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Laser-induced control of an electronic nematic quantum phase transition
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Ultrafast techniques have emerged as promising methods to study and control quantum materials. To maintain
the quantum nature of the systems under study, excess heating must be avoided. In this paper, we demonstrate
a method that employs the nonequilibrium laser excitation of planar-stretching optical phonons in tetragonal
systems to quench an electronic nematic state across a quantum phase transition. Appropriately tuned off-
resonant pulses can perform a quantum quench of the system either into the nematic phase (red detuning) or out
of it (blue detuning). The nonlinear coupling of this phonon mode to nematicity not only mediates interactions
in the nematic channel, but it also suppresses heating effects. We illustrate the applicability of our general results
by considering the microscopic parameters of the nematic unconventional superconductor FeSe.

DOI: 10.1103/PhysRevResearch.2.013336

I. INTRODUCTION

Nonequilibrium studies of strongly correlated electron sys-
tems have undergone significant progress in recent years, due
to both theoretical advances [1–3] and outstanding develop-
ments in ultrafast pump-probe techniques [4–7]. Light-based
control of quantum materials has wide applications ranging
from high-temperature superconductivity [6–8] to quantum
computation [9]. The basis for such control derives from the
use of laser pulses to switch between different electronic
states inhabiting the phase diagrams of these exotic mate-
rials. A natural route to realizing such control is to exploit
the electron-phonon coupling and precisely excite infrared-
active optical phonon modes [5,10–13] via strong terahertz
laser pulses [14–17]. Because infrared phonon modes do not
couple directly to the electronic charge density, the changes
in electronic properties are mediated by nonlinear effects
[18–20]. Importantly, the ordered states that can be most
efficiently controlled by this approach are those that couple
strongly to the lattice, such as superconductivity or metal-
to-insulator transitions [8,19–21]. Identifying a method to
optically control a strongly correlated electronic phase, while
maintaining its quantum, low temperature properties, would
provide a key ingredient for manipulating the intertwined
orders characteristic of quantum materials.

Electronic nematicity is intimately coupled to the lattice
[22–24]. When the electronic system spontaneously breaks
rotational symmetry [25], it inevitably triggers a structural dis-
tortion. Nematic phases have been widely observed in quan-
tum materials, from unconventional superconductors such as
cuprates, pnictides, and heavy fermions, to ruthenates and
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semiconductors displaying the quantum Hall effect [26–29].
The driving mechanism of nematicity in these compounds
and its relationship with other phenomena such as supercon-
ductivity, magnetism, and charge-order, are all hotly debated
[29–31]. Most suggestively, in several of these materials it
is widely believed that the nematic phase ends at a putative
quantum critical point (QCP) [32], which may host an exotic
non-Fermi-liquid phase and a superconducting dome [33].
Controlling the nematic degrees of freedom would therefore
provide a high-precision tool for studying the competing and
intertwined orders in these systems. The strong coupling to the
lattice [34] suggests light control as a feasible route, which has
hitherto remained largely unexplored.

In this paper, we develop a theory of nonequilibrium op-
tical control of a generic nematic phase on the square lattice,
based on the off-resonance excitation of a particular infrared
optical phonon mode. Being entirely based on symmetry
arguments, our model is independent of microscopic consid-
erations, and is thus applicable to a wide variety of nematic
materials. In particular, we demonstrate how our results offer
an avenue to implement a laser-controlled quench across the
nematic quantum phase transition, as illustrated schematically
in Fig. 1. This can be used to either promote nematic order
in an otherwise disordered state or to suppress nematic order
to enhance other competing states, such as superconductivity
[35]. We illustrate the applicability of our model by consider-
ing microscopic parameters of the unconventional supercon-
ductor FeSe, a poster child of electronic nematic order.

The key ingredient in our analysis is that the onset of ne-
matic order breaks the tetragonal symmetry either by making
the horizontal and vertical bonds inequivalent (called dx2−y2 -
wave, or B1g, nematic order) or the diagonals inequivalent
(called dxy-wave, or B2g, nematic order). For concreteness,
we consider hereafter the B1g case. The orthorhombic lattice
distortion that accompanies nematic order is due to the lin-
ear coupling between the electrons and a transverse acous-
tic phonon mode that propagates along the [110] direction.
The phonon velocity is strongly renormalized by nematic
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FIG. 1. Schematic illustration of the proposed experimental
setup. Depending on the detuning between the applied optical pulse
and the Eu phonon frequency, �ph, the nematic phase can be either
enhanced [(a), red detuning] or suppressed [(b), blue detuning]. The
solid line denotes the equilibrium nematic phase transition at T (0)

nem,
while the dashed lines illustrate the nonequilibrium shift as the laser
intensity is increased. The stars denote compositions that would
undergo a nonequilibrium nematic transition.

fluctuations and vanishes at the nematic transition. Although
this linear nematoelastic coupling has been widely employed
to investigate the nematic properties of many materials
[28,32], the acoustic nature of the phonon makes it inconve-
nient for optical control [36]. Instead, we propose to control
the nematic phase by optically exciting the Eu optical phonon
mode, corresponding to two degenerate planar stretching
lattice vibrations. This infrared-active mode, ideal for laser
manipulation, is present in any tetragonal system. While
symmetry forbids incoming photons and the Eu phonon from
coupling linearly to the electronic density, the Eu vibrations
do couple quadratically to the electronic nematic degrees
of freedom. Therefore, in contrast to traditional pump-probe
setups, the lattice is excited directly, whereas the electronic
nematic channel is only excited indirectly, via the nonlinear
phonon coupling. As a result, one expects heating effects,
which commonly plague the interpretation of pump-probe
data, to be significantly reduced. Our proposal is thus similar
in spirit to that of Ref. [20], which proposed that the excitation
of infrared-active phonons leads to an attractive electronic
interaction that favors superconductivity via the nonlinear
coupling to the charge density.

