqν | = σqν/
√

2 for q ∈ B. The
remaining degrees of freedom are the signs of the normal co-
ordinates, say, Sqν,x = ±1 and Sqν,y = ±1, which are to be de-
termined. If we evaluate the observable O{τ } at the atomic po-
sitions specified by the normal coordinates xqν = √

2 Sqν,xσqν

for q ∈ A, and xqν = Sqν,xσqν/
√

2, yqν = Sqν,yσqν/
√

2 for
q ∈ B, then the combination of Eq. (24) with Eqs. (32) and
(39) yields, to second order in the displacements,

O{τ } = O{0} +
√

2
∑

q∈A,ν

∂O{τ }

∂xqν

σqνSqν,x +
∑

q∈A,νν ′

∂2O{τ }

∂xqν∂xqν ′
σqνσqν ′Sqν,xSqν ′,x

+ 1

4

∑
q∈B
νν ′

∂2O{τ }

∂xqν∂xqν ′
σqνσqν ′ (Sqν,xSqν ′,x + Sqν,ySqν ′,y) + 1

4

∑
q∈B,ν �=ν ′

2
∂2O{τ }

∂xqν∂yqν ′
σqνσqν ′Sqν,xSqν ′,y. (40)

Using the WL average in Eq. (27), the last expression takes the form

O{τ } = O(T ) + �A + �B, (41)

where �A and �B represent the deviation of O{τ } with respect to the WL average O(T ) and are given by

�A =
√

2
∑

q∈A,ν

∂O{τ }

∂xqν

σqνSqν,x +
∑
q∈A
ν �= ν ′

∂2O{τ }

∂xqν∂xqν ′
σqνσqν ′Sqν,xSqν ′,x, (42)

�B = 1

4

∑
q∈B

ν �= ν ′

σqνσqν ′

{
∂2O{τ }

∂xqν∂xqν ′
(Sqν,xSqν ′,x + Sqν,ySqν ′,y) + 2

∂2O{τ }

∂xqν∂yqν ′
Sqν,xSqν ′,y

}
. (43)

The term �A contains only contributions from phonons with
q ∈ A. In the limit of dense sampling of the Brillouin zone,
the number of elements of A remains finite, while the number
of elements in B goes to infinity. Therefore the Lesbegue
measure of set A vanishes in this limit, and we have the result

lim
Np→∞

�A = 0. (44)

Given that phonons with q ∈ A do not contribute for large
supercells, to reproduce the WL average using a single atomic
configuration, we need only to determine the signs Sqν,x and
Sqν,y so that the term �B in Eq. (43) vanishes. In order to
simplify the task, we choose to assign the same sign to xqν and
yqν : Sqν,x = Sqν,y = Sqν . If we replace this choice of normal
coordinates inside Eq. (7) and ignore the contributions from
q ∈ A [which vanish in the limit of large supercell according
to Eq. (44), then we obtain precisely the ZG displacement in
Eq. (2). Strictly speaking the result carries an additional phase
eiπ/4, but this can be absorbed in the eigenmodes (adding this
extra phase does not pose any problem because the set q ∈ B
does not contain time-reversal partners).

Using the choice Sqν,x = Sqν,y = Sqν inside Eqs. (34) and
(35), we can rewrite �B as follows:

�B =
∑
q∈B
ν<ν ′

SqνSqν ′Aνν ′ (q), (45)

having defined

Aνν ′ (q) = 2
∑

κα,κ ′α′

(
M2

0

MκMκ ′

)1/2 ∑
p

∂2O{τ }

∂τ0κα∂τp,κ ′α′

× Re[(1 + i)eiq·Rpe∗
κα,ν (q)eκ ′α′,ν ′ (q)]σqνσqν ′ .

(46)

Clearly the quantity Aνν ′ (q) in the last expression is a relative
of the lattice dynamical matrix, and the second derivatives
∂2O{τ }/∂τ0κα∂τp,κ ′α′ are relatives of the interatomic force con-
stants, but for the observable O{τ } instead of the total energy.
We note that the construction of the ZG displacement does
not require the explicit evaluation of the second derivatives
∂2O{τ }/∂τ0κα∂τp,κ ′α′ to achieve the minimization of �B.

In order to determine the ZG displacement, we need to
choose the signs Sqν in such a way that �B in Eq. (45)
vanishes in the limit of large supercells. To this aim we
note that in the limit of dense Brillouin-zone sampling, the
vibrational eigenmodes eκα,ν (q) and eigenfrequencies ωqν can
be chosen to be nearly the same between adjacent q-points:

lim
�q→0

ωq+�q,ν = ωqν, lim
�q→0

eκα,ν (q + �q) = eκα,ν (q).

(47)

These conditions are always true for the frequencies but are
usually not fulfilled by the eigenmodes obtained from the
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diagonalization of the dynamical matrix. In fact, nondegen-
erate eigenmodes may carry an arbitrary complex phase, and
in case of degeneracy any rotation in the degenerate subspace
is admissible. In order to enforce Eq. (47), we set up a smooth
Bloch gauge in the Brillouin zone by performing a unitary
rotation of all eigenmodes. This is described in detail in
Sec. V C. Then, by combining Eqs. (47) and Eq. (46), we have

lim
�q→0

Aνν ′ (q + �q) = Aνν ′ (q). (48)

Owing to this relation, if we select a set D of adjacent q-points
in the Brillouin zone, in the limit of dense sampling we can
rewrite Eq. (45) as

lim
�q→0

∑
ν<ν ′

q ∈ D

SqνSqν ′Aνν ′ (q) =
∑
ν<ν ′

Aνν ′ (q̄)
∑
q∈D

SqνSqν ′ , (49)

where q̄ is the centroid of D. For the sum on the right-hand
side to vanish, we need to determine a set of signs Sqν so that
half of the products SqνSqν ′ are positive and the other half is
negative.

If we denote by n the number of phonon branches,
we can assign 2n unique combinations of signs to these
modes. Let us call such combinations S(i)

q 1, S(i)
q 2, . . . , S(i)

q n,
with i = 1, 2, . . . , 2n. It is easy to show that, for ν �= ν ′,∑2n

i=1 S(i)
qνS(i)

qν ′ = 0. The proof proceeds by induction: the
equality is trivially verified for n = 2; for n > 2 assume
that the result holds for a given n; when considering n + 1
all the possible 2n+1 combinations of signs are obtained by
duplicating the previous 2n combinations of n signs and
appending an extra sign at the end of each duplicate sequence.
By construction, when ν, ν ′ � n we have

∑2n+1

i=1 S(i)
qνS(i)

qν ′ =
2

∑2n

i=1 S(i)
qνS(i)

qν ′ = 0; when ν = n + 1 or ν ′ = n + 1 every term
of the sequence for n modes appears twice and with opposite
signs, therefore also in this case the sum vanishes.

At this point we can perform a limiting procedure and
consider a dense sampling of the Brillouin zone. If we par-
tition the set B of q-points into disjoint subsets containing 2n

elements each, and we attach to each of these elements one of
the 2n unique sequences of signs S(i)

qν , then the right-hand side
of Eq. (49) vanishes identically, and so does the error �B in
Eq. (45):

lim
Np→∞

�B = 0. (50)

Taken together, Eqs. (44) and (50) constitute the formal proof
that the ZG displacement provided by Eq. (2) yields exactly
the Williams-Lax thermal average, to second order in the
mean-square displacements.

