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Rogue waves and periodic solutions of a nonlocal nonlinear Schrödinger model
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In the present paper, a nonlocal nonlinear Schrödinger (NLS) model is studied by means of a recent technique
that identifies solutions of partial differential equations by considering them as fixed points in space-time. This
methodology allows us to perform a continuation of well-known solutions of the local NLS model to the
nonlocal case. Four different examples of this type are presented, namely, (a) the rogue wave in the form of
the Peregrine soliton and (b) the generalization thereof in the form of the Kuznetsov-Ma breather, as well as
two spatiotemporally periodic solutions in the form of elliptic functions. Importantly, all four wave forms can be
continued in intervals of the parameter controlling the nonlocality of the model. The first two can be continued
in a narrower interval, while the periodic ones can be extended to arbitrary nonlocalities and, in fact, present
an intriguing bifurcation whereby they merge with (only) spatially periodic structures. The results suggest the
generic relevance of rogue waves and related structures, as well as periodic solutions, in nonlocal NLS models.

DOI: 10.1103/PhysRevResearch.2.013351

I. INTRODUCTION

The study of dispersive media exhibiting a nonlocal nonlin-
ear response is a subject that is enjoying increasing attention
over the past few years [1–3]. This is mainly due to the
fact that relevant models and their solutions, especially of
the nonlinear Schrödinger (NLS) variety, emerge in a wide
range of physical contexts. These range from thermal optical
media [1,4] and nematic liquid crystals [2,3,5] and from
plasmas [6,7] to water waves [8,9] and dipolar Bose-Einstein
condensates [10,11]. In addition, there are certain settings
with a local nonlinearity, where an effective nonlocal descrip-
tion is particularly relevant as, e.g., in the case of quadratic
nonlinear media [12]. In this case, bright and dark soliton
solutions, as well as other applications, such as the prediction
of regimes for quadratic soliton pulse compression [13,14],
and the existence of X waves [15], have been discussed. It
is, thus, naturally of interest to explore the different types
of solitary wave solutions that may arise in nonlocal NLS
systems, and how nonlocality may alter the properties and
behavior of media with a local nonlinear response [16–18].

Another topic of wide interest during the past decade has
been the study of rogue (freak) waves, which are structures
of large amplitude that can roughly be divided into (a) the
ones that “appear spontaneously out of nowhere and disappear
without a trace” [19] and (b) the ones that are generated
gradually through energy transfer in multiple soliton colli-
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sions. The latter type of rogue waves have lifetimes relevant
for biological processes (e.g., DNA denaturation [20]), and
supercontinuum laser light sources [21]. Rogue waves have
been explored mainly in hydrodynamics [22–24], but also in
numerous other areas. These include, but are not limited to,
nonlinear optics [25–31], superfluid helium [32], as well as
plasmas [33]. These multifaceted experimental studies have,
in turn, triggered a wide range of theoretical explorations
which by now have been summarized in a series of reviews
[34–40], but also importantly in a series of books on this
research theme [41–44].

In the present paper, we combine these two cutting edge
themes by exploring rogue waves and related coherent struc-
tures in nonlocal media motivated by the above optical, liquid
crystal, and water wave applications. It should be noted that
a search of the literature of rogue waves in nonlocal NLS
models will yield a number of results, such as, e.g., Ref. [45].
However, these concern a mathematically motivated (via
PT -symmetry and related considerations) nonlocal variant of
the NLS [46]. There is a paucity of results concerning rogue
waves of physically relevant nonlocal NLS models, such as,
e.g., the one considered in Ref. [47]. However, this is rather
understandable given the nonintegrability of such models and
the distinct lack of tools for tackling rogue waves beyond
the integrable limit and its associated techniques, such as the
inverse scattering method.

Here, we aim to provide a number of results regarding
the model of the nonlocal NLS that is of wide relevance
to applications. Our approach leverages a recently proposed
technique reported in Ref. [48]. In this work, it was recog-
nized that it is difficult to identify rogue waves (contrary to
what is the case with solitons), due to their nonstationary
nature in time. However, considering them in space-time, i.e.,
treating time as a spatial direction, one realizes that rogue
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FIG. 1. Continuation over increasing ν values of the Peregrine rogue wave solution of the NLS. The modulus of the wave function is shown
as a function of space x and time t , once the iterative identification of the solution converges. Values of ν used in each of the panels: (a) 0,
(b) 0.05, (c) 0.15, (d) 0.2.