The differences between a quadratic versus a linear cou-
pling also play a crucial role in determining how a nematic
phase transition can be controlled by externally applied lattice
perturbations. Physically, the linear coupling between elec-
trons and the acoustic phonon is manifested by a change in the
rest positions of the atoms of the square lattice once nematic
order onsets. As a result, lattice displacements induced by
external strain act as a conjugate field to the nematic order
parameter. Thus, although strain can be used to assess the
nematic susceptibility, it smears the nematic transition com-
pletely, making it difficult to manipulate a nematic transi-
tion with strain. In contrast, the quadratic coupling to the
optical phonon is manifested as a splitting of the resonance
frequencies of the degenerate Eu phonon modes [20,37] in
the presence of nematic order. Consequently, the external
excitation of this phonon mode shifts the frequency of the low-
energy collective nematic mode, without breaking explicitly
the tetragonal symmetry of the system.

As we will show, the amplitude and phase of this shift
can be controlled in a precise manner by an external optical

pulse and thus used to tune the system both toward and away
from the nematic transition, in proportion to the intensity of
the exciting laser. The experimental consequences are shown
in Fig. 1. For laser frequencies below the phonon resonance
frequency, � < �ph, the nematic phase is enhanced, while for
� > �ph it is suppressed.

To derive these results, we start from a general model for
coupled nematic degrees of freedom and Eu phonons. We
are not concerned with the microscopic mechanism of the
nematic transition, and merely describe it by a bosonic field
φ that transforms as the B1g irreducible representation of the
tetragonal point group. In terms of the electronic field opera-
tors ψ (k, ν), the nematic bosonic field is proportional to the
quadrupolar charge density, given by φ(q, ω) ∼ ∑

k,ν (k2
x −

k2
y )ψ†(k + q/2, ν + ω/2)ψ (k − q/2, ν − ω/2).

We describe the phonons by an optical degenerate mode
X = (X1, X2) which couples to an electric field ε = (ε1, ε2).
For concreteness, we assume our system is on a two-
dimensional lattice, and is described by the coupled action,

h̄S =
∫
C

dt
∑

xi

[Lph + Lnem + Lint], (1)

where C is the Keldysh contour, and

Lnem = φ
1

2χ0

(−∂2
t − r

)
φ − u

4χ0
φ4, (2)

Lph = M

2
X

(−∂2
t − �2

ph

) · X + qX · ε, (3)

Lint = − λ

a2
φ(x)

(
X 2

1 − X 2
2

)
. (4)

Here, r and u have units of frequency squared and describe
a Landau theory for the nematic critical point that occurs at
r = 0. Thus,

√
r should be understood as the frequency of

the nematic collective mode, which softens at the nematic
transition. For a derivation of this action in the context of
FeSe see, e.g., Refs. [22,29,38]. M, �ph, and q describe
the mass, resonance frequency, and ionic charge of the Eu

mode, which we approximate as an Einstein phonon due to its
optical nature. λ is the effective coupling and a = √

h̄/M�ph

is the phonon oscillator length. We choose χ0 such that φ is
dimensionless.

Our main result is that due to the electric field excitation,
the frequency of the nematic mode is modified. For the sim-
plest case of a system right above the nematic transition, with
a monochromatic laser field that does not explicitly break the
symmetry of the lattice (e.g., a linearly 45◦ polarized beam),
the modification takes the form

r → r + rε, (5)

where

rε ∝ |ε|2(�2
/
�2

ph − 1
)
. (6)

In other words, the nematic frequency is softened or hardened
in proportion to the beam intensity and the detuning from the
photon resonance, pushing the system either to or away from
an instability. As we will show, the result of this modification
is that at a critical field strength |ε| = εc of a red-detuned
beam, a system in the tetragonal phase becomes unstable to
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nematic order. Similarly, a blue detuned beam has a critical
strength for which the static order parameter of a system in
the nematic phase become zero. In general, the behavior of
the nematic field in response to the laser excitation is more
complicated than the specific result in Eq. (5), but the overall
behavior is the same: There is a critical field strength for
which a red-detuned beam pushes the system into a nematic
phase and a critical strength for which a blue-detuned beam
pushes the system out of a nematic phase.

The rest of the paper is organized as follows. In Sec. II,
we analyze the action of Eqs. (1)–(4) and derive the modifi-
cation of the nematic response for a monochromatic beam.
In Sec. III, we generalize our results to a laser pulse of a
finite width and study the full effective action for the nematic
mode. In Sec. IV, we describe how to apply our results to the
Fe-based superconductor FeSe.

II. DERIVATION OF THE EFFECTIVE NEMATIC
RESPONSE

A. The nematic effective action

We start with the model introduced in the introduction,
Eq. (1). The model is defined on the Keldysh contour to
account for the nonequilibrium effects of the electric field.
In the usual manner [39], we split C into backward (<) and
forward (>) segments, and perform the Keldysh rotation for
the fields, i.e., φcl,q = (φ> ± φ<)/2. Then we integrate out the
phonon modes and obtain an effective action for the nematic
mode,

Snem =
∑

xi

Tr

[
1

2
�χ−1

nem� − q2

2
Eτ 1Dτ 1E

]
, (7)

where the trace is over (Euclidean) time and

D =
[

D−1
0 − 2

λ

a2
�̃σ z

]−1

− D0. (8)

Here, � = (φcl, φq ), �̃ = τ 1φcl + τ 0φq, E = (εcl, εq), τ, and
σ are Pauli matrices in Keldysh and coordinate space, respec-
tively, and D0 and χnem are the equilibrium propagators of the

phonon and nematic modes, whose retarded components are
given by the (cl, q) component of the matrix propagators,

DR(�) ≡ D(cl,q)
0 (�) = M−1

�2 − �2
ph + i�ph�

σ 0, (9)

χR(ω) = χ0(ω2 − r + i�nemω)−1. (10)

�nem and �ph are phenomenological damping terms, arising
from, e.g., Landau damping. Explicitly, D0 has the form

D0 =
(

DK DR

DA 0

)
⊗ σ 0. (11)

Equation (7) is our first main result. It demonstrates that the
phonons modify the nematic action in proportion to the laser
intensity |E |2. To proceed further analytically, we expand D
perturbatively to second order in φ. The expansion is justified
for |φ| 	 1, and henceforth we always assume we are in this
regime (the expansion is also justified, even for |φ| ∼ 1, when
λ/�ph 	 1 and the field frequencies are not too close to the
phonon resonance). The leading contributions to the action are