We also note that the same proof leading to Eq. (50)
can be employed to demonstrate the equivalence between
the ZG displacement and the mean-square displacements in
Eq. (19). To this aim it is sufficient to replace the first line of
Eq. (46) by a constant, absorb the imaginary factor eiπ/4 inside
the eigenmodes, and observe that with these changes �B of
Eq. (45) reduces precisely to the second line of Eq. (19).

E. Additional considerations for calculations
using small supercells

The proof outlined in the previous section considers the
limit of very large supercells. For practical calculations it is
important to ensure that the ZG displacement delivers good
accuracy also in the case of computationally tractable, smaller
supercells. This improvement can be achieved as follows.

The combinations of signs necessary to achieve the can-
cellation in Eq. (50) carries some redundancy: for every set
S(i)

q 1, S(i)
q 2, . . . , S(i)

q n there is also the set −S(i)
q 1,−S(i)

q 2, . . . ,−S(i)
q n.

Obviously the latter combination yields the same products as
the former, −S(i)

qν × −S(i)
qν ′ = S(i)

qνS(i)
qν ′ , therefore it is not useful

to achieve the cancellation in Eq. (49). We can call the latter
combination “antithetic” to the former. In order to reduce the
size of the supercell required to achieve convergence, we can
eliminate the antithetic combinations.

This reasoning implies that the minimum number of q-
points required to achieve exact cancellation of �B [in the
limit where Eq. (49) is satisfied] is precisely 2n−1. For ex-
ample, in a tetrahedral semiconductor like Si or GaAs we
would need at least 26−1 = 32 q-points and therefore super-
cells of size at least 4 × 4 × 4 are necessary to enable such
cancellation.

To see how the choice of signs without antithetic sets
works in a simple example, let us consider a system with
n = 3 phonon branches. In this case we have 23 = 8 distinct
combinations of signs as follows:

ν

1 2 3

+ + +
+ − −
− + −
− − +
− − −
− + +
+ − +
+ + −

1 i
2
3
4
5
6
7
8

, (51)

Here the combinations i = 5, . . . , 8 are antithetic to i =
1, . . . , 4, and we can discard them. If we now consider a set D
of 23−1 = 4 adjacent q-points, say, q1, . . . , q4, we can choose
the “sign matrix” as follows:

ν

1 2 3

Sqν =

⎡
⎢⎣

+ + +
+ − −
− + −
− − +

⎤
⎥⎦

1 q
2
3
4

. (52)

With this choice the summation in Eq. (49) becomes

+A1,2(q) + A1,3(q) + A2,3(q)

−A1,2(q) − A1,3(q) + A2,3(q)

−A1,2(q) + A1,3(q) − A2,3(q)

+A1,2(q) − A1,3(q) − A1,3(q). (53)

By inspecting each column we see that terms with
the same superscript ν, ν ′ appear the same number of
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times with positive and negative signs, therefore the sum
vanishes.

In the above example we selected four rows from the
complete set of combinations in Eq. (51). How to perform this
selection and in which order is not specified by the theory
leading to Eq. (50). For example we could have selected
rows 7, 8, 1, 2, and this choice would have led again to the
same cancellation of Eq. (53). In practice, however, since we
sample the Brillouin zone on a discrete grid of q-points, the
property Aνν ′ (q) � Aνν ′ (q) used in Eq. (49) does not hold
for small supercells, and the cancellation is incomplete. This
observation can be exploited to identify an optimal choice
of signs from the complete set in Eq. (51). Indeed, we can
select 2n−1 inequivalent rows in such a way as to numerically
minimize the error �B.

A global optimization would require us to evaluate the
second derivatives of the observable O{τ } for every atomic
displacement �τpκα , as can be seen from Eq. (46). However,
this step would be computationally costly and would make the
special displacement method equivalent to standard frozen-
phonon techniques [2,40].

Instead we make the observation that, as for the ma-
trix of interatomic force constants, the second derivatives
∂2O{τ }/∂τ0κα∂τp,κ ′α′ must vanish for |Rp| → ∞. Therefore
the leading components of Aνν ′ (q) in Eq. (46) must be those
for small |Rp|. This suggests to minimize Eq. (45) by retaining
only the second line of Eq. (46), multiplied by the respective
signs, for every κα and κ ′α′ when Rp = 0. In practice we
chose to minimize the following normalized function of the
signs Sqν :

E ({Sqν}) =
∑
κα

κ ′α′

∣∣∑
q∈B
ν<ν ′

Re[e∗
κα,ν (q)eκ ′α′,ν ′ (q)]σqνσqν ′SqνSqν ′

∣∣
∣∣∑

q∈B
ν

Re[e∗
κα,ν (q)eκ ′α′,ν (q)]σ 2

qν

∣∣ . (54)

The minimization of E ({Sqν}) with respect to {Sqν} involves
only the phonon eigenmodes and eigenfrequencies, and does
not require any evaluation of the observable O{τ }. Hence
the resulting ZG displacement is agnostic to the specific
temperature-dependent property that is being computed, and
can be constructed from quantities that are easily evaluated
via standard DFPT in the crystal unit cell. When the signs are
obtained by minimizing Eq. (54), the ZG displacements of a
given crystal becomes uniquely defined for each temperature
and each supercell.

The physical meaning of selecting the signs in such a way
as to minimize Eq. (54) is that this choice leads precisely to
the ZG displacements that best approximates the exact ther-
mal mean-square displacements given by Eq. (17). Therefore
this choice constitutes a way to construct displacements that
reproduce XRD spectra as accurately as possible, as we show
in Sec. VI A.

V. IMPLEMENTATION AND COMPUTATIONAL DETAILS

A. Computational setup

All calculations were performed using the local density
approximation [61,62] to DFT for Si and GaAs, and the
PBE generalized gradient approximation [63] for monolayer
MoS2. We employed plane-waves basis sets, norm-conserving
pseudopotentials [64] for Si and GaAs, and ultrasoft pseu-
dopotentials [65] for monolayer MoS2, as implemented in
the Quantum ESPRESSO package [66]. The plane-waves ki-
netic energy cutoff was set to 40 Ry for Si and GaAs, and
50 Ry for MoS2. To minimize interactions between periodic
images of the monolayer, we used an interlayer separation
of 15 Å. The ZG displacement was constructed using vibra-
tional eigenmodes and eigenfrequencies obtained from DFPT
[30], starting from Brillouin zone grids of 8 × 8 × 8 points
(Si), 8 × 8 × 8 points (GaAs), 8 × 8 × 1 points (monolayer

MoS2), and then using standard Fourier interpolation to gen-
erate dynamical matrices for coarser or denser grids.

In the case of polar materials (GaAs and monolayer Mo2)
our calculations correctly include the long-range component
of the interatomic force constants via the nonanalytic correc-
tion to the dynamical matrix [67].

The algorithm used to construct the ZG displacement, the
generation of a smooth connection between vibrational eigen-
modes in the Brillouin zone, and the unfolding of spectral
functions and band structures from the supercell to the unit
cell are described in the following three sections, respectively.