waves are localized solutions in that setting. Thus, one can—
in principle—construct fixed-point methods (based, e.g., on a
conjugate gradient (CG) based variant of the Newton method
[48]) that will converge to such wave structures and identify
them as numerically exact solutions. To be more specific, we
have discretized the space and time derivatives using the fast
Fourier transform and then used a Newton conjugate gradient
(Newton-CG) algorithm to solve the resulting equations. A
key advantage of such a methodology is that it does not hinge
in any critical way on integrability and, indeed, starting from
the integrable limit it can be used in a variety of nonintegrable
settings, such as the nonlocal one that we consider here. It is
this tool that will permit us to converge to the rogue wave (in
the form of the Peregrine soliton) for a range of parameter
values of the nonlocality parameter, referred to as ν below in
our model. In addition to the prototypical Peregrine structure,
we will also seek its periodic—in the propagation variable—
generalization, namely the Kuznetsov-Ma (KM) breather.
Both of these will be found to be possible to continue within
a certain interval of the nonlocality parameter (roughly up to
ν = 0.2). Apart from these structures, we will also consider
and identify additional states that our analysis can reveal in
the nonlocal system, namely, periodic states in space-time
(starting from the elliptic function local limit). We will see
that these can be continued for essentially arbitrary ν, yet they
feature a bifurcation becoming stationary (or independent of
the propagation direction) beyond a certain critical threshold.

Our presentation will be structured as follows. In Sec. II,
we will present the solutions of interest in the local limit of
the regular NLS model (i.e., for ν = 0). In Sec. III, we will
present the numerical extensions of the solutions via the above

method to the nonlocal case of finite ν. Finally, in Sec. IV, we
will summarize our findings and present our conclusions.

II. THE MODEL AND ITS LOCAL LIMIT SOLUTIONS

We consider a nonlocal variant of the NLS model, which,
in dimensionless form, can be expressed as [2,3,47]

i
∂u

∂t
+ 1

2

∂2u

∂x2
+ θu − μu = 0, (1)

ν
∂2θ

∂x2
− 2qθ = −2|u|2, (2)

where u = u(x, t ), θ = θ (x, t ), and, in the context of nematic
liquid crystals, t plays the role of the propagation coordinate.
The dependent variable u is the complex valued, slowly
varying envelope of the optical (electric) field, and θ is the
optically induced deviation of the director angle. The nonlo-
cality parameter ν measures the strength of the response of the
nematic in space, with a highly nonlocal response correspond-
ing to ν large. Notice that in the nonlocal regime with ν large,
the optically induced rotation θ is small; on the other hand,
the standard NLS equation with the local Kerr nonlinearity
is recovered when ν = 0. The parameter q is related to the
square of the applied static field which pretilts the nematic
dielectric, while μ plays the role of the propagation constant.
Obviously, inclusion of the term μu in Eq. (1) (which is
normally omitted) offers a constant background where certain
types of solutions (such as the Peregrine soliton—see below)
can exist, and is trivially removed via a constant phase trans-
formation. Hereafter, we set q = 1.

FIG. 2. L∞ error (i.e., norm of the difference) between the numerical ETDRK4 solution of Eqs. (1) and (2) and the converged Peregrine
soliton wave form obtained by the Newton-CG method for the different case examples of nonlocality parameter ν shown in Fig. 1. Values of ν

used in each of the panels: (a) 0, (b) 0.1, (c) 0.15, (d) 0.2.
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FIG. 3. Continuation over increasing ν values of the KM breather solution of the NLS. Note that the solution seems to transition into a
breather on top of a periodic background as the nonlocality parameter is increased. Values of ν used in each of the panels: (a) 0, (b) 0.1,
(c) 0.15, (d) 0.2.

The system Eqs. (1) and (2) can be considered as a single
integro-differential equation provided Fourier transforms are
utilized. This will not limit our set of solutions however, as we
will make only numerical use of the transform pair. As such,
a periodic domain is used to integrate the system in x and
nondecaying functions will not generate problems with the
transform not converging. Thus, using the Fourier transform,
we can rewrite Eq. (2) as

θ = F−1

[F[2|u|2]

νk2 + 2

]
, (3)

where k is the wave number (the relevant Fourier variable).
Plugging this into Eq. (1) yields a nonlocal equation in u alone
and will be the equation with which we work in our numerical
computations hereafter. Equation (3) implies that the kernel
in the equivalent integro-differential equation is of the form
exp(−|x|). This corresponds to the focusing case with q = 1

(which we consider here), while in the defocusing case with
q = −1 the kernel is of the form sin(|x|), which is of particular
importance in other settings [49]. Note that many other types
of response functions have also been considered for nonlocal
NLS types of equations, and it has been attempted to define
generic properties of the types of response functions [50].