δS(1) = −λq2

a2
TrEτ 1D0�̃D0σ

zτ 1E, (12)

δS(2) = −2λ2q2

a4
TrEτ 1D0�̃D0�̃D0τ

1E . (13)

Equation (12) implies that the linear term in � vanishes when
the laser excites both Eu modes equally (e.g., for circularly
polarized or 45◦ polarized light). This is a consequence of the
trace over σ z, which yields a term proportional to ε1 − ε2.
Then the only contribution is the quadratic term, Eq. (13),
which corresponds to a shift δχ−1 to the inverse nematic
susceptibility χ−1

nem in Eq. (7).
While the results above are general, we now focus on the

physically interesting case of a nematic mode that is much
slower than the phonons r 	 �2

ph, as expected near a nematic
phase transition, and assume a classical laser field εq ≈ 0. For
definiteness, we choose a 45◦ polarized beam with ε1 = ε2 =
εcl(t ). Explicitly, Eq. (13) has the form

δS(2) = −2q2λ4

a4

∫
dω1dω2dν

(2π )3
εcl(ω1 − ν)DA(ν − ω1)DR(ν − ω2)εcl(ν − ω2)

× (φcl(−ω1) φq(−ω1)) ·
(

0 DA(ν)

DR(ν) DK (ν)

)
·
(

φcl(ω2)

φq(ω2)

)
. (14)

Equation (14) gives a correction to the inverse nematic sus-
ceptibility δχ−1, which can be computed for any pulse shape.
We discuss it in more detail later in this section. For now, we
specialize to the case of a monochromatic beam:

εcl(t ) = 1√
2
ε0 cos �t . (15)

Plugging the Fourier transform of Eq. (15) into Eq. (14), we
find the particular action term from which we can read out the

retarded nematic susceptibility:

δS̃(2) = −q2λ2ε2
0

2a4
|DR(�)|2

∫
dω

2π
φq(−ω)[DR(ω + �)

+ DR(ω − �)]φcl(ω) . (16)

Here we have neglected terms with a large frequency trans-
fer, of order 2�ph. Neglecting these terms is justified if the
relevant frequencies of the nematic system, i.e.,

√
r, �nem are

smaller than �ph.
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B. The collective modes of the nematic field

The integrand of Eq. (16) is nothing but the induced correc-
tion to the inverse retarded nematic susceptibility (δχ−1)R(ω),
which is added to the bare retarded susceptibility in Eq. (10).
The poles of the renormalized retarded nematic susceptibility
(χ̃−1)R = (χ−1)R + (δχ−1)R are then given by

ω2 = r − i�nemω + λ2χ0

h̄�ph
nph[dR(ω + �) + dR(ω − �)] ,

(17)

where nph = 〈X 2
1 + X 2

2 〉/a2 ≈ |DR(�)|2q2ε2
0/a2 is the aver-

age phonon occupation number and dR = M�2
phDR is a nor-

malized propagator. Equation (17) has six solutions. To gain
insight into them, we consider the classical equations of
motion for the coupled phonon-nematic system:

Ẍi + �phẊi +
(

�2
ph ± 2λ

Ma2
φ

)
Xi = qε0√

2M
cos �t, (18)

φ̈ + �nemφ̇ + rφ + uφ3 + λχ0

a2

(
X 2

1 − X 2
2

) = 0. (19)

Substituting the ansatz φ(t ) = Reφ0e−iωt , the values of ω

that solve the classical equations coincide with the poles of
Eq. (17). Equation (19) is very similar to the three-wave
mixing problem, typical of cavity quantum-electrodynamic
applications [40]. What is special in our case is that the
three-wave mixing term is proportional to X 2

1 − X 2
2 , so it

vanishes unless the nonlinear feedback from φ is accounted
for. The first set of poles corresponds to a correction of the
“bare” frequency ω = √

r of the nematic collective mode. If√
r 	 {�ph, �ph, �} is the smallest scale in the problem, we

may expand the propagators in Eq. (17) in ω and find

−ω2 − i(�nem + �ε )ω + (r + rε ) ≈ 0, (20)

where

rε = −nph
2λ2χ0

h̄�ph
|dR(�)|2(1 − �2

/
�2

ph

)
, (21)

�ε = �phnph
2λ2χ0

h̄�3
ph

|dR(�)|4 2
(
�4

ph − �4
) − (

�2
ph − �2

)2

�4
ph

.

(22)

This is our second main result, showing that r is shifted
either to or away from the nematic transition depending on
the detuning between the laser frequency � and the phonon
frequency �ph, and in proportion to the pulse intensity ε2

0.
Figure 2 depicts the evolution of these poles for a slightly

red-detuned pulse. As ε0 increases, the nematic mode fre-
quencies soften toward zero and eventually split and become
imaginary. At a critical value ε0 = εc, one of these imaginary
poles crosses the real axis, signaling an instability toward
nematic order, as shown by the time evolution of the classical
solution φ(t ) = φ0e−iωt depicted in the inset.

The figure also displays other poles of χ̃R from Eq. (17).
In addition to the pair of poles discussed above, there are four
additional poles corresponding approximately to the poles of
the phonon propagators DR(� + ω) and DR(ω − �), which
are therefore purely dynamic and nonperturbative in nature.
For small detuning δ = �ph − � 	 �, two of the poles are

FIG. 2. Evolution of the low-lying poles of the nematic suscep-
tibility as function of the intensity of the applied electric field ε0.
Solid (dashed) lines denote the real (imaginary) parts of the poles.
The magenta trace is a pole that is softening due to the applied field,
triggering an instability when its imaginary part becomes positive at
the critical field strength εc. The inset depicts the classical evolution
of φ(t ) for several ε0 values. The parameters used are given in
Appendix A.

of order ±2�ph and do not contribute to the slow dynamics

of the nematic mode. The other poles obey ω ≈ −i �ph

2 ±
δ
√

1 − nph
λ2χ0

h̄rδ . Note that the residue of these four additional
poles vanish as ε0 → 0.