B. Generation of the ZG displacement

To compute the ZG displacement in Eq. (2) we proceed as
follows. First we perform a DFPT calculation of phonons in
the crystal unit cell, using a coarse uniform grid of q-points
in the Brillouin zone. Then we decide the size of the supercell
for the ZG displacement, say, N1 × N2 × N3 unit cells, so that
Np = N1N2N3. This choice sets the grid of q-points that we
need to use in Eq. (2), namely, q = ∑3

i=1 bi(ni − 1)/Ni with
0 � ni � Ni. From this grid we extract the sets A and B as
illustrated in Fig. 1, and discard all remaining points. Using
the DPFT results from the coarse Brillouin-zone grid, we per-
form standard Fourier interpolation to obtain the eigenmodes
eκα,ν (q) and eigenfrequencies ωqν for q-points in sets A and
B. This operation is identical to the procedure for calculating
phonon dispersion relations using the matrix of interatomic
force constants.

In order to enforce a smooth Berry connection between
phonon eigenmodes as dictated by Eq. (47), we determine
unitary rotations for adjacent q-points using a singular-value
decomposition (SVD), as described in Sec. V C. This cal-
culation requires only evaluating scalar products between
eigenmodes at adjacent q-points.
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FIG. 2. Example of space-filling curve employed to order the
phonon wave vectors along a one-dimensional array. For illustration
purposes we show the curve passing through the q-points in set B of
the Brillouin zone grid shown in Fig. 1.

At this point we are left with the determination of the signs
Sqν . Here we could proceed with a global optimization of
all the signs, using Eq. (54). However, in order to keep the
algorithm as simple as possible, we proceed with a partial
optimization as follows. We order the q-points along a path
that is designed to span the entire set B in the Brillouin zone.
A simple representative path in two dimensions is shown
in Fig. 2. More complex choices such as the Peano-Hilbert
space-filling curve are possible [68], but we have not explored
these alternatives. The only requirement for the construction
of this path is that it should exhibit “locality,” in the sense
that pairs of q-points which are close in the Brillouin zone
should also be close along the path, so that Eq. (49) is
fulfilled. We then group the q-points along the path in sets
of neighbors, with 2n−1 q-points per set. The signs in each
set are determined by extracting 2n−1 sequences from the 2n

possible combinations, as explained in Sec. IV D, excluding
antithetic sets. Then we consider 2n−1 consecutive sets like
D, and we choose the signs as cyclic permutations of those
from the first set. This procedure allows us to assign Sqν for
a total of 22(n−1) q-points. At this stage we evaluate the error
E ({Sqν}) of Eq. (54) for these q-points. If the error is above
a predefined threshold (defined as an external parameter, say,
δ = 5%) then we restart the procedure by performing a new
selection of the 2n−1 sign sequences and their order in the first
D set.

We emphasize that the above optimization is unnecessary
for large supercells, and many other choices of signs will lead
to essentially the same results. This procedure is advantageous

only when trying to obtain temperature-dependent properties
using small supercells (e.g., 4 × 4 × 4 supercells). If the set
B contains more than 22(n−1) q-points, then we continue the
sequence by restarting from the beginning. We note that, while
this procedure does not necessarily respect the periodic gauge
across the Brillouin-zone boundaries, this does not consti-
tute a limitation since we are only interested in minimizing
E ({Sqν}).

Having established the signs Sqν , we finally compute the
ZG displacement using Eq. (2). In this expression the tem-
perature T is an external parameter and enters via the Bose-
Einstein factors nqν .

C. Smooth gauge of phonon eigenmodes along
a path in reciprocal space

In order to satisfy Eq. (47), we perform unitary transfor-
mations of phonon eigenmodes at adjacent q-points on the
space-filling curve described in Sec. V B. The transformation
is defined in such a way that similar eigenmodes at different
q-points have a similar complex phase, and the ordering of
eigenmodes is preserved in the case of branch crossing. This
is equivalent to enforcing a smooth Berry connection across
the Brillouin zone [69]. These ideas are related to standard
concepts used in the theory of maximally localized Wannier
functions [70].

Given two adjacent reciprocal-space vectors q and q +
�q, we seek for a transformation such that eκα,ν (q) and
eκα,ν (q + �q) be as similar as possible. We can define sim-
ilarity between eigenmodes using the overlap matrix:

Mνν ′ =
∑
κα

eκα,ν (q + �q)e∗
κα,ν ′ (q). (55)

Using this definition and using the orthonormality relations in
Eq. (A2) we have

eκα,ν (q + �q) =
∑
ν ′

Mνν ′eκα,ν ′ (q). (56)

For the modes eκα,ν (q) and eκα,ν (q + �q) to be as similar
as possible, the overlap matrix Mνν ′ needs to be as close
as possible to the identity matrix. Generally this is not the
case since the diagonalization of the dynamical matrix at
different q-points introduces an arbitrary gauge in the normal
modes. To address this problem we perform a transformation
of eκα,ν (q + �q) as follows:

e′
κα,ν (q + �q) =

∑
ν ′

Uνν ′eκα,ν ′ (q + �q), (57)

where Uνν ′ is a unitary rotation among the vibrational eigen-
modes. After this transformation, the new overlap matrix
reads

M ′
νν ′ =

∑
κα

e′
κα,ν (q + �q)e∗

κα,ν ′ (q) =
∑

μ

UνμMμν ′ . (58)

We want to find the unitary matrix U such that M ′ = UM is
as close as possible to the identity I . To this aim we need
to minimize the quantity ||M ′ − I||2, where ||A|| represents
the Frobenius norm of the matrix A and is given by ||A||2 =
Tr(A†A). Using M ′ = UM we can write

||M ′ − I||2 = Tr(M†M + I ) − Tr(M†U † + UM ). (59)
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FIG. 3. Setting up a smooth Berry connection for the vibrational eigenmodes of silicon. (a) Eigenmodes as obtained from the diagonaliza-
tion of the dynamical matrix, shown as complex vectors. In this plot we set κ = 1, α = 1, and we follow a line along the [100] direction of a
100 × 100 × 100 Brillouin zone grid. The eigenmodes jump discontinuously between adjacent q-points. (b) The same eigenmodes as in (a),
this time after using the algorithm described in Sec. V C to enforce a smooth Berry connection between eigenmodes at adjacent q-points. In
this case the eigenmodes vary smoothly along the Brillouin-zone path.

Minimizing the left-hand side with respect to U is equivalent
to maximizing Tr(M†U † + UM ). Using the properties of the
matrix trace this is the same as maximizing Re Tr (UM ).

The matrix M is not Hermitian in general, but it can be
decomposed via SVD as

M = LSR†, (60)

where L and R are unitary matrices and S is a diagonal matrix
with non-negative real values on the diagonal. With these
definitions, it can be shown that the matrix U that maximizes
Re Tr (UM ) is precisely U = RL† [71].

In order to use this strategy in practical calculations, we
determine unitary transformations for each q-point along a
space-filling curve, by evaluating overlap matrices M between
each pair of successive q-points, say, q1 and q2. Then we
apply the transformation U to the modes in q2, and repeat the
procedure for q2 and q3, and so on for all wave vectors.

Figure 3 shows the eigenmodes eκα,ν (q) of silicon before
and after the procedure just described. We can see that the
resulting eigenmodes vary continuously between adjacent q-
points, as desired.

D. Generation of temperature-dependent band structure
by Brillouin-zone unfolding

In this section we present the recipe for calculating spectral
functions that represent momentum-resolved density of states
of the electrons at a given temperature. In order to obtain the
spectral functions in the Brillouin zone of the primitive unit
cell we employ the following unfolding procedure.

