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Catastrophe theory classification of Fermi surface topological transitions in two dimensions
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We classify all possible singularities in the electronic dispersion of two-dimensional systems that occur when
the Fermi surface changes topology, using catastrophe theory. For systems with up to seven control parameters
(i.e., pressure, strain, bias voltage, etc.), the theory guarantees that the singularity belongs to one of seventeen
standard types known as catastrophes. We show that at each of these singularities the density of states diverges as
a power law, with a universal exponent characteristic of the particular catastrophe, and we provide its universal
ratio of amplitudes of the prefactors for energies above and below the singularity. We further show that crystal
symmetry restricts which types of catastrophes can occur at the points of high symmetry in the Brillouin zone.
For each of the seventeen wallpaper groups in two dimensions, we list which catastrophes are possible at each
high-symmetry point.
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I. INTRODUCTION

Valence electrons in crystalline solids are described by
Bloch states with a dispersion relation εn(k) between energy
ε and crystal momentum k, with n denoting a set of discrete
indices such as band, spin, etc. Within this construction, the
density of states (DOS) as a function of energy or momenta
plays an important role in the calculation of physical proper-
ties such as heat capacity and magnetic susceptibility. While
this is effectively a noninteracting picture, the electronic dis-
persion serves as an input for the treatment of interactions. In
particular, an enhancement of the DOS at the Fermi level can
strengthen the role of electron-electron interactions and lead
to electronic instabilities.

In one and two dimensions, a divergence of DOS can occur
due to the presence of one or more critical points in k space
where ∇ε(k) = 0 [1] (from here on we drop the index n). The
simplest such singularity in two dimensions, the van Hove
singularity (vHs), occurs due to regular saddle points and
causes a logarithmic divergence of the DOS. The Hessian at
a regular saddle point is nondegenerate [i.e., det(∂i∂ j ε) �= 0]
and the dispersion is quadratic to the lowest order [ε(k) ∼
k2

x − k2
y ]. However there also exist higher-order singularities

which correspond to power law divergence of the DOS. These
occur due to higher-order critical points at which the Hessian
is degenerate, i.e., noninvertible, and the dispersion needs to
be expanded beyond quadratic order.

Singularities and the associated divergence of DOS are
a signature of Fermi surface topological transitions [2,3] in
which the Fermi surface undergoes a change in topology
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from electron type to hole type across the critical energy,
with two or more branches of the Fermi surface touching
at the critical point in a singular way. Historically, when
Lifshitz [4] first studied the change of Fermi surface topol-
ogy, he dealt with two cases: the appearance or collapsing
of a neck and the appearance or collapsing of a pocket in
the Fermi surface. The neck-collapsing case is the ordinary
vHs, with the Fermi surface locally consisting of a pair of
intersecting straight lines. These two types of Fermi surface
topological transitions have been observed, along with their
nontrivial consequences due to the presence of interactions,
in a wide range of quantum materials including cuprates,
iron arsenic and ferromagnetic superconductors, cobaltates,
Sr2RuO4, heavy fermions [5–13].

Higher-order singularities display more exotic Fermi sur-
face topological transitions. They have recently been associ-
ated with phenomena such as the unusual Landau level struc-
ture and tripling of de Haas-van Alphen and Shubnikov-de
Haas oscillation periods in biased bilayer graphene [2],
the nontrivial thermodynamic and transport properties in
Sr3Ru2O7 [3], correlated electron phenomena in twisted bi-
layer graphene near half filling [14] and the so called superme-
tal with diverging susceptibilities in the absence of long-range
order [15]. In the present work, we develop a classification
scheme for Fermi surface topological transitions and their
associated DOS divergence using catastrophe theory. That
catastrophe theory is an appropriate framework for examining
higher-order critical points in electronic bands as was first
suggested by [2]. It has been also applied to other branches of
physics (e.g., Ref. ([16]), including optics [17] and molecular
physics [18]).

Catastrophe theory deals with real valued functions defined
on open subsets of Rn, where R is the space of real numbers,
and makes a distinction between state variables and control
parameters. In the context of electronic bands the function of
interest is the electronic dispersion and we identify the compo-
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nents of the crystal momentum as the state variables and hop-
ping strengths, chemical potential, etc as control parameters
which can be tuned externally, for example, by applying pres-
sure, strain, bias voltage, etc. At a critical point, the gradient of
the function with respect to the state variables vanishes. Since
we focus on two dimensional systems, we are restricted to
exactly two state variables, kx and ky. With two state variables,
catastrophe theory guarantees that a system with seven or less
control parameters is typically equivalent to one of seventeen
standard types of catastrophes, each of which corresponds to a
unique higher-order singularity. The higher-order singularities
are indexed by three positive integers: the corank, determi-
nacy and codimension. The classification by these numbers is
unique except for certain degenerate cases, which we show
that in two-dimensions can be further distinguished by the
winding, i.e., the number of times the electronic dispersion
changes sign along a contour encircling the critical point.

By tuning the control parameters, one can reach the higher-
order critical points corresponding to different catastrophes.
In Ref. [3], the fourth order saddle was identified with the uni-
modal parabolic singularity X9, while in Ref. [2], the monkey
saddle was identified with the elliptic umbilic catastrophe. In
the same spirit, we identify the higher-order singularity treated
in Refs. [14] and [15] with the cusp catastrophe.

In the example in Ref. [2], the elliptic umbilic catastrophe
occurs on a point with 2π/3 rotational symmetry, while in
that of Ref. [15], the cusp occurs on a point with π rotational
symmetry. As a general principle, symmetry constrains a point
to be critical and serve as the center where ordinary critical
points merge. Only catastrophes consistent with the symmetry
can occur at such a point. Another feature of high-symmetry
points in the Brillouin zone is that they can host otherwise
atypical higher-order singularities that are not part of the
standard seventeen. These facts call for further classification
of the catastrophes that can occur at the high-symmetry points.
We present such a classification for the Brillouin zones corre-
sponding to the seventeen wallpaper groups (no relation to the
seventeen catastrophes).

The paper is organized as follows: In Sec. II we introduce
the language of catastrophe theory through a simple example
of a tight-binding model that displays a higher-order singu-
larity. This is followed by the classification of singularities in
electronic bands in Sec. III. The stability of this classification
to small perturbations is discussed in Sec. IV. In Sec. V,
we explain the connection between high-symmetry points in
the Brillouin zone and higher-order singularities. We then
present a classification of the singularities allowed at the
high-symmetry points in the Brillouin zones corresponding to
the seventeen wallpaper groups. In Sec. VI, we give a practical
method for determining the type of singularity given its Taylor
expansion and illustrate the method with a sample calculation.
Finally we conclude the discussion in Sec. VII by briefly
summarizing the scope of the work and setting the context
for future work on the treatment of line singularities and the
effects of interaction.

II. A SIMPLE EXAMPLE

In this section, we introduce the language of catastrophe
theory through a simple tight binding model that displays a

FIG. 1. The lattice for the Hamiltonian treated in Sec. II is shown
above. It is a square lattice with a two site basis of atoms colored as
black (A) and grey (B). The AB nearest neighbor (NN) hopping in the
x̂ direction has a strength of t1 while the AA and BB NN hoppings in
the ŷ direction have strength t2. There is also complex next nearest
neighbor AA and BB hopping it ′ (with direction as depicted in the
figure). These hopping strengths can be tuned so that the energy
bands of this Hamiltonian yield the simplest of the higher-order
singularities, the fold.

higher-order singularity. For the sake of clarity, we will focus
on obtaining the simplest higher-order singularity, the fold,
although by adding and tuning additional hopping terms it is
possible to generate other singularities as well.

The lattice pertaining to the model is layered with two
sublattices A and B, colored respectively by black and grey
in Fig. 1. In the ŷ direction, we have only AA and BB nearest
neighbor (NN) hoppings of strength t2. In the x̂ direction,
we have A → B NN hopping of strength t1 and imaginary
A → A and B → B next-nearest-neighbor (NNN) hopping it ′.
The imaginary hopping can be interpreted as arising either
from spin-orbit coupling or a staggered magnetic flux in the
ŷ direction.

Choosing a unit cell containing one A atom and one B atom
as shown in Fig. 1, the Hamiltonian is given by

H =
∑

R

[
t1(c†

A,R cB,R + c†
A,R cB,R−x̂ )

+ t2(c†
A,R cA,R+ŷ + c†

B,R cB,R+ŷ)

+ it ′(cA,R+x̂ cA,R + cB,R+x̂ cB,R) + H.c
]
, (1)

where cA/B,R annihilates an A/B type Fermion in the unit
cell located at R. Diagonalizing this Hamiltonian in k space
yields two bands: ε±(k) = ±2t1 cos (kx/2) − 2t ′ sin (kx ) +
2t2 cos (ky). We now expand ε+(k) to cubic order around the
point (π, 0) in the first Brillouin zone (BZ):

ε+(k) ≈ 2t2 + (2t ′ − t1)kx + (t1/4 − 2t ′)k3
x − t2 k2

y , (2)

where α = 2t ′ − t1 and β3 = t1/4 − 2t ′ are independent. To
obtain a critical point, we need to remove the kx term by tuning
α to zero. We assume β �= 0 and t2 �= 0. This guarantees that
we can always rescale (kx, ky) → (kx/β, ky/

√
t2) and write

t = α/β to obtain

ε+(k) = 2t2 + k3
x − k2

y + tkx (3)
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FIG. 2. Constant energy contours of the dispersion f (kx, ky ) = k3
x − k2

y + tkx for three cases: (a) t < 0, (b) t = 0, and (c) t > 0. When t < 0
there is an ordinary maximum and an ordinary minimum. As t is reduced to 0, these merge at the origin to give a higher-order singularity. For
t > 0, there is no longer a critical point.