The shifting of the nematic mode rε in Eq. (21) has a simple
physical interpretation. The situation when

√
r is the smallest

frequency in the system corresponds to a type of inverse
Born-Oppenheimer problem, where the electronic dynamics
is much slower than the ionic (phononic) dynamics. The
rapid phonon oscillations can then be integrated out, leaving
a quasistatic contribution to the effective nematic excitation
energy. As long as the lattice symmetry is not explicitly
broken by these oscillations—i.e., the first-order contribution
in Eq. (12) vanishes—the net effect is a slowdown or speedup
of the nematic fluctuations.

The evolution of the poles and nematic order parameter
can be found also for many other cases, such as when

√
r is

not the smallest frequency in the system. A particular case
of interest is when �nem  √

r, i.e., the nematic mode is
overdamped. This is the case in the Fe-based superconductors.
The analysis is slightly modified from our discussion above,
but the qualitative behavior is the same. We present this and a
variety of other cases in Appendix A. For now, we finish this
section by studying the behavior of a system with r < 0, i.e.,
in the nematic phase, for a blue detuned beam.

In the ordered phase, the steady-state value of the ne-
matic mode at zero field is nonzero, making the solutions
of Eqs. (18) and (19) more complex. However, as long as φ

is small, we can linearize the equations and obtain analytic
solutions. For concreteness, consider the case where

√|r| is
the smallest scale in the problem, i.e., we are approaching the
nematic transition from the ordered side. Then the equation of
motion for φ becomes

φ̈ + (�nem + �ε )φ̇ + (r + rε )φ + uφ3 = 0 , (23)
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FIG. 3. Classical evolution of the nematic order parameter for the
case where r < 0, and the laser is used to quench the nematic order.
The parameters used are given in Appendix A. The color code is the
same as in Fig. 2.

where �ε, rε were defined in Eqs. (21) and (22). The static
order parameter takes the value

〈φ〉 = ±
√

−(r + rε )

u
, (24)

where the sign is determined by initial conditions. Linearizing
around the static order parameter value, φ(t ) = 〈φ〉 + ϕ, we
find

ϕ̈ + (�nem + �ε )ϕ̇ − 2(r + rε )ϕ = 0 , (25)

which describes stable oscillations around the order parameter
value. Figure 3, the evolution of ϕ for some characteristic
parameters, shows how the nematic order goes away with
increased field.

III. THE FULL NEMATIC EFFECTIVE ACTION

In the previous section, we studied the shift of the
poles of the nematic susceptibility for a monochromatic
beam. In actual experiments, the laser is pulsed, i.e., ε(t ) =
ε0 cos(�t )e−|t |/τpulse , where τpulse controls the duration of the
pulse. To properly account for the behavior in the physical
situation, we must study the full induced effective action in
Eq. (14).

We start by explicitly writing out the effective action as

S(2) =
∫

dω1dω2

2π
�(−ω1)

[
χ−1

nem(ω1)δ(ω1 − ω2)

+ δχ−1(ω1, ω2)
]
�(ω2), (26)

where we recall that

χnem(ω) =
(

χK (ω) χR(ω)
χA(ω) 0

)
, �(ω) =

(
φcl

φq

)
, (27)

and the correction to the inverse nematic susceptibility, as
shown in Eq. (16), is

δχ−1(ω1, ω2) = −2q2λ4

a4

∫
dν

(2π )2
εcl(ω1 − ν)DA(ν − ω1)

×
(

0 DA(ν)
DR(ν) DK (ν)

)
DR(ν−ω2)εcl(ν − ω2).

(28)

To understand the meaning of Eq. (28), it is convenient to con-
sider the situation when δχ−1(ω1, ω2) = F (ω1)δ(ω1 − ω2)
is a function of just one frequency. It can be verified that
this is the case when the laser beam has only one compo-
nent, εcl(t ) ∝ e−i�t , such that the integrations in Eq. (28) are
constrained to ω1 = ω2, ν − ω2 = �. In that case the action,
Eq. (26), depends only on one parameter, and furthermore
obeys the fluctuation-dissipation theorem (FDT) at equilib-
rium [39],

χ̃K (ω) = σ (ω)(χ̃R(ω) − χ̃A(ω)), (29)

where χ̃ = (χ−1 + δχ−1)−1 is the renormalized nematic sus-
ceptibility and σ (ω) is the sign function, which is the zero-
temperature limit of the Bose-Einstein distribution function.
Equation (29) follows from the fact that both χ and D obey
the equilibrium FDT separately. The implication is that a
pure monochromatic laser induces a quasiequilibrium action
for the nematic mode, provided that the nematic mode is
irrelevant at frequencies of order 2� and that superposition
between positive and negative frequency elements can be
neglected, as in, e.g., a rotating-wave approximation. Recall
that the electric field, being real, always has at least two
frequencies, ±�.

To study the effect of a light pulse which has a finite enve-
lope, it is convenient to transform to the frequency difference
and sum ω′ = ω1 − ω2, ω = (ω1 + ω2)/2, so

δχ−1(ω,ω′) = −2q2λ4

a4

∫
dν

(2π )2
εcl (ω + ω′/2 − ν)

× DA(ν − ω − ω′/2)

(
0 DA(ν)

DR(ν) DK (ν)

)

× DR(ν−ω+ω′/2)εcl (ν−ω+ω′/2). (30)

If δχ−1 ∝ δ(ω′), the system is in quasiequilibrium. For a slow
enough pulse of length τpulse much greater than the inherent
timescales of the problem, dictated by �ph, �nem, etc., the ω′
dependence is peaked near zero and can be dropped from the
� fields. In that case, we can transform δχ−1 from ω′ back
to time and obtain a quasistatic approximation for the nematic
susceptibility correction δχ−1(ω, t ).