The spectral function is defined as [72,73]

Ak(ε; T ) =
∑
mK

PmK,k(T ) δ[ε − εmK(T )], (61)

where PmK,k(T ) are temperature-dependent spectral weights
given by

PmK,k(T ) =
∑

n

∣∣〈ψSC
mK(T )

∣∣ψPC
nk

〉∣∣2
. (62)

In these expressions εmK(T ) and ψSC
mK(T ) represent eigenvalue

and wave function of a Kohn-Sham state in the supercell,
respectively, obtained from a calculation with the ZG dis-
placement at the temperature T ; ψPC

nk denotes a state in the
primitive unit cell. We employ lower (upper) case bold fonts
to indicate wave vectors in the primitive cell (supercell). The
integral is over a volume that encompasses the supercell and is
commensurate both with K and k. The equivalence between
Eq. (61) and the standard definition of the electron spectral
function using the Lehmann representation is demonstrated in
Ref. [74].

We now expand Kohn-Sham states in a plane-waves basis
set as follows: ψPC

nk (r) = V −1/2 ∑
g cPC

nk (g) exp[i(k + g) · r],
ψSC

nK (r; T ) = V −1/2 ∑
G cSC

nK(G; T ) exp[i(K + G) · r], where
V is the volume where the wave functions are normalized.
By replacing these expansions inside Eq. (62) and using the
resolution of identity

∑
n cPC

nk (g)cPC,∗
nk (g′) = δgg′ one obtains

PmK,k(T ) =
∑

g

∣∣cSC
mK(g + k − K; T )

∣∣2
. (63)

We note that in the last expression only the plane-waves
coefficients of the supercell state appear; therefore the calcu-
lation of the spectral function at finite temperature does not
require explicit projections onto the states of the primitive
cell [75,76]. In actual calculations we select a k-path in the
Brillouin zone of the primitive cell, and for each k-point we
proceed as follows: we identify all the supercell K-points that
unfold into k via a reciprocal lattice vector G of the supercell;
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FIG. 4. (a) Normalized probability distribution P(�τpκα ) of the atomic displacements �τpκα around a silicon atom, along the [100]
direction. The blue line represents the exact distribution from Eq. (16), and the filled green area represents a normalized histogram of the
ZG displacements, evaluated for a 50 × 50 × 50 supercell of silicon at T = 0 K. In both cases the standard deviation is 0.05 Å. The inset
represents a scatter plot of the atomic displacements in the (001) plane, all referred to the same Si atom. (b) Ball-stick model of silicon with the
atoms folded back in the unit cell after the ZG displacement in a 8 × 8 × 8 supercell. The ZG displacements are for T = 0 K and are shown
as arrows. The displacements have been scaled ×4.5 for clarity.

for each of these points we evaluate the weights PmK,k(T )
using Eq. (63); then we use the calculated weights inside
Eq. (61). In the case of ultrasoft pseudopotentials, which we
employed for calculations on monolayer MoS2 in Sec. VI D,
we use a slightly modified version of Eq. (63) to account
for the augmentation charge [65]. Starting from the spectral
function Ak(ε; T ), we extract the renormalized band structure
by numerically identifying the quasiparticle peaks along the
energy axis.

In principle one could also evaluate a momentum- and
band-resolved spectral function, by considering scalar prod-
ucts like in Eq. (62) but without the summation over the states
n of the primitive unit cell. In this case Eq. (63) must be
replaced by a more complicated expression which requires
an explicit evaluation of wave functions in the primitive
unit cell. We explored this possibility, but we found that in
order to achieve numerical convergence one would need an
impractically large number of bands in the supercell.

VI. SUMMARY OF PROCEDURE
AND NUMERICAL RESULTS

In this section we summarize the procedure for the calcu-
lation of temperature-dependent band structures using the ZG
displacement, and we discuss our results for silicon, gallium
arsenide, and monolayer molybdenum disulfide. The special
displacement method consists of the following steps:

(i) We compute the vibrational eigenmodes eκα,ν (q) and
eigenfrequencies ωqν in the unit cell using DFPT on a coarse
uniform grid of q-points.

(ii) In preparation for calculations on a supercell of size
N1 × N2 × N3, we interpolate the vibrational eigenmodes and
frequencies on a finer q-points grid with the same size as the
supercell, N1 × N2 × N3. We partition this grid into the sets
A, B, and C.

(iii) We enforce a smooth Berry connection for the
vibrational eigenmodes. To this aim we perform unitary

transformations that makes eigenmodes at nearby q-points as
similar as possible, as described in Sec. V C.

(iv) We build an N1 × N2 × N3 supercell with the atoms
displaced by �τ pκ given in Eq. (2). The signs Sqν in Eq. (2)
are determined using the procedure described in Sec. IV D.

(v) To compute band structures, we first set up the k-point
path in the Brillouin zone of the primitive cell, then we obtain
the folded k-points in the Brillouin zone of the supercell. We
perform a DFT band structure calculation in the supercell,
and we unfold the result using the method of Ref. [72]. This
procedure is discussed in Sec. V.

In this paper we focus on temperature-dependent band
structures to limit the length of the presentation. For calcula-
tions of temperature-dependent optical spectra, photoelectron
spectra, tunneling spectra, or transport coefficients, steps (i)–
(iv) above remain the same, while step (v) shall be replaced
by the calculation of the required property.

We emphasize that the ZG displacement in Eq. (2) does
not contain eigenmodes with q ∈ A. These eigenmodes cor-
respond to stationary lattice waves, and break the crystal sym-
metry. In the following sections we show how this observation
can be used to analyze the convergence and the accuracy of the
calculations as a function of supercell size.

The main difference between Eq. (2) and the displacement
provided in our previous work [Eq. (5) of Ref. [26]] is that
here a more structured choice of signs allow us to better con-
trol the convergence rate and to perform accurate calculations
using relatively small supercells.

A. Thermal mean-square displacements of Si, GaAs, and MoS2

In Fig. 4(a) we compare the probability distribution
P(�τpκα; T ) in Eq. (16) evaluated for silicon at T = 0 K
with an histogram of the displacements obtained from the
ZG formula in Eq. (2). The histogram is obtained numerically
by binning the values of �τpκα for all atoms along the [100]
direction. It is remarkable that the distribution provided by the
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FIG. 5. (a) Mean-square thermal displacements of silicon as a function of temperature, evaluated using Eq. (17) (gray disks) and the ZG
displacement (green disks). Experimental data from Ref. [77] are shown as black triangles. (b) Thermal ellipsoids of silicon at T = 300 K, as
obtained from the ZG displacement. (c) Mean-square thermal displacements of GaAs as a function of temperature, evaluated using Eq. (17)
(gray disks) and the ZG displacement (green and blue disks). We also report experimental data from Ref. [78] (filled triangles) and Ref. [79].
These data correspond to weighted averages of the displacements of Ga and As. (d) Thermal ellipsoids of GaAs at T = 300 K, as obtained
from the ZG displacement. (e) In-plane mean-square thermal displacements of monolayer MoS2 as a function of temperature, evaluated using
Eq. (17) (gray disks) and the ZG displacement (green and blue disks). We also report experimental data from Ref. [80]. (f) Thermal ellipsoids
of monolayer MoS2 at T = 300 K, as obtained from the ZG displacement.

ZG displacement follows the exact thermodynamic average
with very high precision. The choice of the Cartesian direction
is not important in this case, since silicon is isotropic. In
fact, the inset of Fig. 4(a) shows that the distribution in the
(100) plane is also isotropic. For completeness we also show
in Fig. 4(b) how the ZG displacement appears in a three-
dimensional rendering.