Thus, up to a rescaling of coordinates and a constant energy
shift (2t2), we effectively have just one control parameter t in
this dispersion.

In Fig. 2, we illustrate the behavior of the energy contours
and the Fermi surface for three distinct cases. When t < 0,
the Fermi sea is topologically nontrivially connected, with an
island of positive energies (small red region) in the middle of
the Fermi sea (blue region). There are two ordinary critical
points in k space, demarked with thick dots: a maximum in
the dispersion (the summit of the red island) and minimum
(bottom of the blue Fermi sea). Upon increasing t to 0, a
higher-order critical point (k3

x − k2
y ) appears suddenly. This

higher-order critical point at t = 0 corresponds to the merger
of the two ordinary critical points seen for t < 0, as well as to
the Fermi surface topological transition in which the island
disappears and the Fermi sea becomes trivially connected.
When t > 0, the dispersion is no longer singular, and the
single component Fermi sea persists.

At the higher-order critical point (t = 0), the DOS diverges
as |ε − 2t2|−1/6 when ε → 2t2. By including higher-order
terms in the dispersion we still obtain the same power law
divergence to the leading order and the Fermi surface topology
does not change. The value of the exponent is a property of
the type of catastrophe, and cannot be changed by smooth
coordinate transformations, as we show in Appendix A. For
the singularity in this simple example, the cubic truncation of
the Taylor series is sufficient.

As the above example shows, we can often tune some
control parameters in a system to obtain a higher-order critical
point. By a suitable smooth transformation of the coordinates
and the control parameters, we can put the dispersion in a
convenient form that contains the higher-order singularity, to
which polynomial terms modulated by the control parameters
are added [Eq. (3)]. For a given higher-order singularity, there
is usually a most general such expression, known as the uni-
versal unfolding, containing only a finite number of effective
control parameters modulating polynomial perturbations (t kx

in the example). These polynomial perturbations represent
directions in polynomial space which are not tangent to the
orbit of the higher-order singularity under smooth coordinate
transformations. The number of such missing directions (or
equivalently effective control parameters) is the codimension

of the singularity. Finally, these higher-order singularities are
well described by truncating the Taylor expansion to a certain
lowest order, known as the determinacy. In the example above,
the determinancy is 3, justifying the truncation to cubic order.

In addition to the codimension and determinacy, catastro-
phy theory utilizes another index, the corank, which is the
number of zero eigenvalues of the Hessian matrix of the func-
tion at the critical point. (See Appendix C for a self-contained
review of catastrophe theory.) While these three indices can
classify singularities in any dimension, they are not sufficient
to resolve the degeneracies. In the particular case of functions
of two variables, (for instance kx and ky in the case of dis-
persions of two-dimensional electronic systems), we find that
these degeneracies can be resolved by introducing a fourth
index, the winding number, which counts the number of times
the function changes sign in a small loop around the origin.

In terms of these four indices (codimension, determinacy,
corank, and winding), we can enumerate all possible singu-
larities that the dispersion of a two-dimensional electronic
system would typically present. These singularities, along
with the associated power laws in the DOS and universal ratios
of their prefactors, are listed in the next section.

III. CLASSIFICATION OF HIGHER-ORDER
SINGULARITIES IN ELECTRONIC SYSTEMS

Using catastrophe theory we can classify all possible
higher-order singularities that can occur in the electronic dis-
persion of two-dimensional electrons. If there are seven or less
control parameters in the system, catastrophe theory guaran-
tees that only higher-order singularities with codimension (or
cod) �7 are typically likely to occur (see, for example, Chap.
6 of [20], and also pages 136, 161, and 162). Typicality here
has a simple but precise mathematical meaning, that is best
illustrated by an example. Typically a set of three equations in
two variables is over determined and does not have a solution
(two straight lines in three dimensional space do not typically
intersect), while a system of two equations in two variables
typically has a unique solution, at least locally (two straight
lines in two dimension typically intersect at a point).

There are 17 singularities with cod �7, which we
list in Tables I–III. We also include one other atypical
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TABLE I. The standard catastrophes are uniquely indexed by corank (cor), codimension (cod), determinacy (det), and winding (w). The
DOS diverges in a power law fashion with a universal ratio (D+/D−) for the coefficients. The cuspoid catastrophes An, tabulated below, have
cor = 1 and a dispersion of the form kn+1

x − k2
y up to an overall sign. (We do not consider cuspoids of the form ±(k2m

x + k2
y ) since above/below

the extremum the Fermi surface ceases to exist). The universal unfolding contains the directions missing from the orbit of the singularity under
smooth coordinate transformations. The number of these directions is equal to the codimension.
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TABLE II. The umbilic catastrophes tabulated below have corank two. Like the cuspoids listed in Table I they have saddle like nature with
a nonzero winding number number that counts the number of times the dispersion changes sign along a closed contour enclosing the origin.
However, unlike the cuspoids wherein those with even degree have π rotation symmetry, most of the umbilics do not possess any rotational
symmetry. The elliptic umbilic (monkey saddle) is an exception in that it has 2π/3 rotation symmetry.
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TABLE III. The original Thom’s theorem dealt with seven catastrophes. It was first extended to twelve and then to seventeen catastrophes.
The last five catastrophes are documented below along with the X9 singularity which is the singularity of lowest codimension that is allowed
by π/2 rotation. Unlike the rest, it is unimodal: different values of the parameter c in the dispersion correspond in general to nonequivalent
singularities with different winding. The Fermi surface shown above is for c = −3, a generalization of the monkey saddle.
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singularity, the X9, which has codimension 8. It would nor-
mally require 8 control parameters, but crystal symmetry en-
sures that some of the constraints are automatically satisfied.
In fact, it is the lowest codimension singularity that respects
fourfold rotational symmetry. The tables are organized by the
four integer indices (cor, cod, det, w) corresponding to corank,
codimension, determinacy, and winding.

As mentioned earlier, at an ordinary critical point in two
dimensions, the DOS has a logarithmic divergence. At higher-
order critical points, the DOS diverges in a power law fashion,
often with different coefficients D+ and D− as we approach
the critical energy from above and below:

g(ε) =
{

D+|ε|−γ , ε > 0

D−|ε|−γ , ε < 0
. (4)

In Appendix A, we show that both the exponent and the ratio
of the coefficients are universal in that they are preserved
under smooth coordinate transformations. The power-law de-
pendence for dispersions with two monomial terms can easily
be extracted by scaling kx and ky appropriately, as mentioned
in Ref. [15]. However, this procedure by itself does not give
the prefactors and one would still have to convert the DOS
integral into an integral over constant energy contours to eval-
uate D±. This is also done in Appendix A. In the tables, we
list for each catastrophe both the exponent γ controlling the
divergence of the DOS at the critical point and the universal
ratio D+/D−.

IV. ROBUSTNESS OF THE CLASSIFICATION

Given that higher-order critical points are somewhat rare
and may require tuning of parameters to obtain, it is natural to
ask how robust the classification scheme presented above is.
This is particularly relevant in real systems which are prone to
imperfections manifesting as small perturbations, motivating
the question: can small perturbations change the type of
higher-order singularity that can occur on tuning parameters?
The answer is no. This is because the universal unfolding
contains all possible perturbations to the higher-order sin-
gularity. For any sufficiently small perturbation, we get the
same catastrophe, up to a smooth coordinate transformation.
Only the critical value of the tuning parameters for which we
obtain the higher-order singularity, gets shifted. This property
is referred to as stability in the literature. It is important to
note that stability is guaranteed only for singularities with
codimension �7, viz the seventeen listed above.

For codimension 8 and higher, we encounter the so called
unimodal singularities which possess a continuous parameter
in their dispersion. Two singularities with different values of
the continuous parameter, however close by, will in general
not be smoothly equivalent so that a small perturbation can
take us to an altogether different singularity. However, as
mentioned earlier these are atypical in systems where seven
or less parameters are tuned.

V. HIGH-SYMMETRY POINTS AND CATASTROPHES

As seen in Secs. II and III, within a Bloch-band description,
a point in k space can morph into a higher-order critical point
when the parameters in the Hamiltonian are tuned. While this

may be hard to achieve at an arbitrary point, high-symmetry
points in the Brillouin zone are particularly easy to tune
into higher-order critical points. Recall that for a point to be
critical, we need both components of the Jacobian at the point
to vanish. For higher-order critical points, we further need
the determinant of the Hessian to vanish (or equivalently at
least one of the eigenvalues needs to be zero). If a reflection
axis passes through the point, the component of the Jacobian
perpendicular to the axis is already constrained to be zero,
yielding a simplification. Alternatively, if the point is a center
of a nontrivial rotation, the entire Jacobian will vanish so that
we have to tune only the determinant of the Hessian to zero
(see Appendix B for details). Thus it is relatively easier to
obtain higher-order singularities at points of high symmetry
by tuning parameters in the Hamiltonian.