In Fig. 4, we depict numerical computations of
δχ−1(ω,ω′) for a pulse of the form

ε(t ) = x̂ + ŷ√
2

ε0 cos(�t ) e−|t |/τpulse , (31)

where we used the following parameters: �ph = 0.05�ph,
τpulse = 6π/�ph. To obtain clear-looking images, we tuned
the pulse near resonance, � = �ph − �ph/2. Aside from the
retarded component, in Fig. 4 we also present the Keldysh
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FIG. 4. The (normalized) retarded (a), (b) and Keldysh (c), (d) components of the correction to the nematic susceptibility δ(χ−1)R/K

for a pulse at a frequency near the resonant phonon frequency. For clarity, we divided the Keldysh components by 2, since in equilibrium
|GK | = 2|ImGR|.

component of δχ−1. Figure 4 shows that the quasistatic
approximation is indeed a good one for these parameters.
Indeed, in Fig. 4 the width of δχ−1 is narrower on the ω′ axis
than on the ω axis, implying that δχ−1(ω, t ) evolves slowly in
time for those frequency scales in ω where δχ−1 is significant.

We verified that the result does not change qualitatively
for larger detuning. In Fig. 5, we depict the correction to
the nematic susceptibility for an off-resonant pulse with
� = �ph − 7�ph/2, and it can be seen that the quasistatic
approximation is still a good one. Furthermore, for the off-
resonant pulse the correction to the nematic susceptibility
has a quasiequilibrium form. This can be seen visually in
Fig. 5, where the retarded and Keldysh components of δχ−1

show an approximate agreement with the equilibrium FDT,
see Eq. (29) and the discussion surrounding it. To see this,
recall that by construction, (δχ−1)cl,cl = 0, while from the
figure (δχ−1)K ≈ −2iσ (ω)Im(δχ−1)R, where σ (x) is the sign
function. Inverting the matrix yields δχK ≈ 2iσ (ω)Im(δχ )R.
However, for the on-resonant pulse depicted in Fig. 4, the
nematic order-parameter is not in quasiequilibrium, as can be
seen by, e.g., the significant induced real part of (δχ−1)K . In
both cases, however, there is an induced steady-state nonzero
order parameter beyond some critical field strength.

IV. ULTRAFAST CONTROL OF NEMATIC ORDER IN FeSe

We now apply the results from the previous section to
study the evolution of the nematic order parameter in real
time in response to a pulse of finite width. We show that it is
possible to control the nematic order parameter and to perform
a quench of the nematic phase transition.

In Fig. 4, we displayed the field-induced correction
δχ−1(ω,ω′) to the nematic effective action in response to a
pulse in near resonance with �ph. We calculate the classical
response to the pulse by solving Eqs. (17)–(19) for the same
pulse, with the values of λ = 0.04, ε0 = 0.04. Figure 6(a)
depicts the evolution of both the nematic and phononic de-
grees of freedom in response to the pulse. It can be seen
that φ(t ) (blue curve) is initialized with a small nonzero
value, and decays until the pulse (black curve) kicks in and
enhances the nematic order parameter well above its initial
value, but only after the phonon mode has been excited (red
curve). In addition, in Fig. 6(b) we present (δχ−1)R(ω, t ),
which is just the inverse Fourier transform of (δχ−1)R(ω,ω′).
The real part has a finite contribution at zero frequency for
the duration of the pulse, which is equivalent to the shift rε

of the nematic collective mode in Eq. (21). Similarly, the

FIG. 5. The (normalized) retarded (a), (b) and Keldysh (c), (d) components of the correction to the nematic susceptibility δ(χ−1)R/K for
a pulse at a frequency away from the resonant phonon frequency. For clarity, we divided the Keldysh components by 2, since in equilibrium
|GK | = 2|ImGR|.
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FIG. 6. Evolution of the nematic order parameter in the case of
a laser pulse of duration τpulse. (a) Classical evolution of φ(t ) and
X 2

2 (t ) − X 2
1 (t ) in response to the same pulse. Note that the phonon

modes are excited first by the pulse, and only later the nematic field
responds. Here, Tph = 2π/�ph. (b) Real and imaginary parts of the
correction to the nematic susceptibility. See Appendix A for details
on the parameters used.

imaginary part has an odd-in-frequency contribution whose
coefficient is equivalent to �ε of the nematic collective mode
in Eq. (22).

These results support a feasible protocol for a quantum
quench near a putative nematic QCP, consisting of a pulse
with frequency � ∼ �ph and length τpulse, which excites
both components of the Eu mode equally. The other relevant
timescales for this protocol are the characteristic nematic time
�−1

nem ∼ min(r−1/2, �nemr−1), the phonon decay time �−1
ph 

�−1
ph , and τel, the electronic heating time. To establish coherent

dynamics, the latter must be the longest timescale of the
problem, i.e., τel  �−1

nem, �−1
ph . We expect this to be the case

because, in contrast to traditional pump-probe experiments,
our method excites the lattice directly while electronic heating
occurs indirectly [41,42].

The excitation of the phonon mode occurs on a timescale
τph ∼ �−1

ph for a resonant laser pulse or τph ∼ �−1
ph for an

off-resonant pulse. If τph  �−1
nem, as is expected for an on-

resonance excitation fairly far from the nematic transition, the
modification of the nematic behavior is quasistatic and the
pole of the nematic susceptibility is dissipative. For τph 	
�−1

nem, as expected near the critical point or for a sufficiently
off-resonant laser pulse, the induced softening of the nematic
mode [Eq. (21)] is essentially instantaneous. This results in a
quantum quench of the nematic instability.

To show that these conditions can be realized in actual sys-
tems, we consider the case of FeSe [30,43]. This iron-based
superconductor (TSC ≈ 8 K) displays an electronic nematic
transition at Tnem ≈ 90 K, that is suppressed to zero upon S
doping, suggesting a putative metallic nematic QCP [44,45].
Because FeSe1−xSx does not display long-range magnetic
order at ambient pressure, it is an ideal system for studying

the interplay of nematicity and superconductivity. Here, we
present estimates of the relevant parameters, and the details
of how we extracted the numbers appear in Appendix B. We
estimate from existing data on FeSe and related compounds
[46–62] that h̄�ph ∼ 30 meV, h̄�ph ∼ 0.5 − 1.5 meV, and
h̄�nem ∼ 10 meV away from the transition, softening fur-
ther as one approaches it. In addition, we estimate τ−1

el <

0.25 meV away from the transition, which can get as small as
0.04 meV approaching the transition. These estimates show
that the quantum quench regime is achievable in FeSe.