In Figs. 5(a)–5(c) we show the thermal mean-square dis-
placements of Si, GaAs, and MoS2 calculated using the ZG
displacements (colored disks), the mean-square displacements
evaluated using the exact expression in Eq. (17) (gray disks),
and experimental data from XRD where available (triangles)

[77–80]. We can see that the ZG displacement yields mean-
square displacements in excellent agreement with Eq. (17),
and that the agreement between our calculations and ex-
periments is also very good. These successful comparisons
reinforce the notion that the ZG displacement provides a very
accurate classical representation of a thermodynamic average
over the quantum fluctuations of the atomic positions.

The ZG displacement can also be employed to obtain
the thermal displacement ellipsoids and compare the com-
plete ADP tensor Uκ,αβ (T ) of Eq. (18) with experiments. In
Figs. 5(d)–5(f) we show the computed thermal ellipsoids of
Si, GaAs, and MoS2 at T = 300 K. The ellipsoids of Si, Ga,
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FIG. 6. (a) Spectral function of silicon calculated using the ZG displacement at T = 0 K. The calculation was performed using an 8 × 8 × 8
supercell and the unfolding procedure described in Sec. V D. We sampled the L-�-X path on 280 equally spaced k-points, and the zero of the
energy axis is referred to the valence band top. (b) Band structures of silicon at clamped ions (black), T = 0 K (blue), and T = 300 K (green).
The bands were extracted from spectral functions like the one in (a). We also report the calculated zero-point renormalization (ZPR) and a
ball-stick model. (c) Sensitivity of the calculated ZPR of silicon to the size of the supercell. The horizontal axis indicates the linear size N of the
N × N × N supercell. We show both the calculations performed using the ZG displacement (green) and the results obtained by also including
q-points in set A (gray). In the latter case the threefold degeneracy of the valence band top is lifted (inset), and the band gap is evaluated by
considering the topmost valence state. (d) Temperature dependence of the indirect band gap of silicon up to 500 K. We show the results of
the special displacement method (green circles) and experimental data from Ref. [85] (black triangles). The calculated band gaps were scissor
shifted by 0.73 eV to match the experimental value at 4 K. The straight line is the high-temperature limit and intercepts the T = 0 K axis at
the clamped-ion band gap (1.23 eV, empty circle).

and As are found to be spheres with radius 0.49 Å2, 0.59 Å2,
and 0.50 Å2, respectively. These findings are consistent with
the cubic symmetry of the Si and GaAs lattices. In the case of
MoS2, the ellipsoids reflect the two-dimensional nature of the
material: the in-plane parameters U‖ are 0.22 Å2 and 0.42 Å2

for Mo and S atoms, respectively; the out-of-plane parameters
U⊥ are 0.82 Å2 and 0.86 Å2 for Mo and S, respectively.
In all cases the ADPs obtained from the ZG displacements
are within 25% of the corresponding experimental values
[77–80].

B. Temperature-dependent band structure of Si

Figure 6 shows our results and analysis for the band struc-
ture of Si at finite temperature. Full computational details,
including the evaluation of the spectral function and band
energies in the primitive unit cell, are provided in Sec. V;

here we mention only that the calculations are based on DFT
in the local density approximation (LDA). In Fig. 6(a) we
show the spectral function Ak(ε; T ) obtained from the ZG
displacement in a 8 × 8 × 8 supercell. We consider T = 0 K
to focus on the effect of zero-point renormalization. The spec-
tral function provides the momentum-resolved electronic den-
sity of states [81], and it is shown as a colormap. In Fig. 6(b)
we compare the bands εnk(T ) extracted from the spectral
function Ak(ε; T ) with the usual DFT band structure evaluated
at clamped ions; in particular we consider the dispersions
along the L�X path of the Brillouin zone for T = 0 K (blue)
and T = 300 K (green); the DFT bands at clamped ions are in
black. This calculation indicates that, as a result of zero-point
motion, the energy of the valence band maximum (VBM)
at � increases by 35 meV, while the energy of the indirect
conduction band minimum (CBM) at �0.87 �X decreases
by 22 meV. These values are in excellent agreement with
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Ref. [12], which obtained 35 meV and 21 meV, respectively,
when using the perturbative Allen-Heine approach and the
adiabatic approximation.

From the band structure in Fig. 6(b) we can also extract the
phonon-induced mass-enhancement. For simplicity we focus
on the longitudinal electron mass of silicon, and we define the
coupling strength λT such that m∗

l (T ) = (1 + λT )m∗
l where

m∗
l = 0.95 me is the DFT mass at clamped ions. From the

calculated bands we obtain λT = 0.03 and 0.04 for T = 0 K
and T = 300 K, respectively. This finding is in agreement
with the mass renormalization reported in Ref. [82].

Our calculated band gap narrowing due to zero-point
effects is 57 meV. This value is in very good agreement
with previous calculations based on nonperturbative adiabatic
approaches, yielding 56–65 meV [15,19,23,25,26] as well as
with experimental values, in the range of 62–64 meV [83,84].
Ref. [12] showed that nonadiabatic corrections within the
Allen-Heine theory increase the zero-point renormalization
by 8 meV [12]. This effect is not captured by the present
special displacement method, which is in essence an adia-
batic approach. We also point out that the most recent GW
calculations using an earlier version of the present approach
[23] yield a slightly larger gap renormalization of 66 meV.
This is expected given that the electron-phonon interaction is
overscreened in DFT/LDA due to the band gap problem.

In order to analyze the convergence behavior of the SDM,
in Fig. 6(c) we plot the dependence of the zero-point band
gap renormalization on the supercell size. Two sets of data
are shown. The green lines and data points correspond to
calculations performed using Eq. (2). The black lines and gray
data points were obtained after modifying Eq. (2) to include
the contributions of phonons with q ∈ A. Phonons with q ∈ A
correspond to stationary waves in the primitive unit cell (e.g.,
q = 0 phonons). As we demonstrate in Sec. IV D, in the ther-
modynamic limit of infinite supercell the contribution of these
modes vanishes identically. Therefore, the calculations per-
formed by including or excluding phonons with q ∈ A in the
ZG displacement given by Eq. (2) converge to the same limit.
However, by considering only q ∈ B phonons as in Eq. (2) we
reach convergence from the bottom (in terms of magnitude);
while by including phonons with q ∈ B and q ∈ A we reach
convergence from the top. By construction the converged
answer must lie in between these two limits, therefore the
analysis presented in Fig. 6(c) can be used as a way to quantify
the convergence error of the calculations. For example the data
obtained for a 10 × 10 × 10 supercell in Fig. 6(c) show that
the fully converged result for an infinitely large supercell will
be in the interval 55–65 meV. This observation carries general
validity for all the systems considered in this work.

The inset of Fig. 6(c) shows the spectral function near the
threefold degenerate VBM of silicon, as computed using the
ZG displacement for a 4 × 4 × 4 supercell at T = 0 K. If we
include q ∈ A points in the ZG displacement, then the crystal
symmetry is broken, and by consequence we observe a band
splitting (black line). In contrast, when we use the pure ZG
displacement from Eq. (2), i.e., without phonons with q ∈
A, the band degeneracy is correctly preserved. This analysis
indicates that, when performing electron-phonon calculations
using nonperturbative supercell approaches, q = 0 phonons
as well as all phonons with q ∈ A are the least representative

since they break crystal symmetry, which may lead to calcula-
tion artifacts. This issue is resolved by the present formulation
of the ZG displacement as provided by Eq. (2).