Having stressed the importance of high-symmetry points in
k space, we remark that they can be identified in a systematic
way (see, for instance, Ref. [19]). Given a lattice with a certain
symmetry group, the dispersing bands have the symmetry of
the point group. If the Hamiltonian is time reversal invariant
(TRI) and there is no spin orbit coupling, we have an addi-
tional inversion symmetry in k space. By combining the point
group symmetries with reciprocal lattice translations we can
find the high-symmetry points in the first BZ. We illustrate this
for the wallpaper group p4 in Fig. 3. The point group of p4 is
C4, which is generated by π/2 rotation. This point group gets
carried to k space wherein it acts about the � point (the origin
in k space). � is thus a center of four fold rotation. We then
combine the π/2 and π rotations with various reciprocal lat-
tice translations. Combining rotations with translations simply
shifts the center of rotation. This procedure then yields the

FIG. 3. The Brillouin zone of the wallpaper group p4 shown
along with the high-symmetry points. The point group of p4 is
generated by π/2 rotation which gets carried over to k-space as a
symmetry that acts about the origin. By combining the π/2 and π

rotations with reciprocal lattice translations we can identify the other
high-symmetry points. At each of the high-symmetry points, only
dispersions which respect the symmetry are allowed. This places a
huge restriction on the higher-order singularities that are likely to
occur. In the insets, we identify the catastrophes likely to occur at
each of the high-symmetry points.
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M and X points as centers of fourfold and twofold rotations
respectively in the first BZ.

At the high-symmetry points, only singularities consistent
with the symmetry of the point are allowed. For example, at
the � and M points in the above example, only singularities
which are invariant under π/2 rotation are allowed to occur.
X9 is the singularity with lowest codimension that satisfies
this property and is thus the one that is typically likely to
occur. At the X point, only the cuspoids A2n−1 with the
standard form k2n

x ± k2
y for n = 1, 2, 3 are allowed to occur.

This is because these are the only ones among the seventeen
which are invariant under π rotation. (It can be shown that no
smooth coordinate transformation can make the rest among
the seventeen consistent with π rotation). In Tables IV and V,
we apply this scheme for the Brillouin zones corresponding
to the seventeen wallpaper groups in two dimension. (See
Appendix F for a quick review of crystal symmetries and
their consequences for bands.)

VI. IDENTIFYING A SINGULARITY IN PRACTICE

In practice, the singularities need not occur in their stan-
dard form. Each of the 17 singularities forms a distinct
equivalence class. (Equivalence here is up to a smooth, local
coordinate transformation with a smooth inverse.) So we gen-
erally expect some smooth equivalent of the standard forms
to occur in the context of band dispersions. However, it might
be hard to identify the singularity from such a nonstandard
expression. While we could try exhibiting a smooth coordi-
nate transformation that puts the singularity in its standard
form, it is very hard to do that for a generic dispersion.
This apparent complication is easily resolved by exploiting
the fact that codimension, determinacy, corank, and winding
are invariant under smooth coordinate transformations. By
computing these numbers for the given singular dispersion we
unambiguously identify its type. Below we give an explicit
method for computing determinacy and codimension.

A. Algorithm for computing determinacy

We now describe the method for computing determinacy
and codimension and illustrate it with an example. The ex-
ample has been chosen to illustrate the subtle aspects of
Taylor expansions and how truncating the Taylor series to an
incorrect order can yield wrong results which might appear
sensible. We start by giving a few definitions and notations.
The kth degree Taylor polynomial of f denoted by jk[ f ] or
simply jk f , is the truncation of the Taylor expansion of f at
the origin to degree k. A function f is said to be k-determinate
if any function having the same kth degree Taylor polynomial
as f is smoothly equivalent to it. In particular of course, jk f is
also smoothly equivalent to f . Determinacy is then the lowest
k for which f is k-determinate.

The method given below is a simplification of the method
given in Ref. [20]. It is also similar to the methods given
in Ref. [21]. (See Appendix E 1 for an explanation of the
method.)

(1) Choose a particular k to start. Determine the kth degree
Taylor polynomial jk f .

(2) Compute all polynomials of the form km
x kn

y
∂ jk f
∂kx

and

km
x kn

y
∂ jk f
∂ky

with 1 � m + n � k and truncate them to degree

k. There is only a finite number of such polynomials and
we denote them by p1, . . . , pN . These can be thought of as
vectors in the polynomial space spanned by the set {km

x kn
y ; 1 �

m + n � k}.
(3) Check if the system of linear equations

∑N
i=1 ci pi =

k j
x kk− j

y has a solution for each j = 0, . . . , k. (i.e., we check
if the homogeneous polynomials of degree k are contained in
the space spanned by {pi; i = 1, . . . , N}).

(4) If a solution exists for each of the systems, f is k-
determinate. We keep reducing k by 1, repeating the algorithm
for each k until we find the smallest k for which the systems
of equations all have a solution. Call it klow and terminate the
algorithm.

(5) If solution does not exist for each of the systems, we
keep increasing k by 1, applying the algorithm for each k until
we find the first k for which all of the systems of equations
have a solution. Call it klow and terminate the algorithm.

Once the algorithm terminates successfully and klow is
determined, it can be shown that the determinacy of f is either
klow or klow − 1 (see Appendix E 1). While this ambiguity
cannot be resolved easily, it is not a problem as long as we
determine the other indices unambiguously. This is because no
two of the seventeen singularities whose determinacy differs
by 1 have the same corank, codimension and winding.

Let us now give a method for finding the codimen-
sion. For k = klow, construct a matrix M by listing each
of p1, . . . , pN ,

∂ jk f
∂kx

,
∂ jk f
∂ky

as row vectors in the basis of the
monomials {km

x kn
y ; 1 � m + n � k}. Let rank(M ) denote the

rank of M. The codimension is then (k2 + 3k)/2 − rank(M ).

B. A sample computation

Consider two functions f (kx, ky) = −k2
y + 6k2

x ky − 8k4
x

and g(kx, ky) = −k2
y + 6k2

x ky − 9k4
x + k6

x . On cubic trunca-
tion, both these functions yield h(kx, ky ) = −k2

y + 6k2
x ky. This

function arises for example in the context of the continuum
model for twisted bilayer graphene in [14]. The Fermi sur-
faces of the three functions are depicted in Fig. 4. Visually,
they appear to share the same topology for the energy con-
tours. In particular, the zero energy contour seems to consist
of two curves intersecting tangentially at the origin. Naively
this might motivate truncation to cubic order for computing
the DOS among other things. We now demonstrate that this
would lead to an incorrect result, at least for g, by showing
that while f and h are equivalent to the cusp, g is equivalent
to butterfly.

We first compute the determinacy of f . Let q n denote the
truncation of the polynomial q to degree n. Choosing k = 4
to apply the algorithm, we list some of the polynomials pi for
this function:

p1 = kx
∂ j4 f

∂kx

4

= 12k2
x ky − 32k4

x ,

p2 = kx
∂ j4 f

∂ky

4

= −2kxky + 6k3
x ,

p3 = ky
∂ j4 f

∂kx

4

= 12kxk2
y − 32k3

x ky,
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TABLE IV. In two dimensions, there are seventeen wallpaper groups which serve as symmetry groups of crystals. As a consequence of
Bloch’s theorem, the point group of the wallpaper group (mentioned above within parenthesis) acts about the origin in k-space. By combining
the point group elements with the reciprocal lattice translations, we find the high-symmetry points in the Brillouin zone and list the catastrophes
that are allowed at each of these points. If the Hamiltonian has time reversal invariance and no spin orbit coupling, there is an additional
inversion symmetry in k-space. Such cases are denoted below with a * appended to the wallpaper group (for example p1*).
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TABLE V. The list of Brillouin zones started in Table IV is completed here. Some of the wallpaper groups (like p3) place restrictions on
the real-space lattice while some do not (for example, p1 and p2). We do not include p1 without time reversal in these tables since it does not
have any real-space symmetry except lattice translation. As a result there is no restriction on the allowed catastrophes anywhere in the Brillouin
zone. We also remark that the Brillouin zone for the rhombohedral lattice can not always be chosen as a rhombus.

p4 = ky
∂ j4 f

∂ky

4

= −2k2
y + 6k2

x ky,

p5 = k2
x

∂ j4 f

∂kx

4

= 12k3
x ky,

p6 = kxky
∂ j4 f

∂kx

4

= 12k2
x k2

y ,

p7 = k2
y

∂ j4 f

∂kx

4

= 12kxk3
y ,

p8 = k2
x

∂ j4 f

∂ky

4

= −2k2
x ky + 6k4

x ,

p9 = k3
y

∂ j4 f

∂ky

4

= −2k4
y .