We use these parameters to also estimate the coupling λ

and, thus, the expected maximum shift in the nematic suscep-
tibility. As shown in Eq. (18), static nematic order 〈φ〉 �= 0
splits the frequency of the Eu mode by h̄�� ≈ 2λ〈φ〉. We
estimate 〈φ〉 from the elliptical distortion of the Fermi sur-
face measured by angle-resolved photoemission spectroscopy
(ARPES), 〈φ〉 ≈ �kF /kF . This leads to λ/h̄�ph ∼ 0.04. The
maximum shift of the nematic transition temperature can then
be obtained by a Lindemann criterion argument: The maxi-
mum possible occupation nL

ph will have 〈X 2〉 ≈ a2nL
ph ≈ c2

L�2,
where � = 3.7 Å is the FeSe lattice constant, and cL is usually
[46] a fraction of the order cL = 0.15. Using these values and
a conservative estimate nph = 0.15nL

ph, we find a shift of 90 K
in the nematic transition temperature (about 4 K per phonon),
indicating the experimental feasibility of a quantum quench
both to study and to control the nematic phase over a wide
temperature range. Since TS = 90 K in undoped FeSe, this
range is enough to move pristine samples to the vicinity of the
QCP at low temperatures, thereby permitting a direct study of
the effects of nematic fluctuations on the superconducting Tc.
While the size of this shift may seem surprising, it is a natural
result of the fact that energy scales in FeSe, as we showed
above, are always on order of several meV, which translates
to tens of Kelvin. We caution, however, that at such field
strength we also expect some modification of the electronic
band structure, due to the indirect coupling of the Eu phonon
to the electronic density via an A1g phonon. In addition, if the
nematic order parameter is not small, other nonlinear effects,
such as magnetism, may appear.

V. SUMMARY

In this paper, we presented a theory for the coherent control
of a nematic order parameter via laser excitation. We showed
that the nonequilibrium excitation of the infrared-active Eu

phonon mode present in tetragonal systems mediates elec-
tronic interactions in the nematic channel.

Besides establishing a robust protocol for light control of
nematicity, this result unveils a promising and experimen-
tally feasible avenue to induce a quantum quench across the
transition of correlated materials that display nematic order.
Because nematic fluctuations are intimately connected to
other electronic instabilities, most notably superconductivity
and magnetism, the nonequilibrium excitation of nematic
fluctuations may also be used to drive transient states with
different types of electronic orders. In particular, suppressing
nematicity can indirectly enhance superconductivity, since
these are known competing orders [35].
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APPENDIX A: EVOLUTION OF THE NEMATIC
PROPAGATOR’S POLES FOR GENERIC PARAMETERS

In this Appendix, we will consider other representative
solutions to Eq. (17) of the main text that were not discussed
in the paper. Specifically, we will relax the conditions that

√
r

is the smallest energy scale in the problem. We solve Eq. (17)
of the main text, which we reproduce here for convenience:

ω2 = r − i�nemω + λ2χ0

h̄�ph
nph[dR(ω + �) + dR(ω − �)].

(A1)

We interpret the solution using the classical equations of
motion, Eqs. (A2) and (A3), which we again reproduce here:

Ẍi + �phẊi +
(

�2
ph ± 2λ

Ma2
φ

)
Xi = qε0√

2M
cos �t, (A2)

φ̈ + �nemφ̇ + rφ + uφ3 + λχ0

a2

(
X 2

1 − X 2
2

) = 0 . (A3)

In the figures that follow, we present the numerical so-
lution of the pole equation, Eq. (A1) and of the classical
equations of motion, Eqs. (A2) and (A3), for several rep-
resentative situations. We first present the solutions for the
disordered phase r > 0, when the beam pushes the system
toward the ordered phase, and then present the solutions for
the case r < 0, when the beam pushes the system out of the
ordered phase. For completeness, we also include the case
considered in the main text and cite the specific parameter
values used to produce the figures in the paper. To reduce
the number of parameters in Eqs. (A1)–(A3) we perform the

following rescalings: λ → λ/h̄, h̄χ0 → χ0, Xi → Xi/a, and
qεi/Ma → εi. In all cases, we measure frequencies in units
of �ph = 1 and set λ = 0.01, χ0 = 1, and u = 1.

Before continuing, a comment is in order concerning
the solution of the classical equation of motion for φ. The
classical solution requires a nonzero initial value of the ne-
matic order parameter φ(t = 0) = φ(0), otherwise there is no
time-evolution. In the figures below, we have chosen φ(0) =
0.031. It is easy to see from the figures, e.g., Fig. 8, that
the eventual steady-state configuration of the system is not
determined by this initial condition. In an actual experiment,
φ(0) represents the instantaneous local value of the nematic
field and not the equilibrium value. A nonzero initial value is a
consequence of either fluctuations or an electromagnetic field
whose components do not obey ε1 = ε2 exactly [see Eq. (12)].

The specific cases shown here consider various limits with
either

√
r < �ph or

√
r  �ph. They also cover cases where

the detuning of the laser, |�ph − �|, is either comparable to
or much larger than the phonon damping, �ph. In addition, we
show solutions when �nem is large, of the order of �ph.

1. Disordered phase (r > 0)

Figures 7–10 are for a red-detuned beam (� < �ph), im-
plying that the system is driven toward the nematic phase.
Specific parameters for each case are shown in the figure cap-
tions; solid (dashed) lines denote the real (imaginary) parts of
the poles. Note that, in all cases, there is steady-state nematic
order for large enough electric fields, when the imaginary part
of one of the poles becomes positive.