In Fig. 6(d) we compare our calculations of the indirect
band gap of silicon using the SDM with experiments [85],
up to T = 500 K. To facilitate comparison we scissor shifted
our DFT/LDA results by 0.73 eV, which is close to the
GW correction reported in Ref. [86]. The agreement between
our calculation and experiment is very good, except that we
underestimate slightly the temperature slope. This effect is a
well-known consequence of the fact that the strength of the
electron-phonon interaction is underestimated by DFT/LDA;
the slope can be improved by using GW calculations in
combination with the SDM, as demonstrated in Ref. [23].

C. Temperature-dependent band structure of GaAs

Figure 7 shows our calculated band structure of GaAs at
finite temperature. Also, in this case we employ DFT and the
LDA, as described in Sec. V. In Fig. 7(a) we have the spectral
function Ak(ε; T ) at T = 0 K as a color map, and in Fig. 7(b)
we have the bands extracted from the spectral function at T =
0 K (blue) and T = 300 K (green). The bands at clamped ions
are shown in black for comparison. For simplicity we are
not including spin-orbit coupling in the calculations, therefore
we do not see the spin-orbit splitting of the split-off holes
in the valence bands [87–89]. Since the holes at the top of
the valence band have the same orbital character, we expect a
similar zero-point renormalization for the split-off holes.

From the data in Fig. 7(b) we obtain zero-point corrections
to the valence and conduction band edges at � of +21 meV
and −11 meV, respectively. The resulting band gap narrowing,
�Eg = 32 meV, lies within the experimental range of 57 ±
29 meV [90]. The calculations in Fig. 7(b) are performed us-
ing an 8 × 8 × 8 supercell. To better compare with the finite-
differences results of Ref. [10], we repeated the calculations
with a smaller, 4 × 4 × 4 supercell. In this case we obtain
�Eg = 25 meV, which matches the value of 25 meV reported
in Ref. [10]. It is well established that GW quasiparticle
corrections change these results by strengthening the electron-
phonon coupling [10,23]: in order to incorporate this effect it
will be sufficient to perform a GW calculation using the ZG
displacement.

From the band structure in Fig. 7(b) we can determine the
phonon-induced mass-enhancement. Since we are not includ-
ing spin-orbit effects, we report only the value for the CBM at
�. By denoting m∗

e = 0.056 me the conduction band mass at
clamped ions, we find m∗

e (T ) = (1 + λT )m∗
e with λT = 0.005

and 0.007 for T = 0 K and T = 300 K, respectively. We are
unaware of previous calculations of the mass renormalization
in GaAs as a function of temperature.

In Fig. 7(c) we show the convergence of the zero-point
renormalization of the direct gap of GaAs with respect to the
supercell size. The converged value obtained with Eq. (2) is
�Eg = 32 meV and is obtained using an 8 × 8 × 8 supercell.
As for the case of Si in Fig. 6(c), also for GaAs the threefold
degeneracy of the VBT is preserved when using the ZG
displacement. Also in this case, if we include phonons with
q ∈ A in Eq. (2), the degeneracy is lifted due to symmetry
breaking, as can be seen in the inset of Fig. 7(c).
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FIG. 7. (a) Spectral function of GaAs calculated using the ZG displacement at T = 0 K. The calculation was performed using an 8 × 8 × 8
supercell and the unfolding procedure described in Sec. V D. We sampled the L-�-X path on 280 equally spaced k-points, and the zero of the
energy axis is referred to the valence band top. (b) Band structures of GaAs at clamped ions (black), T = 0 K (blue), and T = 300 K (green).
The bands were extracted from spectral functions like the one in (a). We also report the calculated zero-point renormalization (ZPR) and a
ball-stick model. (c) Sensitivity of the calculated ZPR of GaAs to the size of the supercell. The horizontal axis indicates the linear size N of the
N × N × N supercell. We show both the calculations performed using the ZG displacement (green), and the results obtained by also including
q-points in set A (gray). In the latter case the threefold degeneracy of the valence band top is lifted (inset), and the band gap is evaluated by
considering the topmost valence state. (d) Temperature dependence of the indirect band gap of GaAs up to 500 K. We show the results of the
special displacement method (green circles) and experimental data from Ref. [90] (black triangles). The calculated band gaps were scissor
shifted by 0.53 eV to match the experimental value at 25 K. The straight line is the high-temperature limit and intercepts the T = 0 K axis at
the clamped-ion band gap (1.56 eV, empty circle).

In previous work it has been suggested that in the case of
polar materials it might be impossible to achieve convergence
within the adiabatic approximation [12]. Here we wish to
emphasize that the divergence of perturbative approaches
for polar materials is not a consequence of the adiabatic
approximation, but it results from taking the limit ωqν → 0
before performing the integration over phonon wave vectors
to obtain the Fan-Migdal self-energy [1]. When the limit
ωqν → 0 is correctly performed after evaluating the integral
over q, there is no divergence. The correct procedure can
be found in Sec. IV of the early work by Fan [91] and is
summarized in Appendix B. Figure 7(c) shows indeed that
adiabatic calculations using the SDM converge smoothly as
a function of supercell size, and that the fully converged
band gap renormalization lies in a very narrow bracket be-
tween 32 meV (ZG displacement without q ∈ A phonons) and

36 meV (ZG displacement with q ∈ A phonons) already for a
8 × 8 × 8 supercell.

Generally speaking, the smooth and fast convergence of
the SDM can be ascribed to the fact that the formalism relies
on a standard DFT calculation for a supercell with displaced
atoms. This calculation is intrinsically easier to converge
than perturbative approaches. In fact, perturbative methods
require stringent q-point sampling to evaluate principal-value
integrals of first-order poles that appear in the Fan-Migdal
and Debye-Waller self-energies; furthermore these integrals
yield large and opposite contributions, so the final result is
obtained by subtracting two large numbers. The SDM method
circumvents these numerical challenges.

In Fig. 7(d) we show our results for the direct gap of GaAs
using the ZG displacement, in the temperature range 0–500 K,
and we compare with experimental data from Ref. [90]. In
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FIG. 8. (a) Spectral function of monolayer MoS2 calculated using the ZG displacement at T = 0 K. The calculation was performed using a
10 × 10 × 1 supercell and the unfolding procedure described in Sec. V D. We sampled the �-K-M-� path on 237 equally spaced k-points, and
the zero of the energy axis is referred to the valence band top. (b) ZPR of the direct band gap of monolayer MoS2 vs the interlayer separation.
The calculations were performed using a 4 × 4 × 1 supercell. Also shown is a ball-stick model of monolayer MoS2. (c) Sensitivity of the
calculated ZPR of monolayer MoS2 to the size of the supercell. The horizontal axis indicates the linear size N of the N × N × 1 supercell. We
show both the calculations performed using the ZG displacement (green) and the results obtained by also including q-points in set A (gray).
(d) Temperature dependence of the indirect band gap of monolayer MoS2 up to 400 K, evaluated using a 10 × 10 × 1 supercell. We show
the results of the special displacement method (green circles) and experimental data from Ref. [93] (black triangles). The calculated band
gaps were scissor shifted by 0.34 eV to match the experimental value at 4 K. The straight line is the high-temperature limit and intercepts the
T = 0 K axis at the clamped-ion band gap (1.93 eV, empty circle).

order to take into account the non-negligible expansion of the
GaAs lattice with temperature, we employ the quasiharmonic
approximation. We use a scissor shift of 0.53 eV to mimic
GW corrections as reported in Ref. [92]. The slight underes-
timation of the experimental slope with temperature can be
corrected by performing GW calculations instead of standard
DFT/LDA [10,23], but overall the agreement between the
present calculations and experiments is very good.