The common factors will not affect the results and we have
dropped them. It immediately follows that

1
4 (p1 + 6p8) = k4

x , (5)

1
12 p5 = k3

x ky, (6)
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FIG. 4. Constant energy contours of the dispersions: (a) f (kx, ky ) = −k2
y + 6k2

x ky − 8k4
x , (b) g(kx, ky ) = −k2

y + 6k2
x ky − 9k4

x + k6
x , and

(c) h(kx, ky ) = −k2
y + 6k2

x ky shown within the range −1 < kx < 1, −1 < ky < 2. While the energy contours of f and g appear to have the
same topology, they are actually not related by smooth deformation. The former corresponds to two parabolas that intersect tangentially and
the latter consists of two cubic curves that intersect tangentially at (0,0). The DOS diverges differently for both these dispersions although they
give the same cubic truncation h. This in spite of the fact that h appears to produce correct topology of Fermi surface (two curves tangentially
touching at an isolated higher-order critical point) and a seemingly sensible power law divergence of DOS. This is shown to be the consequence
of the fact that f and g are nonequivalent and have different allowed order of truncation as indicated by their determinacy.

1
12 p6 = k2

x k2
y , (7)

1
12 p7 = kxk3

y , (8)

− 1
2 p9 = k4

y . (9)

Thus f is 4 determinate. When we generate pi for k = 3, we
find that no linear combination

∑
i ci pi will yield k3

x . Thus k =
4 is the smallest k for which the algorithm works implying
det[ f ] = 4 or det[ f ] = 3. It can easily be shown that cor[ f ] =
1, w[ f ] = 4 and cod[ f ] = 2. This verifies that f is equivalent
to cusp.

When we apply the algorithm for g, we find that the poly-
nomial k4

x can not be obtained by taking linear combination
of the pi for k = 4. Likewise k5

x is not contained in the
subspace spanned by the pi corresponding to k = 5. However,
all the homogeneous polynomials of degree 6 in kx and ky are
contained in the subspace spanned by pi for k = 6 so that
klow = 6. This implies that either det[g] = 5 or det[g] = 6.
To resolve the ambiguity we compute the other numbers for
g and find them to be: cor[g] = 1, cod[g] = 4 and w = 4.
Referring to the table we find that det[g] = 6 is the correct
choice, corresponding to the butterfly catastrophe. This clearly
shows that f and g are different singularities in spite of the
apparent similarity of their Fermi contours.

Finally it can be shown that h is also equivalent to the cusp.
This is somewhat surprising given that the cusp has determi-
nacy four and its standard form is a quartic polynomial, while
h is a cubic polynomial. The explanation for this apparent
contradiction is given below and calls for a careful relook at
the definition of determinacy.

C. Degree and determinacy

In this section, we illustrate how the determinacy and
degree of a polynomial need not be equal, by investigating
two examples in detail. First we examine the polynomial h
given above. Since determinacy of a function is invariant

under smoothly reversible coordinate transformations [20],
we show that det[h] = 4 by exhibiting such a transformation
that maps h to the cusp. We prefer to take this route rather than
the method given above, for pedagogical reasons (applying
the method to h is quite straightforward and yields the same
result). Also, this way it is easier to see why h has no quartic
term despite being cusp.

Consider the coordinate transformation kx = k̃x/
√

3, ky =
k̃y + k̃2

x . This has an inverse: k̃x = √
3kx, k̃y = ky − 3k2

x . The
Jacobian of this coordinate transformation has a nonzero
determinant at the origin, equal to 1/

√
3. This ensures that the

coordinate transformation is a local diffeomorphism (i.e., a
smoothly reversible transformation). Under this, h transforms
as h̃(k̃x, k̃y) = h(kx, ky) = k̃4

x − k̃2
y , which is indeed the cusp.

Thus we have shown that h is equivalent to the cusp so that
det[h] = 4. When we rewrite h(kx, ky) as (

√
3kx )4 − (ky −

3k2
x )2, it becomes clear why there is no quartic term in h: it

has been subtracted out by the coordinate transformation.
In the case of h, a cubic polynomial happened to be

equivalent to the cusp, with determinacy equal to 4. One
can have more exotic possibilities. For example, under the
smoothly reversible coordinate transformation k̃x = kx, k̃y =
ky − k3

x , the butterfly k̃6
x − k̃2

y transforms into the quartic poly-
nomial −k2

y + 2k3
x ky. This polynomial has determinacy 6 in

spite of having degree equal to 4. These examples illustrate
how determinacy and degree need not be equal although they
happen to be equal for the standard forms of the catastrophes.

To understand this we appeal to the precise definition of
determinacy. We say that a function f has determinacy k if k
is the smallest natural number for which any function g having
the same kth degree Taylor polynomial as f at the origin is
locally equivalent to f (via a smoothly reversible coordinate
transformation in some neighborhood of the origin). This
definition has two subtle aspects. The first is that it makes a
statement only about degree of Taylor polynomials and not
functions themselves. In the case of the function h treated
above, the property det[h] = 4 implies only that any function
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whose fourth degree Taylor polynomial coincides with that of
h is smoothly equivalent to h. This importantly requires such
functions to have no quartic term in their Taylor expansion
because h does not. However, this implication is one way.
It does not prevent a nontrivial quartic polynomial (like the
standard form of cusp) from being equivalent to h.

The other subtlety in the definition is locality. Determinacy
is defined only when we choose a point to Taylor expand a
function (say the origin). The smooth equivalence guaranteed
by determinacy is local: i.e., the functions are equivalent only
in some neighborhood of the origin. While we might might
encounter pairs of functions which are equivalent in their
entire domain this may not always be the case. However, this
is not an issue as long as we are interested in properties that
arise due to the critical point and its immediate neighborhood,
such as nature of divergence of density of states.

VII. SUMMARY AND OUTLOOK

In this paper, we presented a classification of possible
Fermi surface topological transitions in two spatial dimen-
sions that take place via higher-order singularities. At these
higher-order singularities, the DOS diverges as a power law,
in contrast to the weaker logarithmic divergence at van Hove
singularities. When the number of control parameters is less
than or equal to seven, we can list all the seventeen possibil-
ities classified by catastrophe theory. The critical exponents
controlling the divergence of the DOS, as well as the ratio of
the prefactor or amplitudes for energies on both sides of the
transition, are universal properties associated to the specific
type of catastrophe. Smooth coordinate transformations can-
not change these exponents or ratios, as well as the topology
of the critical Fermi surface right at the singularity.

We further showed that by tuning the parameters in the
Hamiltonian, we can obtain higher-order singularities. They
are especially easy to achieve at high-symmetry points in the
Brillouin zone. At the same time, the high-symmetry points
also restrict the types of singularities: only those consistent
with the symmetry can occur. Motivated by this, we classified
the singularities that are likely to occur at high-symmetry
points in the Brillouin zones corresponding to the seventeen
wallpaper groups in two dimension. We then provided a prac-
tical method for diagnosing the type of singularity given the
Taylor expansion and illustrated it with an example. By means
of this example we also highlighted the subtle difference
between degree and determinacy of a polynomial.

These critical points of the electronic dispersion can serve
as the starting point for the treatment of interactions, and
can potentially lead to novel electronic phenomena. Besides
simply facilitating ordering transitions because of the en-
hancement of the DOS, there are several more exotic possi-
bilities that demand exploration. While the addition of weak
interactions on smooth Fermi surfaces leads to a Landau
Fermi liquid, it is not clear that singularities in the curvature of
the Fermi surface and their associated power law enhancement
of the electronic DOS may not lead to novel quantum critical
behavior. In the singularities that we discussed, the singular
point does not constitute a pointlike Fermi surface; there is
a finite Fermi surface containing this point. So the analysis
of interactions for certain singularities may require dealing

with singular and nonsingular parts of the Fermi surface.
For instance, the singular points with their divergent DOS
may enhance scattering and reduce quasiparticle lifetime; at
the same time, the Fermi velocities vanish at those points.
Therefore properties like transport, which depend both on
the Fermi velocities and quasiparticle lifetimes, may depend
on the joint effects of the singular and nonsingular parts of
the Fermi surface. Understanding the effects of interactions
on the higher-order singularities is an interesting and largely
open problem; while some progress has been recently made
[2,3,14], much remains to be understood.

In addition to the understanding of the classes of Fermi
surface topological transitions, it should be possible to apply
the machinery of singularity and catastrophe theory to other
aspects of electronic dispersions. Here we focused on point
singularities of finite codimensions, but it may be fruitful
to develop a catalog of line singularities as well. For ex-
ample, in the honeycomb lattice with next nearest neighbor
(NNN) interaction, an infinite codimension singularity at the
� point taking the form (k2

x + k2
y )2, splits into an ordinary

maxima/minima at � and a circle of critical points around,
upon tuning the NNN hopping. This is analogous to the case
of singularities of finite codimension c treated above, which
split into a finite number c + 1 of ordinary critical points
upon tuning. Similarly, in tight-binding Hamiltonians for the
diamond lattice, there are cases where the Fermi surfaces col-
lapse to lines. A step towards these generalizations would be
to start with polynomials in kx, ky that multiply Pauli matrices,
instead of just scalars. The matrix structure should bring about
square root singularities that are not present in the simple
scalar dispersions. We believe that the study here presented
is one step in understanding singular behavior in electronic
systems by deploying the tools of catastrophe theory.