The four solutions that will be of interest hereafter are
analytically available in the NLS limit (ν = 0). The first one
is the famous Peregrine soliton [51] which, for μ = 1, reads

u(x, t ) = 1 − 2(1 + 4it )

1 + 4x2 + 4t2
. (4)

This structure has been the subject of numerous recent exper-
imental observations in hydrodynamics [22], nonlinear optics
[26], plasmas [33], and so on.

The second one is the periodic generalization of the Pere-
grine soliton in the evolution direction, namely, the so-called
KM breather given by [52,53]

u(x, t ) = 1 − 2(b2 − 1) cos(2b
√

b2 − 1t ) + i2b
√

b2 − 1 sin(2b
√

b2 − 1t )

b cosh(2
√

b2 − 1x) − cos(2b
√

b2 − 1t )
, (5)

where b is an arbitrary parameter (with b > 1). It is worthwhile to note that this solution has been experimentally observed as
well [27].

We now consider some spatiotemporally periodic solutions stemming from the classic work of Ref. [54], both of them for
simplicity given for μ = 1/2. The first is a doubly periodic solution given by

u(x, t ) = κ

2

A(x)cn(t/2, κ ) + i
√

1 + κ sn(t, κ )√
1 + κ − A(x)dn(t/2, κ )

, (6)

A(x) = cd

(√
1 + κ

2
x,

√
1 − κ

1 + κ

)
, (7)

FIG. 4. L∞ error between the solution obtained by the Newton-CG method (as shown in Fig. 3) verus the solution obtained via the ETDRK4
method when the KM breather profile is seeded into the latter as an initial condition. Values of ν used in each of the panels: (a) 0, (b) 0.1,
(c) 0.15, (d) 0.2.
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FIG. 5. Continuation over increasing ν values of the doubly periodic first solution of the NLS. It is seen that the doubly periodic solution
bifurcates into a solution whose (modulus) profile is stationary and thus time-independent as ν is increased. Values of ν used in each of the
panels: (a) 0, (b) 0.5, (c) 1, (d) 1.5.

where κ is an arbitrary parameter (with 0 < κ < 1). The
second is another doubly periodic solution given by

u(x, t ) =
√

κ
1+κ

cn
(

x√
κ
,

√
1−κ

2

)
dn

(
t

2κ
, κ

) + iκ sn
(

t
2κ

, κ
)

κ
√

2
[
1 −

√
κ

1+κ
cn

(
x√
κ
,

√
1−κ

2

)
cn

(
t

2κ
, κ

)] ,

(8)

where κ is again an arbitrary parameter (with 0 < κ < 1).
It is again mentioned that all the above solutions refer to

the integrable NLS system with ν = 0 (local nonlinearity)
and, as such, the nonlocality cannot appear as part of these
solutions. Below we will show that such solutions (and their
generalizations) can be numerically extended, through the
methodology discussed herein, for nonzero values of the
nonlocality parameter.

III. CONTINUATION TO THE NONLOCAL CASE

A. Peregrine soliton

The results associated with the Peregrine soliton are given
in Figs. 1 and 2. The first one shows the profile of the
Peregrine soliton as the value of the nonlocality parameter
ν is increased. Perhaps the most important finding in itself
is that this structure can still be obtained as a numerically
exact solution beyond the integrable limit, and in the nonlocal
case of ν �= 0. Structurally, it can be observed that the solu-
tion acquires a certain “undulation,” as ν is increased, that
becomes progressively more pronounced. It is important to
also highlight here that the solution is identified with periodic
boundary conditions in both space and time (recall that time
is treated as a space variable so a periodicity is imposed

on that as well). The continuation scheme is unable to go
past ν = 0.2, even when considering different domain sizes.
Nevertheless, we do not detect a bifurcation at this point,
hence it is unclear whether this is a trait of the solution or
a byproduct of the particular numerical method. We believe
that the latter may be true.