For completeness, we also mention that the results shown
in Fig. 7(d) and obtained from the analysis of temperature-
dependent band structures are in excellent agreement with the
values that we obtained in an earlier work by analyzing the
joint density of states [26].

D. Temperature-dependent band structure of monolayer MoS2

Figure 8 shows our calculated temperature-dependent band
structure of monolayer MoS2, as an example of application

of the SDM to two-dimensional materials. In this case we
employed the PBE exchange and correlation functional [63],
and fully relativistic ultrasoft pseudopotentials [65] to take
spin-orbit coupling into account (Sec. V).

In Fig. 8(a) we have the spectral function of MoS2 at
T = 0 K obtained from the ZG displacement in a 10 × 10 ×
1 supercell. By extracting the corresponding temperature-
dependent bands we obtain a spin-orbit splitting of 136 meV
for the valence band states at K , to be compared to the
clamped-ion value of 142 meV. Our calculation is in agree-
ment with the spliting of 135 meV obtained in Ref. [14] within
the Allen-Heine theory. We also determined the electron effec-
tive mass renormalization at the K point and found λT � 0.04
and �0.06 for T = 0 K and T = 300 K, respectively. These
latter two values are not fully converged since we used finite
differences with a coarse k-point spacing of 6 × 10−3 2π/a.

In Figs. 8(b) and 8(c) we show convergence tests for the
gap renormalization. In Fig. 8(b) we have the renormalization
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as a function of interlayer separation by keeping the in-plane
supercell size fixed; in Fig. 8(c) we vary the supercell size,
keeping the interlayer separation constant. As in the case of
the three-dimensional materials Si and GaAs, the band gap
narrowing converges relatively quickly with the size of the
cell; furthermore the calculations are not very sensitive to
the size of the vacuum region provided periodic replica are
separated by more than 10 Å.

For a 10 × 10 × 1 supercell we obtain a zero-point gap
renormalization of 64 meV using the ZG displacement. By
including also q ∈ A phonons in Eq. (2) the value changes
only slightly to 65 meV, therefore we estimate an error with
respect to the fully converged result of less than 1 meV. Our
result is in good agreement with the perturbative calculations
of Ref. [14], which reported 75 meV. The residual difference
may be due to the “rigid-ion” approximation used in the
Allen-Heine approach of Ref. [14] and to differences in the
DFT exchange and correlation functionals employed.

In Fig. 8(d) we compare our calculated temperature-
dependent band gap of MoS2 (green) with experimental data
from Ref. [93] (black). To facilitate comparison we introduced
a scissor correction of 0.34 eV to match the measured band
gap at 4 K. This correction is similar to that obtained using
GW and the Bethe-Salpeter equation (BSE) [94]. Unlike in Si
and GaAs, here the calculated data follow the experimental
trend very closely. This is unexpected since we are computing
electron-phonon effects at the DFT/PBE level and suggests
that quasiparticle corrections of the electron-phonon coupling
[95] are not significant in MoS2.

E. General remarks on the SDM results

The applications to Si, GaAs, and MoS2 described in the
previous sections show that the SDM yields temperature-
dependent bands of the same quality as perturbative ap-
proaches based on the Allen-Heine theory. In particular,
the capability to access momentum-resolved quantities such
as temperature-renormalization at specific k-points and the
phonon-induced enhancement of the band mass considerably
expand the range of applicability of the ZG displacement.

One important point of note is that the present reciprocal-
space formulation of the ZG displacement allowed us to
identify and remove the contributions of vibrational modes
that break crystal symmetry. This improvement is important in
order to avoid spurious and uncontrolled lifting of electronic
degeneracy. Since the symmetry-breaking modes are those
with wave vector q ∈ A, that is phonons corresponding to
standing Bloch waves, the present analysis and results demon-
strate that these modes (especially q = 0 phonons) are the
least representative in a thermodynamic average, and should
be avoided for accurate calculations.

Another interesting point is that we can bracket the fully
converged results by performing two calculations: one with
the pure ZG displacement of Eq. (2), and one with the modi-
fied version including q ∈ A phonons. This provides a simple
and effective strategy to quantify the convergence error as a
function of supercell size.

We also found that, when used in conjunction with the
ZG displacement, the adiabatic approximation does not suf-
fer from the convergence problems that are encountered in

perturbative approaches for polar materials. This advantage
arises from the fact that the special displacement method
does not require integrating over poles as in perturbative
approaches, and the calculation is as easy as a standard
calculation at clamped ions.

For the systems considered in this work, the supercells
required to achieve relatively accurate results are surprisingly
small. For example, the ZG displacement in a 4 × 4 × 4 Si su-
percell (128 atoms) yields a zero-point renormalization which
differs by less than 10% from the fully converged value; for
GaAs we need a 6 × 6 × 6 supercell (432 atoms) to achieve
similar accuracy; for MoS2 a 6 × 6 × 1 supercell (72 atoms)
is enough to converge the results within 10%. This indicates
that the ZG displacement can be used to perform calculations
with relatively small supercells, and this may open the way
to post-DFT calculations at finite temperature, including GW
quasiparticle calculations and exciton calculations via the
BSE method.

VII. CONCLUSIONS AND OUTLOOK

In this paper we develop a methodology for performing
electronic structure calculations at finite temperature. In a
nutshell, this method consists of performing a single calcu-
lation in a supercell where the atoms have been displaced
according to Eq. (2). We refer to this displacement as the
ZG displacement, and to the methodology as the special
displacement method.

This work follows our earlier study in Ref. [26], where
the original idea was first proposed. The key unique feature
of the present study is that we reformulate the entire theory
using a compact and rigorous reciprocal space formulation,
building on density functional perturbation theory. This for-
mulation allows us to go beyond angle-integrated electronic
and optical spectra, and to compute complete band struc-
tures at finite temperature. We demonstrate this concept for
three-dimensional bulk semiconductors, silicon and gallium
arsenide, and for a two-dimensional semiconductor, mono-
layer molybdenum disulfide. In all cases our results match
the accuracy of established perturbative techniques based on
the Allen-Heine theory. The added advantage of the present
approach over perturbative methods is that it does not require
the evaluation of self-energy energy poles, and it does not
require the rigid-ion approximation for the Debye-Waller self-
energy. As a consequence, the method is robust, reliable, and
simple to use.

Beyond demonstrating calculations of band structures at
finite temperature, we show that the ZG displacement accu-
rately reproduces the characteristic anisotropic displacement
parameters measured by x-ray crystallography, and can be
used to determine thermal ellipsoids as a function of temper-
ature. Therefore the ZG displacement represents an accurate
classical snapshot of thermal disorder in solids and eliminates
the need for the stochastic sampling of the nuclear wave
functions.