Note added. Recently, we became aware of similar work
also being completed by Noah F. Q. Yuan and Liang Fu [22].
We point the reader to that reference as well. We thank Zhi-
Cheng Yang for recognizing that the works were similar, and
bringing the two groups into contact.
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APPENDIX A: DENSITY OF STATES

1. Invariance under smooth transformations

The DOS in the nth band ignoring spin degeneracy is
defined as [23]

g(ε) =
∫

BZ

d2k̃
(2π )2

δ(Ẽn(k̃) − ε) =
∫

Sn(ε)

dl

(2π )2

1

‖∇Ẽn(k̃)‖ ,

(A1)

where Sn(ε) is the constant energy contour in the nth band. If
for a particular energy, the constant energy contour contains a
critical point, the integrand diverges at that point.
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Let us drop n so that the given dispersion is Ẽ (k̃). Assume
that under a suitable local smoothly reversible coordinate
transformation k̃ → k, the dispersion transforms to E (k),
one of the standard types. The Jacobian determinant for the
coordinate transformation can be Taylor expanded as

J (kx, ky) = J0 +
∞∑

n=1

(
n∑

m=1

cnm km
x kn−m

y

)
, (A2)

where J0 �= 0 since that condition is equivalent to the coordi-
nate transformation being a local diffeomorphism. Since the
required coordinate transformation will in general be local,
we restrict the DOS integral to a bounded neighborhood D of
the origin. This procedure will not affect the calculation of the
divergent part of the integral since it arises due to the critical
point at the origin. (In fact we can also extend the integral to
the entire two-dimensional plane). The DOS now reads

g(ε) =
∫

D

d2k

(2π )2
J (kx, ky) δ(E (kx, ky) − ε)

= J0

∫
D

d2k

(2π )2
δ(E (kx, ky) − ε)

+
∞∑

n=1

[
n∑

m=1

cmn

∫
D

d2k

(2π )2
km

x kn−m
y δ(E (kx, ky) − ε)

]
.

(A3)

For dispersions which are either homogeneous or take the
form E (k) = a km1

x kn1
y + b km2

x kn2
y for non-negative integers mi

and ni, it might be possible to scale kx → |ε|αkx and ky →
|ε|βky for appropriate positive rational numbers α and β so
that d2k δ(E (kx, ky) − ε) → |ε|−γ [d2k δ(E (kx, ky) ± 1)], (−1
if ε > 0, +1 is ε < 0). For instance, for a homogeneous
dispersion of degree n, α = β = 1/n, while for E (k) =
a km1

x kn1
y + b km2

x kn2
y , we set α = (n2 − n1)/(m1n2 − m2n1)

and β = (m1 − m2)/(m1n2 − m2n1). (For the standard types
which take the latter form, m1n2 − m2n1 �= 0 so that this scal-
ing is allowed). Performing this scaling in Eq. (A3), we get

g(ε) = |ε|−γ

{
J0

∫
D

d2k

(2π )2
δ(E (kx, ky ) ± 1)

+
∞∑

n=1

n∑
m=1

[
cmn|ε|mα+(n−m)β

×
∫

D

d2k

(2π )2
km

x kn−m
y δ(E (kx, ky) − ±1)

]}
. (A4)

Since α, β, γ > 0 and n � m, we have mα + (n − m)β > 0
so that in the limit ε → 0 the leading order divergent part of
the integral is given by

g(ε) ∼
(

J0

∫
R2

d2k

(2π )2
δ(E (kx, ky) ± 1)

)
|ε|−γ , (A5)

where once again we choose −1 if ε > 0, +1 is ε < 0. We
have extended the integral to the entire plane since this only
adds only a finite error that does not change the coefficient of
the leading order divergent part. Thus we infer that the expo-
nent γ and the ratio D+/D− are invariant under a smoothly
reversible coordinate transformation. We compute D+/D−
for the various catastrophes in the forthcoming sections.

2. Cuspoid catastrophes

The cuspoid catastrophes include the fold, cusp, swallow-
tail, butterfly, wigwam and star whose dispersions take the
form: ε(k) = kn

x − k2
y . For the sake of simplicity of notation,

in what follows we replace kx → x and ky → y. We now
derive the DOS for these.

Consider ε(x, y) = xn − y2. This gives y = ±√
xn − ε.

Furthermore,

dy

dx
= ±n

2

xn−1

√
xn − ε

⇒ dl = dx

√
1 +

(
dy

dx

)2

= dx
1

2

√
n2x2n−2 + 4xn − 4ε√

xn − ε
. (A6)

Now ∇ε = (nxn−1,−2y). This gives ‖∇ε‖ =√
n2x2n−2 + 4y2 = √

n2x2n−2 + 4xn − 4ε, where we have
used the dispersion to substitute for y2.

Now let n be even. For ε < 0, the constant energy curves
have vertices (0,±√|ε|) disperse upward/downward in the
xy plane. The DOS integral then becomes

g(ε) =
∫

S(ε)

dl

(2π )2

1

‖∇εn(k)‖ = 1

4π2

∫ ∞

−∞

dx√
xn − ε

, (A7)

where we have substituted for dl and ‖∇ε‖ in the integrand
and simplified the expression. We have also accounted for
the fact that the upward and downward dispersing branches
contribute equally to the integral. Now we write −ε = δn,
with δ > 0, (so that δ = |ε| 1

n ). We then make the substitution
x = δy. These then give

g(ε) = 1

4π2

∫ ∞

−∞

δ dy

δ
n
2
√

yn + 1

=
(

1

2π2

∫ ∞

0

dy√
yn + 1

)
|ε| 1

n − 1
2 (ε < 0). (A8)

For ε > 0, the constant energy curves disperse
rightward/leftward. The vertices are at (±ε

1
n , 0). The DOS

integral in this case is

g(ε) = 1

2π2

∫ ∞

ε
1
n

dx√
xn − ε

=
(

1

2π2

∫ ∞

1

dy√
yn − 1

)
|ε| 1

n − 1
2 (ε > 0), (A9)

where once again we have used the same set of substitutions
to simplify the integrand. There are four branches of the
contour which contribute equally to the above integral. For
ε = y2 − xn with n even, the roles of positive and negative ε

are interchanged in the above derivation.
For odd n, the constant energy contours of ε = xn − y2

disperse rightward for both ε � 0 and ε > 0. When ε < 0,
the vertex of the contour is (−|ε| 1

n , 0). The DOS is given by

g(ε) = 1

4π2

∫ ∞

−|ε| 1
n

dx√
xn − ε

=
(

1

4π2

∫ ∞

−1

dy√
yn + 1

)
|ε| 1

n − 1
2 (ε < 0), (A10)
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where once again we have scaled x to extract out the power
law dependence. On the contrary, when ε > 0, the vertex is at
(|ε| 1

n , 0) and the DOS is given by

g(ε) = 1

4π2

∫ ∞

|ε| 1
n

dx√
xn − ε

=
(

1

4π2

∫ ∞

1

dy√
yn − 1

)
|ε| 1

n − 1
2 (ε > 0). (A11)

The dispersion ε = y2 − xn with n odd just has the role of
positive and negative energies interchanged in the above. In
fact, ε = xn + y2 is also equivalent to the above case. This is
because, the coordinate transformation x → −x does not af-
fect the DOS. Thus g(ε) ∼ |ε| 1

n − 1
2 for the cuspoid catastrophes

although the coefficient in front depends on the dispersion.

3. The umbilics and the rest

We first treat the hyperbolic umbilic and elliptic umbilic
catastrophes and their higher-order generalizations. These
respectively take the form ε(x, y) = x2y ± yn for odd n. The
energy contours of these are symmetric in the sense that the
transformation y → −y takes us from the contour of ε to
the contour of −ε. From this property, it is easy to see that the
coefficients D+ and D− are equal so that D+/D− = 1. Since
we are ultimately interested only in their ratio, we will not
bother evaluating them and just apply the appropriate scaling
procedure to extract the exponent. To this end, consider ε > 0
and set x = ε

1
2 − 1

2n and y = ε1/nv. The Jacobian determinant
for this transformation is

det
∂ (x, y)

∂ (u, v)
= ε

1
2 + 1

2n . (A12)

Using the scaling property of the delta function, viz δ(ax) =
δ(x)/|a| the DOS integral becomes

g(ε) =
∫

du dv ε
1
2 + 1

2n
δ(u2v ± vn − 1)

ε
∝ |ε| 1

2 − 1
2n . (A13)

The parabolic umbilic and its generalizations take the form
x2y + yn for even n. We do not separately consider the case
x2y − yn since it can be obtained from the former by the
transformation y → −y followed by an overall sign change.
We proceed just as in the case of the cuspoids to compute
D+/D−.