2. Ordered phase (r < 0)

As we discussed in the main text, the solutions of Eqs. (A2)
and (A3) are more complex in the ordered phase due to the
static nonzero value of the order parameter. As we did there,
here we again linearize the equations for small φ, to obtain
Eqs. (23)–(25) which we reproduce here. The equation for φ

is

φ̈ + (�nem + �ε )φ̇ + (r + rε )φ + uφ3 = 0 , (A4)

FIG. 7. Evolution of the poles of the nematic propagator (a) and classical evolution of the nematic order parameter (b) for the case presented
in the main text. Here

√
r = 0.025, �ph = 0.1, and �nem = 0.01. The laser is red detuned from the phonon resonance and is set at � = 0.96

(recall �ph = 1). The critical field is ε0,c ≈ 0.097.
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FIG. 8. Evolution of the poles of the nematic propagator (a) and classical evolution of the nematic order parameter (b) when
√

r  �ph.
Specifically,

√
r = 0.25, �ph = 0.025, �nem = 0.005, and the laser is red detuned, with frequency � = 0.9875. The critical field is ε0,c ≈ 0.138.

The color code in the right panel is the same as in Fig. 7; the blue curve is hidden behind the yellow one.

FIG. 9. Evolution of the poles of the nematic propagator (a) and classical evolution of the nematic order parameter (b) for the case where the
Landau damping of the nematic mode is comparable to the phonon resonance, �ph ∼ �nem. Specifically, we choose

√
r = 0.25, �ph = 0.025,

�nem = 0.8, and � = 0.9875. The critical field is ε0,c ≈ 0.138 (identical to the case shown in Fig. 8). The color code in the right panel is the
same as in Fig. 7; the blue curve is hidden behind the yellow one.

FIG. 10. Evolution of the poles of the nematic propagator (a) and classical evolution of the nematic order parameter (b) for the case where
the Landau damping of the nematic mode is comparable to the phonon resonance and the laser detuning is large compared to the phonon
damping, �ph − �  �ph. The values used here are

√
r = 0.25, �ph = 0.025, �nem = 0.8, and � = 0.75. The critical field is ε0,c ≈ 5.13. The

color code in the right panel is the same as in Fig. 7.
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FIG. 11. Classical evolution of the nematic order parameter for
the case where r < 0, and the laser is used to quench the nematic
order. This figure is the same as Fig. 3 in the main text. Here

√−r =
0.025, �ph = 0.1, and �nem = 0.01. The laser is blue detuned from
the phonon resonance and is set at � = 1.025 (recall �ph = 1). The
critical field is ε0,c ≈ 0.120. The color code is the same as in Fig. 7.

where �ε, rε were defined in Eqs. (21) and (22) of the main
text. The static order parameter takes the value

〈φ〉 = ±
√

−(r + rε )

u
, (A5)

and the dynamics of the ϕ(t ), where φ(t ) = 〈φ〉 + ϕ(t ), are

ϕ̈ + (�nem + �ε )ϕ̇ − 2(r + rε )ϕ = 0 , (A6)

which describes stable oscillations around the order parameter
value.

In Figs. 11–13, we present solutions of the equations of
motion for several initial conditions with a blue-detuned beam
(� > �ph). In all cases, the system is driven out of the nematic
phase when the electric field strength is larger than a critical

FIG. 12. Classical evolution of the nematic order parameter for
the case where r < 0, and the laser is used to quench the nematic
order. In this specific case,

√−r 	 �ph and the Landau damping
of the nematic propagator is assumed comparable to the phonon
resonance frequency, �nem ∼ �ph. To be concrete, we choose

√−r =
0.025, �ph = 0.1, and �nem = 0.8. The laser is blue detuned from
the phonon resonance and is set at � = 1.0125. The critical field is
ε0,c ≈ 0.145. The color code is the same as in Fig. 7.

FIG. 13. Classical evolution of the nematic order parameter for
the case where r < 0 and the laser is used to quench the nematic
order. In this case, the Landau damping of the nematic propagator
is assumed comparable to the phonon resonance frequency, �nem ∼
�ph, while the detuning, � − �ph  �ph and

√−r  �ph. Here,√−r = 0.25, �ph = 0.025, and �nem = 0.8. The laser is blue de-
tuned from the phonon resonance and is set at � = 1.1. The critical
field is ε0,c ≈ 0.979. The color code is the same as in Fig. 7; for
clarity, the largest field (green curve) is omitted.

value ε0,c. Specific parameters for each case are displayed in
the figure captions. We do not present figures for the pole
evolution for these parameter sets, since after the linearization
in ϕ, all the pole information is already included in Eq. (A6).

3. Details of the numerical solutions

The positions of the poles depicted in Fig. 2 of the main
text and Figs. 7–10 in the Appendix were obtained from
analytical solution of Eq. (A1). The classical trajectories in
these figures, in Figs. 11–13, and in Figs. 2 and 6 of the
main text were obtained by numerical integration of Eqs. (A2)
and (A3). The maps of δχ−1 in Fig. 6 were obtained by
first numerically integrating the expression in Eq. (30), and
convolving the result by a Gaussian mask that suppresses large
frequencies, |ω,ω′| > 1/3. This was done to remove the high-
frequency components of the field. This was then transformed
back to the time domain by a numerical Fourier transform.
The maps in Figs. 4 and 5 were obtained by numerically
integrating the expression in Eq. (30).

APPENDIX B: ESTIMATES OF THE EXPERIMENTAL
PARAMETERS FOR FeSe

In the main text, we invoked the iron-based superconductor
FeSe1−xSx to demonstrate the feasibility of our quantum
quench protocol. In this section, we briefly outline the sources
and methods used to extract experimental parameters for this
compound. FeSe has been widely studied, due at least partly
to the fact that there are clean single crystals available, and
that it does not show long-range magnetic order at ambient
pressure [30]. Nevertheless, we were unable to find exper-
imental data for all the parameters used in our theory, and
therefore supplemented with data from other, related Fe-based
superconductors, most prominently FeTe and BaFe2As2.
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TABLE I. Estimated experimental parameters for the Fe-based
superconductor FeSe. Energies are quoted in meV, and wavevectors
in Å−1.