Figure 2, in turn, is a dynamical illustration of the accuracy
of convergence of our solution. Here, what is done is that we
select the “initial condition” of our converged Peregrine wave
form at t = −7.5 and feed it into an integrator of the full
nonlocal problem at different values of ν. The forward prop-
agation of Eqs. (1) and (2) is performed using the exponen-
tial time-differencing fourth-order Runge-Kutta (ETDRK4)
method of Ref. [55]. In the figure, it is observed that the
measured L∞ error (i.e., norm of the difference) between
the converged solution and the numerically propagated one
remains very small [i.e., of O(10−4) to O(10−5)] throughout
the propagation. We should factor in here the dynamical
instability of the background of the solution, which eventually
leads to growth (well past the formation and disappearance of
the Peregrine soliton). An indirect manifestation of this origin
of the observed growth can be seen in Fig. 2 in that the appear-
ance and disappearance of the rogue wave does not seem to
affect the exponential growth due to the dynamical instability
of the background. Nevertheless, for all practical purposes,
the converged state accurately captures the appearance and
disappearance of the coherent structure.

B. Kuznetsov-Ma breather

In this subsection, we present similar diagnostics for the
KM breather wave form of Eq. (5). It is interesting that, here,
the background modulation becomes more transparent and

FIG. 6. Convergence to the stationary, periodic in space solution, obtained upon using as initial condition a point on the branch in Fig. 5,
and decreasing ν. This periodic solution apparently exists all the way to the local NLS limit. Values of ν used in each of the panels: (a) 0,
(b) 0.5, (c) 1, (d) 2.
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FIG. 7. Bifurcation diagram showing the doubly periodic solu-
tion (solid) and the periodic in space profile solution (dashed) as ν

varies. Clearly, as ν increases, the two branches merge with each
other, i.e., the periodic (in time) orbit emerges from the stationary
solution.

arises in the clear form of a progressively more intense (as the
nonlocality parameter ν increases) periodic background. The
resulting wave forms at ν = 0.15 − 0.2 are strongly reminis-
cent of the rogue waves on a periodic (i.e., elliptic function)
background recently discovered in integrable models such as
the nonlinear Schrödinger [56] and the modified Korteweg-de
Vries [57] models. While such solutions have not previously
been found, to the best of our knowledge, in the nonlocal
model these results are strongly suggestive that they exist.
Whether they can be identified in this nonintegrable model in
some closed form remains an outstanding problem for future
study. We should note here that the KM wave form can only
be continued up to around ν = 0.25, but not beyond that.

The verification of the accuracy of the numerical solution
is given in Fig. 4, in a way similar to what was done before in

Fig. 2. Indeed, in this case the error up to t = 5 does not grow
in all the cases considered beyond O(10−6). The associated
growth observed in the ETDRK4 simulations initialized with
the KM initial condition can be attributed to the exponential
instability of the background seeded by the residual numerical
error that eventually will grow to lead to deviations of O(1) at
sufficiently long times (propagation distances).

C. First doubly periodic solution

We now turn to the doubly periodic solution Eq. (7) for
which the results are presented in Figs. 5–8; here we have
chosen κ = 0.8. As can be seen in Fig. 5, the amplitude of the
solution is initially doubly periodic in both space and time but
gradually, as the nonlocality parameter is increased, becomes
singly periodic in space. By this, we mean that the modulus
of the solution becomes time independent (i.e., we exclude
phase factors that can be eliminated by means of a gauge
transformation).

This naturally suggests the question of whether this sta-
tionary, periodic in space solution of the nonlocal problem
emerges only in the nonlocal model or exists in the local
limit. Indeed, continuing the stationary solution “downward”
(i.e., for decreasing ν), one can see that it bifurcates from a
stationary (elliptic function) solution at the local NLS limit,
given explicitly by

u = exp

(
i
αt

T

)
A dn

(
Ax,

√
2 + 2α − 1

A2

)
, (9)

where α = 2π
T and A ≈ 1.43. The case examples of this state

(for the same values of ν as in Fig. 5) are shown in Fig. 6.

FIG. 8. L∞ error between the solution obtained by the Newton-CG method (as shown in Fig. 5) versus the solution obtained via the
ETDRK4 method. Different values of ν up to ν = 2 are shown. Recall that in panels (c)–(f) the solution is, in fact, stationary. In panels (e) and
(f), the error is shown for the solutions continued back down to lower values of ν along the branch of stationary (periodic in space) modulus.
Values of ν used in each of the panels: (a) 0, (b) 0.5, (c) 1, (d) 2, (e) 0.5, (f) 0.
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FIG. 9. Continuation over increasing ν values of the second doubly periodic solution of the NLS. It is seen that the doubly periodic solution
bifurcates into a solution whose profile is constant in time as ν is increased. Values of ν used in each of the panels: (a) 0, (b) 1.5, (c) 3, (d) 6.