APPENDIX B: SYMMETRIES AND CRITICAL POINTS

We now compute the effect of reflection (mirror) symme-
try and rotational symmetry on the Jacobian. First consider
reflection about the kx axis. This is represented by

rkx =
(

1 0
0 −1

)
. (B1)

Now for a coordinate transformation φ the Jacobian at the ori-
gin transforms as D f (φ(0)) = D f (0)Dφ(0). Let k = (kx, ky).
Since f (k) = f (rkx · k), we have(

∂ f

∂kx

∂ f

∂ky

)
=

(
∂ f

∂kx

∂ f

∂ky

)(
1 0
0 −1

)
=

(
∂ f

∂kx
− ∂ f

∂ky

)
.

(B2)

This implies ∂ f /∂ky = 0 at the origin. Thus, the direction
perpendicular to the mirror has a vanishing component for
the Jacobian. Now let ρθ denote rotation by θ in the plane.
Applying the same procedure as above gives(

∂ f

∂kx

∂ f

∂ky

)
=

(
∂ f

∂kx

∂ f

∂ky

)(
cos θ − sin θ

sin θ cos θ

)

⇒
(

(cos θ − 1) sin θ

− sin θ (cos θ − 1)

)(
∂ f
∂kx
∂ f
∂ky

)
= 0.

(B3)

The determinant of this homogeneous system is 4 sin2 θ
2 ,

which is non zero for θ = π/3, π/2, π, 2π/3, which
are generators of nontrivial lattice rotation symmetries. This
implies the unique solution is ∂ f /∂kx = ∂ f /∂ky = 0, so that
we have a critical point.

APPENDIX C: QUICK REVIEW OF CATASTROPHE
THEORY

The discussion in this section closely follows [20,21]. We
first review a few definitions and conventions. If U is an open
subset of Rn, a function f : U → R is smooth if derivatives
of all orders exist. From here on f will always denote a
smooth function defined on U , an open subset of Rn. We shall
use map and coordinate transform interchangeably to refer
to a bijective function φ : U → V , where U and V are open
subsets of Rn.

The derivative of f at any point x0 ∈ U , denoted by D f |x0 :
Rn → R, is a linear transformation. When it acts on a vector,
it gives the derivative of the function with respect to the
vector; in particular, unit vectors give directional derivatives.
Also, the function f (x0) + D f |x0 · (x − x0) is the best linear
approximation to f , near x0 (i.e., in some neighborhood of
x0). These notions extend to higher derivatives as well. We
note that if x is represented by a column vector, then D f |x0 is
represented by a row vector (that we refer to as the Jacobian),
while the second derivative, denoted by D2 f |x0 is an n × n
matrix called the Hessian. x0 is a critical point if D f |x0

vanishes. Since, from now on we shall focus on critical points,
we assume that the origin has been translated so that the
critical point we are interested in occurs at the origin.

1. Diffeomorphism

Let V ⊂ Rn be open. A bijective map φ : U → V is a
diffeomorphism if both φ and φ−1 are smooth. A smooth
map ψ : U → Rn is a local diffeomorphism at x0 ∈ U if there
exists an open neighborhood V of x0 such that ψ restricted
to V is a diffeomorphism. It can be shown that φ is a local
diffeomorphism at x0 if and only if det Dφ|x0 �= 0.

2. Equivalence of functions

Two functions f and g are equivalent if there exists a
diffeomorphism φ : U → V and a constant γ (called the
shear term) such that g(x) = f (φ(x)) + γ , ∀x ∈ U . We shall
often refer to such a φ as a smoothly reversible coordinate
transformation.
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3. Morse and non-Morse critical points - corank

If the Hessian of f at origin is nondegenerate (i.e., it’s
rank equals n), then Morse lemma tells us that in some
neighborhood of the origin, f is equivalent (in the above
sense) to a quadratic form −y2

1 − · · · − y2
l + y2

l+1 + · · · + y2
n.

A quadratic form having this structure is referred to as a Morse
l-saddle. (Thus a maximum is an n-saddle while a minimum
is a 0-saddle). The critical point is itself referred to as a Morse
critical point or an ordinary critical point. Another way to
state Morse lemma is to say that near an ordinary critical
point, there is a local coordinate system in which the function
takes the form of a Morse l-saddle.

When the Hessian is degenerate and has rank r (and
therefore corank n − r), then we can apply the splitting lemma
which states that the function is equivalent near 0 to a func-
tion of form ±x2

1 ± · · · ± x2
r + f̂ (xr+1, ..., xn). We refer to

±x2
1 ± · · · ± x2

r as the Morse part and f̂ (xr+1, ..., xn) as the
non-Morse part or residual singularity. The critical point is
itself referred to as a non-Morse critical point or a higher-order
critical point. The corank of the function, denoted by cor[ f ]
is the number of zero eigenvalues of the Hessian.

4. Structural stability

We say f is structurally stable if for sufficiently small
perturbations p, f is equivalent to f + p. We know that
nondegeneracy of the Hessian is equivalent to the condition
det D2 f |0 �= 0. Since determinant is a continuous function, we
expect that when we add a small perturbation p, det D2( f +
p)|0 is still nonzero in some neighborhood of 0, so that the
critical point (which might have moved), is still Morse. In fact
the converse is also true so that we have the following result:
A critical point is structurally stable if and only if it is Morse.

5. Jets and jet spaces

The k-jet of a smooth function, denoted by jk f , is obtained
by taking the Taylor series up to degree k (i.e., truncat-
ing terms of O(k + 1) and higher). The vector space Jk

n is
the set of all polynomials of degree k in n variables, with
zero constant term. (alternatively Jk

n = { jk f | all f : Rn →
R with f (0) = 0}).

6. Determinacy

We say that a two functions f and g are k-equivalent if
jk f = jkg. A function f is k-determined if every function
k-equivalent to it is also equivalent to it (in the above sense).
In particular we have jk[ jk f ] = jk f so that jk f ∼ f . This
means that if f is k-determined, we can find a smoothly
reversible coordinate transformation that maps f to jk f , effec-
tively removing terms of O(k + 1) and higher from it’s Taylor
expansion.

The determinacy of a function, denoted by det[ f ] is the
smallest k for which f is k-determinate. If there is not finite
such k then det[ f ] = ∞. The determinacy of a function is pre-
served under a smoothly reversible coordinate transformation.

7. Codimension

We first define some polynomial spaces: Ek
n is the vector

space of all polynomials in x1, . . . , xn of degree �k; Jk
n is the

subspace of Ek
n of polynomials with zero constant term; and

Mk
n is the subspace of all homogeneous polynomials of degree

k. The expression P
k
, where P is a polynomial, refers to the

truncation of P to degree k.
The tangent space �k ( f ) to f is the subspace of Jk

n spanned

by polynomials of the form Q jk ( ∂ f
∂xi

),
k

where Q ∈ Ek
n . It

contains the directions in which jk f moves under smooth
coordinate transformations. It can be shown that �k ( f ) =
�k ( jk+1 f ).

The codimension of f , denoted by cod( f ) is the codimen-
sion of �k ( f ) in Jk

n , for any k for which f is k-determinate.
cod( f ) tells us the number of missing directions in the sub-
space in which jk f moves. Thus, these directions, which are
really polynomial terms, can not be added or removed by
smooth coordinate changes. The codimension of a function is
preserved under a smoothly reversible coordinate transforma-
tion. It can also be shown that a higher-order singularity with
codimension c can be split into c + 1 ordinary critical points
under a suitable perturbation.

8. Winding number

We introduce the notion of winding number which counts
the number of times the function changes sign along a
closed contour around the origin. Since this is an integer,
we expect that it does not change under smooth coordinate
transformation.

9. Unfolding

An r-unfolding of f at 0 is a function F : U × Rr →
R with (x1, . . . , xn, t1, . . . , tr ) �→ F (x, t ) = Ft (x), such that
F0,...,0(x) = f (x). We also refer to it as an r-parameter family
through f . In this context, the xi are state variables while ti are
control variables.

A d-unfolding F is induced from an r-unfolding F via
three mappings defined in a region around the origin so that
F (x, s) = F (ys(x), e(s)) + γ (s), where

e : Rd → Rr, (s1, . . . , sd ) �→ (e1(s), . . . , er (s)),

y : Rn+d → Rn, (x, s) �→ (y1(x, s), . . . , yn(x, s)),

γ : Rd → R.

An r-unfolding of f at 0 is versal if all other unfoldings
of f at 0 can be induced from it. If further r = cod( f ), then
it is universal. Finally, we mention an important result: If f
is k-determinate, then we can construct a universal unfolding
for f by choosing a cobasis {p1(x), . . . , pr (x)} for �k ( f ) in
Jk

n and defining:

F (x1, . . . , xn, t1, . . . , tr ) = f (x) + t1 p1(x) + · · · + tr pr (x).

(C1)

In the next section, we briefly state and explain Thom’s theo-
rem. A more comprehensive review can be found in Chap. 7
of Ref. [21] and Chap. 6 of Ref. [20].
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APPENDIX D: THOM’S THEOREM BASIC
CATASTROPHES

The original Thom’s theorem states that any r-parameter
family of smooth functions Rn → R for r � 4 and any n �
1 is typically structurally stable and equivalent to one of the
following seven types.