In the present approach, the choice of the atomic displace-
ments is carefully performed by first establishing a smooth
Berry connection among vibrational eigenmodes in the Bril-
louin zone, and then by choosing the phase of each eigenmode
using rigorous sum rules. This approach allows us to prove
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that the ZG displacement yields the exact Williams-Lax aver-
age of an electronic observable in the thermodynamic limit of
infinite supercell. We also provide procedures for accelerating
the convergence of the calculations for those cases where only
small supercells are within reach.

For reasons of space we only discussed applications to
finite-temperature band structures, but we emphasize that this
methodology is much more general. For example, the earlier
version of this method [26] has already been applied to com-
pute phonon-assisted optical properties, dielectric functions,
GW quasiparticle corrections, zero-point renormalization of
band gaps, exciton-phonon couplings, and charge transport.
This broad range of applications is possible because the
Williams-Lax theory can be employed to compute any prop-
erty which can be expressed as a Fermi’s golden rule.

The present extension of the special displacement method
to compute entire band structures is particularly appealing
for testing quasiparticle corrections at finite temperature.
Since only one supercell calculation is required, and since
we developed an algorithm to accelerate convergence with
respect to the supercell size, this approach opens the way to
systematic many-body calculations of band structures at finite
temperature.

Up to this point the SDM relied on the harmonic approx-
imation. It would be interesting to consider extensions to
anharmonic systems. We expect that the method will work
seamlessly in conjunction with the quasi-harmonic approxi-
mation [96,97] and with the self-consistent harmonic approx-
imation [98,99]. In fact, in both cases the original anharmonic
potential is replaced by its “best” harmonic approximation;
after this replacement the SDM method can be used without
changes. In the case of strongly anharmonic systems, for
example, in the presence of double-well potential energy sur-
faces, it should be possible to modify the present method by
treating all the harmonic modes as described in this paper, and
by adapting the ZG configuration to describe averages over
double-well quantum nuclear wave functions. The feasibility
and accuracy of this approach will have to be demonstrated in
future work.
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APPENDIX A: DYNAMICAL MATRIX AND BORN–VON
KÁRMÁN BOUNDARY CONDITIONS

Here we summarize the relations between normal modes
eκα,ν (q) obtained from the diagonalization of the dynamical
matrix at each q wave vector, and the standard sum rules
resulting from the Born–von Kármán boundary conditions.

In the harmonic approximation the dynamical matrix
Dκα,κ ′α′ (q) at each q-point and the vibrational eigenmodes and
frequencies satisfy the equation [1]∑

κ ′α′
Dκα,κ ′α′ (q)eκ ′α′,ν ′ (q) = ωqνeκα,ν (q). (A1)

Since the dynamical matrix is Hermitian, the eigenmodes
form an orthonormal basis:∑

ν

eκα,ν (q)e∗
κ ′α′,ν (q) = δκκ ′δαα′ , (A2)

∑
κα

e∗
κα,ν (q)eκα,ν ′ (q) = δνν ′ . (A3)

Equation (A1) implies the relations [1]

eκα,ν (−q) = e∗
κα,ν (q), ωqν = ω−qν, (A4)

where we followed the convention of Ref. [54].
We denote the lattice vector pointing to the pth unit cell

as Rp = np1 a1 + np2 a2 + np3 a3, where the ai represent the
primitive lattice vectors and npi are integers between 0 and
Ni − 1. The Born–von Kármán supercell contains Np = N1 ×
N2 × N3 unit cells. For the uniform grid of phonon wave
vectors q in the Brillouin zone we choose q = (m1/N1)b1 +
(m2/N2)b2 + (m3/N3)b3, where the bi represent the primitive
reciprocal lattice vectors, and mi are integers between 0 and
Ni − 1. The vectors bi are such that ai · b j = 2πδi j . With
these conventions we have the sum rules∑

q

ei(Rp−Rp′ )·q = Npδpp′ , (A5)

∑
p

ei(q−q′ )·Rp = Npδqq′ . (A6)

APPENDIX B: ADIABATIC APPROXIMATION
FOR POLAR MATERIALS

In recent work it has been proposed that the adiabatic
approximation leads to an ill-defined expression [12] when
computing the band structures of polar semiconductors at
finite temperatures.

In this Appendix we show that the divergence noted in
Ref. [12] is not related to the adiabatic approximation, but
to the procedure employed for evaluating the principal-value
integrals appearing in the self-energy.

For simplicity we write the Fan-Migdal self-energy used
in Ref. [12] within the Frölich approximation. In particular
we consider an electron in an otherwise empty conduction
band on mass m∗, interacting with a single, dispersionless
polar longitudinal-optical phonon of frequency ωLO. At zero
temperature the self-energy reads [1]

�FM
k (ω) =

∫
dq
�BZ

|g(q)|2
h̄ω − εk+q − h̄ωLO + ih̄η

. (B1)

Here εk = h̄2|k|2/2m∗, η is a positive infinitesimal, �BZ is the
volume of the Brillouin zone, and the Frölich electron-phonon
matrix element is given by [100]

|g(q)|2 = e2

4πε0

4π

�

h̄ωLO

2

1

κ |q|2 , (B2)

where � is the volume of the unit cell. The quantity κ is de-
fined as 1/κ = 1/ε0 − 1/ε∞, with ε0 and ε∞ being the static
and the high-frequency dielectric constants, respectively.

After replacing Eq. (B2) inside (B1) and carrying out the
algebra we reach the standard expression for the self-energy
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at the band bottom (k = 0, ω = 0, η → 0):

�FM = −αh̄ωLO
qLO

π

∫ ∞

−∞

dq

q2 + q2
LO

, (B3)

having defined q2
LO = 2m∗h̄ωLO/h̄2. The integration was ex-

tended to the infinite crystal since this does not alter the result
[91], and we used the definition of the Fröhlich coupling
constant [100]:

α = e2

4πε0

1

h̄

√
m∗

2h̄ωLO

1

κ
. (B4)

The evaluation of the integral in Eq. (B3) yields π/qLO,
therefore the self-energy is

�FM = −α h̄ωLO. (B5)

This is a standard result which is well known in the literature
[21,101].

In Ref. [12] it was noted that, in the presence of Fröhlich
coupling as in the above example, the adiabatic approximation
to the self-energy diverges in the limit of dense Brillouin
zone sampling. This result was reached by taking the limit

ωLO → 0 in Eq. (B1) before evaluating the integral. As a
consequence of this limiting operation, the integral appearing
in Eq. (B3) is replaced by

∫ +∞
−∞ q−2dq, which diverges indeed.

However, one can alternatively perform the adiabatic ap-
proximation by taking the limit ωLO → 0 after evaluating the
integral. This alternative approach corresponds to taking the
limit ωLO → 0 of Eqs. (B4) and (B5). In this case the limit is
finite, and the result is �FM = 0.

This analysis shows that there is no fundamental flaw in
the adiabatic approximation, and that the spurious divergence
of the Fan-Migdal self-energy is an artifact of the integration
procedure. Mathematically the divergence arises from col-
lapsing the two imaginary poles at ±iqLO into a double pole
at the origin. A similar problem arises in the textbook Fourier
transform of the Coulomb potential.

In practical ab initio calculations the adiabatic approxima-
tion can be retained without incurring into a divergence as
follows. First we perform calculations where all the phonon
frequencies are set to a small constant, say, ω0. After con-
verging the summation over the Brillouin zone, we repeat
the calculations for smaller values of ω0, so as to take the
adiabatic limit ω0 → 0. This procedure will yield a finite
self-energy.
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