Indeed, the relevant bifurcation diagram illustrating the
merger of the space-time periodic solution with the space-
periodic one is shown in Fig. 7. The emergence of a solution
with a finite periodicity from a stationary one suggests a Hopf
scenario in the Hamiltonian system at hand.

Lastly, here too, we examine the growth of the residual
and find it to be very small [(10−8) at the highest], when
considering this class of solutions for different ν’s even up
to ν = 2 (for which the solution is stationary). The relevant
results are presented in Fig. 8 for the periodic solution in time
(that turns stationary as ν is increased). We show prototypical
examples for the space-time periodic solution in Figs. 8(a)
and 8(b), then for higher values of ν where the wave form
acquires a stationary modulus in Figs. 8(c) and 8(d). Also,
for completeness, in Figs. 8(e) and 8(f) we go back down to
lower values of ν along the branch of solutions of stationary
modulus (i.e., periodic only in space) and examine the error in
this case as well, confirming that it remains quite small during
the evolution interval considered.

D. Second doubly periodic solution

In a similar vein, we now examine the continuation of
the ν = 0 solution Eq. (8) to the nonlocal regime. We find
a similar phenomenology as a result of the continuation as in
the previous section. Namely, the doubly periodic solution, as
ν is increased, turns to a singly periodic one in the case of
sufficiently large ν; see Fig. 9. On the other hand, starting at
ν = 2 and continuing the stationary (modulus) solution down
to ν = 0, we find that the relevant wave form exists for all
ν down to the local limit, as illustrated in Fig. 10. That is to
say, there is again a bifurcation diagram Fig. 11 illustrating
the Hopf-type emergence of the periodic (in time) orbit from
the stationary one (for decreasing ν).

An additional interesting observation is that this stationary
solution in the NLS limit (ν = 0) degenerates to an explicit
cnoidal solution in the form of

u(x) = A cn

⎛
⎝√

−1 + 2A2 x,

√
2A2

2(−1 + 2A2)

⎞
⎠, (10)

with A ≈ 1.62. Further, we can also arrive at an exact ex-
pression for the stationary state as ν → ∞. Inspired by the
numerics, we can judiciously guess a solution of the form

u = A cos(Bx)

θ = C cos(Dx) + E ,

and use it in Eq. (2). Doing so, and matching terms, one gets
conditions on the constants, namely,

B = D

2
, E = A2

2
, C = β

2

A2

D2 + β
,

where β = 2
ν
. Consequently,

u = A cos

(
D

2
x

)

θ = β

2

A2

D2 + β
cos(Dx) + A2

2
.

Plugging this into the left-hand side of Eq. (1) and simplifying
yields

i
∂u

∂t
+ 1

2

∂2u

∂x2
+ θu − 1

2
u

= −
(

D2

8
+ 1

2
− A2

2

)
A cos

(
D

2
x

)

+
(

βA2

2

A

D2 + β

)
cos(Dx) cos

(
D

2
x

)
. (11)

FIG. 10. Using as initial condition the solution in Fig. 9(d), we decrease ν and find the continuation of the stationary branch down to the
NLS limit of ν = 0. Values of ν used in each of the panels: (a) 0, (b) 1.5, (c) 3, (d) 6.
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FIG. 11. Bifurcation diagram showing the second doubly peri-
odic solution (solid) and the constant profile solution (dashed) as ν

varies.

Taking β → 0, or equivalently ν → ∞, the above reduces
to −( D2

8 + 1
2 − A2

2 )A cos ( D
2 x), which we can make zero pro-

vided we choose

D2

8
+ 1

2
− A2

2
= 0.

This has two consequences. The first is that, as ν → ∞, we
have the exact solution:

u = A cos(
√

A2 − 1x)

θ = A2

2
.

The second, related one, is that under the limit ν → ∞, the
nonlocal NLS can lead to the following linear Schrödinger

equation:

1

2

∂2u

∂x2
+ A2

2
u − 1

2
u = 0.

From the bifurcation diagram in Fig. 11, as ν increases, we
have found that the amplitude of u approaches the constant
value of A ≈ 1.92.