h̄�ph h̄�ph h̄�nem h̄τ−1
el EF kF �kF

30-33 0.4 - 1.5 10 0.24 25 0.13 0.02

Most of the external parameters in our theory are directly
measurable quantities. The exceptions are the coupling λ, the
maximum nematic order parameter strength 〈φ〉, and the bare
nematic susceptibility χ0/r. In general, the last two can only
be extracted from experiment up to a prefactor (which can also
be temperature dependent). In a Stoner-type theory for the
nematic transition, χ0/r0 ∼ NF , where r0 is the bare nematic
gap (at high temperatures) and NF is the density of states
at the Fermi level. Since the nematic susceptibility diverges
at the nematic transition temperature Tnem with the mean-
field behavior (T − Tnem )−1, we estimate in these systems
that χ−1

0 r = EF (T − Tnem )/Tnem. As mentioned in the main
text, we took �kF /kF as a proxy for 〈φ〉, which is again
only correct up to an unknown prefactor. We stress that the
uncertainty in our knowledge of χ−1

0 r and 〈φ〉 means that our
estimates for the effective coupling are only valid to within an
order of magnitude.

For clarity, we have compiled our estimates of the various
parameters for FeSe into Table I. We now briefly outline what
sources we used to extract the experimental parameters in
Table I and our estimate for the coupling, which, as noted in
the paper, is

λ = ��

2〈φ〉 , (B1)

where �� is the splitting of the Eu mode in the nematic phase.
The infrared phonon structure and dispersion relations in

FeSe have been both calculated [49–51] and detected experi-
mentally [47,52–54]. We discuss data only for the tetragonal
phase, above Tnem � 90 K. Reference [52] reported h̄�ph =
30.9 meV in a film of FeSe on CaF2, measured by optical
reflectometry. Reference [47] reported h̄�ph = 32 meV near
the M̄ point, measured by electron energy-loss spectroscopy
on a single crystal. Reference [54] reported h̄�ph = 31.3 meV
in neutron scattering. This tallies with theoretical calculations
[49,51] predicting h̄�ph = 30 − 35 meV, and only a weak
dispersion for the Eu mode. We did not find a reported
measurement of �ph for FeSe. However, Ref. [55] reported
h̄�ph ∼ 1.2 − 1.5 meV in the related chalcogenides FeTe and
FeTe1−xSex. For FeSe B1g optical mode, Ref. [56] reported a
decay rate h̄�B1g ≈ 0.4 meV at the nematic transition.

The electronic structure and dynamics of FeSe have been
extensively studied by (among others) ARPES and Raman
techniques. To estimate the relevant timescale �−1

nem, we con-
sidered reports of polarization-resolved Raman data measur-
ing the dynamic response of the nematic mode in FeSe1−xSx

[57,58]. These measurements show a wide damped peak
centered around 25 meV, and extending to about 50 meV
before beginning to decay. Although there are interesting
features in the entire region (for details see, e.g., Ref. [58]),
the sharpest features show up at frequencies below about

h̄�nem ∼ 10 − 12 meV, and soften as one approaches the
nematic transition, giving us the estimate for �nem in Table I.
To estimate the coupling constant λ, we used Eq. (B1). As
a proxy for 〈φ〉, we took the elliptical distortion of the
holelike Fermi surface �kF = kF,x − kF,y at the Z point. We
extracted the values for EF = 25 meV, kF = 0.13 Å−1 and
�kF = 0.02 Å−1 from Ref. [43] (all at the Z point). We have
not found a detailed study of the Eu mode splitting in FeSe.
However, the Eg mode, which is Raman active but has almost
the same resonance frequency as Eu, has been measured.
Reference [59] reports a maximum split of h̄�� = 0.4 meV
at 20 K. These estimates yield λ ≈ 1.3 meV.

Using these numbers, we obtain an estimate for the shift of
the nematic susceptibility. From Eq. (21) of the main text, the
maximum shift occurs for

�2 = �2
ph(1 − γ ), (B2)

where γ = �ph/�ph. The shift in the nematic transition tem-
perature Tnem is proportional to the shift in r. For small γ , the
shift is

δTnem

Tnem
= −rε

χ0EF
≈ 2λ2

EF h̄�ph
nph × �ph

2�ph
≈ 0.045nph. (B3)

Since Tnem ≈ 90 K, this corresponds to about 4 K per phonon.
To estimate the maximum possible phonon occupation num-
ber, it is simplest to consider what occupation number would
melt the lattice. This can be found from the Lindemann
criterion,

nL
pha2 = c2

L�2, (B4)

where � = 3.7 Å is the a-axis lattice constant of FeSe and cL

is some fraction (we choose the commonly used value cL =
0.15 [46]) and a is the classical oscillator length,

√
h̄/M�ph.

Since the Eu mode involves motion of both the Fe and Se
atoms, we use the mass, M = √

MFeMSe ≈ 67u. Then we find
a = 0.045 Å, which in turn implies nL

ph = 152. A conservative
estimate for nph is nph = 0.1 − 0.2nL

ph. To be concrete, we take
nph = 0.15nL

ph resulting in δTnem ≈ 90 K.
To estimate the equilibration time τel, we summed up the

phonon decay time �−1
ph with measured electronic decay times

�−1
el−ph from ultrafast optical reflectivity experiments. Typi-

cally, such measurements heat up the electronic subsystem,
which then decays slowly into the lattice [60,61]. This decay
is characterized by two distinct timescales: a fast decay of
the electrons into symmetry-preferred optical phonon modes
(e.g., A1g) and then a slow anharmoic decay of these modes
to the lattice. We took as our estimate for the decay time
�−1

el−ph the decay constant of this slow anharmonic decay.
We also considered temperatures not too close to the critical
temperature Tnem, out of the assumption that such a timescale
roughly characterizes a generic electron-phonon decay. We
obtained �−1

el−ph = 0.5 − 0.6 meV from Ref. [60]. We took as
our estimate for �ph the lower value quoted above in Table I
(which is one that was measured for actual FeSe), implying
a total decay τel = �−1

ph + �−1
el−ph = 18.8 − 17.2 ps. However,

this estimate does not take into account the expected slowing
down of electronic heating rates near the nematic transition.
Such slowing down has been measured in BaFe2As2 [62].
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