1. Fold

The fold has a universal unfolding: x3 + t1x ± y2. The
determinacy is 3 while codimension is 1, so that the fold can
be thought of as two ordinary critical points merging into
a higher-order critical points. Only symmetry present in the
standard form is reflection about y axis (i.e., ry).

2. Cusp

Any universal unfolding of the cusp is equivalent to:
±(x4 + t1x2 + t2x) ± y2. The determinacy is 4 and since the
codimension is 2, under the action of the unfolding, three
ordinary critical points merge to give a cusp. This could be
preceeded by a situation wherein just two of the three critical
points merge to give a fold and Morse critical point. This
is prohibited if t2 = 0, since in that case we have rx and ρπ

symmetries in addition to ry.

3. Swallowtail

The swallowtail has a determinacy of 5 and is described by
the unfolding: x5 + t1x3 + t2x2 + t3x ± y. With a codimension
of 3 it corresponds to the merging of 4 ordinary critical points
on a line. On the way to the swallowtail we can get cusps and
folds. Similar to fold it has only ry as symmetry.

4. Butterfly

For the butterfly, the universal unfolding takes the form
±(x6 + t1x4 + t2x3 + t3t2 + t4x) ± y2. This has the conse-
quence that the 5 ordinary critical points lying on the x-axis
merge to give higher-order critical point(s). The unfolding can
also exhibit the fold, cusp and swallowtail due to the merging
of fewer than five critical points. When t2 = 0 and t4 = 0, it
has rx and ρπ as symmetries in addition to ry.

5. Elliptic umbilic

The standard form of the unfolding for the elliptic umbilic
is x3 − 3xy2 + t1(x2 + y2) + t2x + t3y. With determinacy 3
and codimension 3 it corresponds to four critical points merg-
ing to give a monkey saddle. When t2 = t3 = 0, it possesses
threefold rotation symmetry (ρ2π/3) along with ry.

6. Hyperbolic umbilic

The hyperbolic umbilic is similar to the elliptic umbilic
except for a sign difference; the unfolding is: x3 + 3xy2 +
t1x2 + t2x + t3y. It too has determinacy 3 and codimension 3.
However it does not possess the threefold rotational symmetry
of the monkey saddle: the only symmetry is ry when t3 = 0.

7. Parabolic umbilic

The parabolic umbilic has determinacy 4 and codimension
4. It’s standard universal unfolding is given by: ±(x2y + y4 +
t1y2 + t2x2 + t3y + t4x). Under t4 = 0, it has rx as a symmetry.

We have illustrated Thom’s theorem in two dimensions.
For n dimensions, we simply add a Morse part ±y2

1 ± · · · ±
y2

n−2 to the unfoldings given. Thom’s theorem can be extended
to r = 6 for arbitrary n and r = 7 for n = 2. This requires us
to incorporate all of the catastrophes with codimension �r.
This has been done in Tables II and III. In addition to these,
we consider one other singularity which is allowed by π/4
rotation symmetry.

8. X9

This is actually a class of mutually inequivalent singu-
larities of the form x4 + 2cx2y2 + y4. For |c| �= 1 this is a
higher-order singularity with codimension 8 and determinacy
4. For two different parameters c and c′, the singularities are
equivalent if and only if c, c′ > −1 and c′ = (3 − c)/(1 + c).
The function itself has a fourfold rotational symmetry and we
will use a symmetry consistent unfolding: ε = x4 + 2cx2y2 +
y4 + t (x2 + y2).

APPENDIX E: TAYLOR EXPANSIONS
AND CATASTROPHES

A family which is smoothly equivalent to the standard uni-
versal unfolding of a catastrophe can have a Taylor expansion
that does not resemble the unfolding to any order. In fact, it
may not be obvious what catastrophe is equivalent to the given
family by simply looking at the Taylor expansion truncated to
any degree. This complication presents not just for families
and catastrophes, but also for functions and standard forms
of higher-order singularities. Given a function with a higher-
order critical point at the origin, it is in general very hard to
find the local diffeomorphism that transforms it to the standard
form. So in practice, it becomes necessary to avoid finding
explicit coordinate transformations in order to determine the
type of higher-order critical point.

As seen earlier, corank, codimension, determinacy, winding
are preserved under a smoothly reversible coordinate trans-
formation and the standard types are described uniquely by
these numbers. Thus if we calculate these numbers for a given
function, we can unambiguously identify the type of higher-
order singularity it is equivalent to. It is fairly easy to compute
the corank and winding of a function (see Appendixes C 3 and
C 8). The problem therefore reduces to computing the deter-
minacy and codimension of the given function in an efficient
way. This is achieved by the method given in Sec. VI A where
we also apply the method to an example. We now explain the
reason behind the method.

1. Explanation of the method

For any function f , the kth degree Taylor polynomial jk f
moves in the space of all polynomials of degree �k under
a smooth coordinate transformation. For example, let j3 f =
k3

x − k2
y . Under kx → kx and ky → ky − k2

x , we have j3 f →
k3

x − k2
y + 2k2

x ky. Assume that the critical point of the function
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occurs at the origin. By applying a family of origin preserv-
ing smooth coordinate transformations φ(t ) parameterized
by a continuous real number t , we can generate the orbits
jk[ f (φ(t ))] of jk f in the polynomial space. (We assume that
φ(0) is the identity coordinate transformation: kx → kx, ky →
ky and refer to the original Taylor polynomial at the origin
jk[ f (φ(0))] as simply jk f ). The orbits are essentially curves
γ (t ) parameterized by t with γ (0) = jk f . We can define
tangents to these curves at jk f :

γ ′(0) = d

dt
jk[ f (φ(t ))]

∣∣∣∣
t=0

. (E1)

The space of such tangents for all possible origin preserving
one parameter families is the tangent space at jk f . An impor-
tant result in catastrophe theory guarantees the following: if
the tangent space at jk f contains all homogeneous monomials
of the form k j

x kk− j
y for j = 0, . . . , k, then terms of O(k + 1)

can be removed from f by a smooth coordinate transforma-
tion. This ensures that f is k-determinate. Conversely, if f is
(k − 1)-determinate, then the tangent space at jk f contains
all the homogeneous monomials k j

x kk− j
y for j = 0, . . . , k. By

determining the lowest k for which the tangent space at jk f
contains k j

x kk− j
y for j = 0, . . . , k we can narrow down the

determinacy to either k or k − 1. To this end, in the method
in Sec. VI A we generate a set of polynomials {pi} that span
the tangent space and try to take linear combinations of these
polynomials to generate k j

x kk− j
y for j = 0, . . . , k.

If we also allow smooth coordinate transformations that
move the origin, the tangent space gets enlarged. The codi-
mension of f is then codimension of this enlarged tangent
space at jk f in the space of all polynomials with zero constant
term and degree �k, for any k for which f is k determinate.
Thus by finding a k for which f is k-determinate and gener-
ating a spanning set for the enlarged tangent space, we can
find the codimension by finding the dimension of the tangent
space and subtracting it from the dimension of the polynomial
space. To find the dimension of the tangent space, we just list
the spanning vectors as the rows of a matrix in the basis of
monomials and compute the rank of this matrix.

APPENDIX F: ISOMETRIES OF THE PLANE

This section is mostly based on the treatment in Ref. [24].
Let P denote the two-dimensional plane. When an origin
is chosen, P can be identified with R2 so that any vec-
tor u can be written in terms of two real components as
(u1, u2) (here on, we will use P and R2 interchangeably).
For two vectors x = (x1, x2) and y = (y1, y2) let d (x, y) =√

(x1 − x2)2 + (y1 − y2)2 denote the euclidean distance be-
tween them. The euclidean distance can also be obtained
from the dot product: x · y = x1y1 + x2y2. An isometry of the
plane is a function f : P → P which preserves the euclidean
distance, i.e., d ( f (x), f (y)) = d (x, y).

We denote a copy of R2 as V, the group of all translations
(it is a group under addition of vectors). It acts on P as follows:
If a ∈ V, the translation by a, denoted by ta : P → P, simply
adds a to the vectors in P: ta(x) = x + a. It is important to
note that V has a fixed origin while for P, we can choose any
point as the origin. The following are equivalent definitions

FIG. 5. It is fairly easy to determine the isometry that results
from combining two isometries. We illustrate this procedure in the
figure above for two important cases. In (a), we show how combining
the x-axis reflection rx with a rotation ρθ simply rotates the reflection
axis by θ/2. The new reflection axis is denoted by l in the figure,
and the reflection operation about this line is given by ρθ rx . A point
p first gets reflected about the x axis and is then rotated by an angle
θ about the origin. The net result is the same as reflection about l . In
fact l is the set of all points which are invariant under ρθ rx . In (b), we
illustrate a simple geometrical construction [24] for finding the new
center of rotation when a translation ta is combined with a rotation
ρθ . The new center of rotation for the composite operation ρθ ta is the
point p which is invariant under the composite operation. ρθ ta is then
a θ rotation about p.

of an orthogonal operator φ : R2 → R2 [24]. (a) φ is an
isometry that preserves the origin: φ(0) = 0; (b) φ preserves
dot products: φ(x) · φ(y) = x · y; and (c) The matrix of φ, say
A, is such that it’s transpose is it’s inverse AT = A−1.