It is relevant to remark here that the numerically obtained
periodic in space solution is well approximated by the above
asymptotic functional form. At ν = 6, the pointwise error
between the two is approximately 2 × 10−2. In fact, our
numerical observations suggest that one can approximate
the numerically obtained periodic in space solution by the
functional form,

u = Acn(Bx,C),

for suitably chosen A, B,C. In fact, with this approximation,
the pointwise error can be made between 10−3 and 10−6 for
all ν in the interval 0 � ν � 6. This suggests the possibility of
seeking suitable elliptic function solutions as potentially exact
wave forms of the nonlocal model. This merits a separate
investigation beyond the confines of the present paper. Lastly,
we note that for both branches of solutions, we present the
diagnostic of the L∞ norm of the deviation from the numeri-
cally identified solution when propagating the corresponding
initial condition with ETDRK4 in Fig. 12. This is similar
to Fig. 8 with the top panels pertaining to the space-time
periodic branch, while the bottom ones arise for the stationary
modulus, periodic in space branch present for large ν, but
which can be continued down to lower values of ν. Once
again, the relevant residual grows due to the instability of the

FIG. 12. L∞ error between the solution obtained by the Newton-CG method (as shown in Fig. 9) versus the solution obtained via the
ETDRK4 method. The three top panels correspond to the error of the space time periodic solution, while the bottom three case examples are
examples of the error in the evolution of wave forms of the stationary modulus branch. Values of ν used in each of the panels: (a) 0, (b) 1.5,
(c) 3, (d) 6, (e) 1.5, (f) 0.
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background, yet remains bounded by 10−8 over the timescales
considered.

IV. CONCLUSIONS AND FUTURE WORK

In the present paper, we considered a variety of wave
structures existing in the local NLS equation and extended
them to the realm of a generic nonlocal NLS model. In
this vein, we examined the prototypical rogue wave state,
namely the Peregrine soliton, as well as its periodic in time
generalization, the KM breather. We also looked at other states
that are periodic in both space and time, motivated by the
work of Ref. [54]. These continuations led to a number of
interesting conclusions. Both the Peregrine soliton and the
KM breather were possible to continue for small values of
the nonlocality parameter ν. This is appealing because it
suggests that the structures are not particular to the integrable
limit and can, indeed, be continued in the nonintegrable case.
Additionally, as the structures are continued, they develop
undulations which, in some cases (e.g., the KM state), suggest
connections with other states that have been recently identified
in integrable models, namely, rogue waves mounted on elliptic
function, spatially periodic structures. With regard to the dou-
bly periodic states with periodicities in both space and time,
these were more robustly identified through our continuation
scheme and could, in fact, be continued up to ν = 2 and
beyond. However, here too, there exists an interesting twist,
namely, the structures beyond a certain degree of nonlocality
lost their temporal periodicity and became genuinely station-
ary in their modulus, maintaining only the spatial periodicity.
These spatially periodic states were subsequently continued
downward all the way to the local NLS limit, confirming their
cnoidal nature in the latter and revealing the bifurcation of
their spatiotemporally periodic counterparts.

We believe that these results offer considerable insight
into the potential of the nonlocal model to support states
(including rogue wave ones) with nonvanishing asymptotics,

i.e., ones beyond the more “standard” solitary wave ones.
However, additionally, they also motivate a number of further
questions and inquiries worth considering in future studies.
One of these is whether stationary elliptic function solutions
can be suitably generalized in analytically available wave
forms in the nonlocal case (or whether these can only be
identified in limiting cases such as the ones of ν → 0 and
ν → ∞ considered herein). Another topic of interest is to
systematically explore continuations of the rogue waves on
periodic wave background and explore how such structures
may generalize in the case of the nonlocal model. Possibly,
these may be involved in bifurcation phenomena associated
with the states considered here. Another more open ended
challenge is whether rogue-wave-like patterns, such as the
Peregrine soliton or the KM breather, can be continued be-
yond the intervals of ν for which they were found herein in
the case of the nonlocal model. Lastly, in the present paper,
we focused chiefly on the existence and in some cases on the
bifurcations of the solutions. However, there are stability tools
gradually emerging (such as, e.g., the Floquet analysis of the
KM state and the consideration of the Peregrine as a limiting
case of that calculation [58]) that would be quite relevant to
consider in the present nonlocal setting as well. While there
is no direct, universally accepted notion of stability of rogue
wave structures such as the Peregrine (hence, we have not
extended our considerations to this direction herein), such
tools are worth examining aiming to offer some initial insights
toward the study of stability. Potential progress in any of these
directions will be reported in future publications.
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