Any orthogonal operator in two dimensions is either a ro-
tation by some angle θ , which we denote by ρθ or a reflection
about some line through the origin. In the latter case, it can
be uniquely decomposed as the composition of a rotation ρθ

and reflection about the x axis (which we shall denote by r):
φ = ρθ r (see below). It is clear from above, that orthogonal
operators act on P only after an origin has been chosen. Also,
it is easily seen that translations and orthogonal operators are
isometries. In fact, it can be shown that any isometry f can
be uniquely decomposed as the composition of a translation
and an orthogonal operator: f = taφ [24]. Moreover, the set
of all isometries of the plane is a group with the composition
of functions as it’s group law of composition. We denote this
by M. It contains translations, rotations about points (not just
the origin), reflections about lines and glide reflections.

1. Compositions of basic isometries

Using the matrix form of ρθ and r, we can easily show
that rρθ = ρ−θ r. The operator ρ2θ r is actually a reflection
about the line through the origin which makes an angle θ with
the x axis. The easiest way to see this is to do a coordinate
transformation U = ρ−θ which rotates the plane by −θ so
that the line in consideration becomes the x axis. Under this,
an isometry φ transforms as φ → U φ U −1. In particular, we
have ρ2θ r → ρ−θ ρ2θ rρθ = ρ−θ ρ2θ ρ−θ r = r. Thus, in the
new coordinate system, the isometry is the reflection about x
axis so that in the old coordinate system it is the reflection
about the θ -line through the origin [see Fig. 5(a) for an
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illustration of this idea]. Next we show that the composition
of two reflections is a rotation: rρθ rρα = rrρ−θ ρα = ρα−θ .

Now we investigate the composition of a translation and
an orthogonal operator. We first note the following: ρθ ta =
tρθ (a) ρθ . To show that the composition of translation ta and
rotation ρθ is a rotation about some point b by θ , we need to
show that the equation ta ρθ = tb ρθ t−b has a unique solution
for b. (The right-hand side amounts to shifting b to the origin,
rotating the plane by θ and shifting back by b which is the
same as rotating by θ about b). Since tb ρθ t−b = tb−ρθ (b),
the equation reduces to a = (1 − ρθ ) b, which is a pair of
linear equations in two unknowns (the two components of
b). This has a unique solution if and only if det(1 − ρθ ) �=
0. However, det(1 − ρθ ) = 2 − 2 cos θ . For θ ∈ [0, 2π ), only
θ = 0 satisfies 2 − 2 cos θ = 0. Thus, for any θ �= 0 (mod
2π ), we have a unique nonzero b corresponding to each a �= 0.
This verifies the assertion that any composition of rotation and
translations is a rotation by the same angle about some point
[see Fig. 5(b) for a simple geometric construction to determine
the new center of rotation].

Before we look at the composition of translations and
reflections about lines through the origin (which take the form
ρθ r), we rotate the plane to make the reflection axis the x axis.
We first consider the composition of a y translation with the
x reflection: ta ĵ r = t a

2 ĵ t a
2 ĵ r = t a

2 ĵ r t− a
2 ĵ . However, the latter

expression really performs reflection about the line y = a/2
(since the operation shifts this line to the x-axis, performs x-
reflection and then shifts backs the line). Thus the composition
of a reflection with translation by a vector perpendicular to the
reflection axis amounts to simply shifting the reflection axis
by half the translation vector. For a general translation vector,
we split the vector into a parallel and perpendicular parts (with
respect to the reflection axis). The perpendicular part shifts the
reflection axis while the parallel part adds a glide term: ta r =
ta‖ ta⊥ r = ta‖ (ta⊥/2 r t−a⊥/2). Thus a generic composition of a
translation and a reflection is a glide reflection. As before, the
composition of two glide reflections is a rotation.

2. Discrete subgroups of isometries

A subgroup G of M is discrete if it does not contain
arbitrarily small rotations and translations. Mathematically,
this means that there is a positive real number ε such that for
any translation ta ∈ G, we have ‖a‖ > ε and for any rotation
about some point, we have the angle of rotation θ > ε.

Given the unique decomposition of an isometry as f = taφ,
we can define a map π : M → O(2), π (taφ) = φ. This is a
group homomorphism. We now restrict π to G. The image of
G under π , denoted by Ḡ is a discrete subgroup of O(2). This
is called the point group. An element of point group need not
be an element of G, so that in general Ḡ is not a subgroup
of G. (This can happen for instance if G contains only glide
reflections and no pure reflections. But the point group will
contain a pure reflection). Thus, the point group contains
information about the orthogonal operations present in G,
either as pure orthogonal operators or in combination with
translations. We can show that the only discrete subgroups
of O(2) are the finite subgroups: the cyclic subgroups Cn

and the dihedral groups Dn. The cyclic subgroup Cn of order
n is generated by the rotation ρθ with θ = 2π/n while the

dihedral group Dn, of order 2n is generated by ρθ and r′, where
θ = 2π/n and r′ is a reflection about a line through the origin.
Thus, for any discrete group of isometries G, the point group
Ḡ is Cn or Dn for a positive integer n.

There is one other group associated with a discrete group
of isometries: the lattice, denoted by L. It contains all the
translations contained in G. In contrast to the point group,
the lattice is indeed a subgroup of G. The lattice could be
(a) the zero group {0}; (b) the set of integer multiples of
a nonzero vector a: L = {ma | m ∈ Z}; and (c) the set of
integer combinations of two independent vectors a and b:
L = {ma + nb | m, n ∈ Z}.

There are precisely seventeen groups which have lattices
of the form given in (c). They are known as the wallpaper
groups and we shall restrict our interest to them. When the
case (c) occurs, the point group is restricted to be Cn or Dn

with n = 1, 2, 3, 4, or 6. This is known as crystallographic
restriction. Another important property that ties up L and Ḡ
is that Ḡ preserves L. In other words, for any φ ∈ Ḡ, φ(a) ∈
L ∀a ∈ L or φ(L) = L.

3. Wallpaper groups

There are seventeen wallpaper groups in two dimensions
[24]. Each of these 17 groups has one or more associated
lattices drawn from the five basic types: square, rectangle,
hexagonal, rhombic (also known as centered rectangle) and
oblique. The lattice and point group do not, in general de-
termine the wallpaper group uniquely although, as we shall
show, for our purposes they are sufficient. Typically, one
encounters wallpaper groups as the symmetry groups of two
dimensional crystals. More precisely, if V (x) is the potential
experienced by the electrons in the noninteracting picture
and G is the wallpaper group associated with the underlying
crystal, then for any symmetry S ∈ G, V (Sx) = V (x). This
has important consequences for the energy spectrum, one of
which is Bloch’s theorem.

4. Lattice symmetries and Schrödinger equation

Let G be one of the wallpaper groups and let S ∈ G. The
unique decomposition of S is taφ so that r̃ = Sr = φ(r) + a.
We denote the matrix of φ by φ as well. Now,

r̃i = φi j r j + ai ⇒ ∂ f

∂r j
= ∂ f

∂ r̃i

∂ r̃i

∂r j
= φi j

∂ f

∂ r̃i

⇒ ∇2
r f =

∑
j

∂2 f

∂r2
j

=
∑

j

φi j
∂

∂r j

(
∂ f

∂ r̃i

)

=
∑

j

φi j
∂2 f

∂ r̃k∂ r̃i
φk j = δik

∂2 f

∂ r̃k∂ r̃i
=

∑
k

∂2 f

∂ r̃2
k

= ∇2
r̃ f .

(F1)

Thus the gradient is invariant under an isometry. Now consider
the time independent Schrödinger equation, incorporating
Bloch’s theorem:(−h̄2

2m
∇2

r + V (r)

)
ψn,k(r) = εn(k)ψn,k(r). (F2)
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Now this holds good under a relabeling r → r̃ so that(−h̄2

2m
∇2

r̃ + V (r̃)

)
ψn,k(r̃) = εn(k)ψn,k(r̃)

⇒
(−h̄2

2m
∇2

r + V (r)

)
ψn,k(r̃)

= εn(k)ψn,k(r̃). (F3)

Since ∇2
r̃ = ∇2

r and V (r̃) = V (r). We define ψ̃n,k(r) =
ψn,k(r̃) = ψn,k(φ(r) + a). This gives(−h̄2

2m
∇2

r + V (r)

)
ψ̃n,k(r) = εn(k)ψ̃n,k(r). (F4)

So that ψ̃n,k(r) also has eigenvalue εn(k). To find its crystal
momentum we evaluate ψ̃n,k(r + R):

ψ̃n,k(r + R) = ψn,k(φ(r + R) + a)

= ψn,k(φ(r) + a + φ(R))

= eik·φ(R) = eiφ−1(k)·Rψ̃n,k(r). (F5)

Thus the crystal momentum of ψ̃n,k(r) is φ−1(k) or ψ̃n,k(r) =
ψn,φ−1(k)(r). This gives ε(φ−1(k)) = ε(k). This means that the
point group is a symmetry group for the dispersion εn(k),
alongside the reciprocal lattice translations.
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