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Wet and dry internal friction can be measured with the Jarzynski equality
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The existence of two types of internal friction—wet and dry—is revisited, and a simple protocol is proposed
for distinguishing between the two types and extracting the appropriate internal friction coefficient. The scheme
requires repeatedly stretching a polymer molecule and measuring the average work dissipated in the process by
applying the Jarzynski equality. The internal friction coefficient is then estimated from the average dissipated
work in the extrapolated limit of zero solvent viscosity. The validity of the protocol is established through
analytical calculations on a one-dimensional free-draining Hookean spring-dashpot model for a polymer, and
Brownian dynamics simulations of (a) a single-mode nonlinear spring-dashpot model for a polymer and (b) a
finitely extensible bead-spring chain with cohesive intrachain interactions, both of which incorporate fluctuating
hydrodynamic interactions. Well-established single-molecule manipulation techniques, such as optical tweezer-
based pulling, can be used to implement the suggested protocol experimentally.
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I. INTRODUCTION

Conformational transitions in polymer molecules are im-
peded by solvent molecules, and sometimes additionally by
intramolecular interactions. The dissipation caused by the lat-
ter are termed as internal friction [1–6], and examples of such
dissipation include the damping of protein folding [7–11],
the modulation of stretching transitions in polysaccharides
[12], and the enhancement of dissipated work in the stretch-
relaxation of polymers [13–15]. While the microscopic origin
of internal friction is manyfold [11–21], it has been broadly
classified as being either of the wet or dry kind [5,22].

The transition of a protein from an unfolded to its native
folded state is commonly interpreted as a diffusive search
process over a rugged energy landscape [23], and the internal
friction associated with landscape roughness is typically con-
sidered to be of the wet type [10,17,24]. An analytical solution
for the diffusion coefficient in one dimension was derived by
Zwanzig [25] who observed that the effective friction γeff,
is related purely multiplicatively to the solvent friction γs,
as γeff = γs exp [(δ/kBT )2], where kB is Boltzmann constant,
T is the absolute temperature, and δ2 is the variance of the
heights of the normally distributed undulations. Since γs ∼ ηs,
where ηs denotes the solvent viscosity, the effective friction
is higher than that expected due to solvent friction alone, at
any finite value of ηs. It is also clear that the internal friction
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would vanish in the extrapolated limit of zero solvent viscosity
(ηs → 0), which is a characteristic feature of wet internal
friction.

On the other hand, experimental measurements of the
dependence of the reconfiguration time of small proteins on ηs

find a finite value in the extrapolated limit of ηs → 0, indicat-
ing the presence of a solvent-viscosity-independent resistance
to folding [8,9,22]. Hagen [5] has proposed a heterogeneous
reaction friction model with the unfolded and native states
separated by two consecutive barriers, one for each mode of
friction, as an explanation for the presence of dry internal
friction.

The commonly accepted operational definition for dry
internal friction [8,11,26] as the reconfiguration time in the
limit ηs → 0 is not a direct quantitative measure of the internal
friction coefficient, nor does it apply to the case of wet internal
friction. In principle, the effective friction could be calculated
from experimental measurements of the diffusion coefficient
of biomolecules hopping between native and unfolded states
[27–30]. However, such measurements would not determine
if the internal friction were of the wet or the dry type unless
they were performed at multiple solvent viscosities, followed
by extrapolation to the limit ηs → 0. There is clearly a need
for a protocol that can directly estimate the internal friction
coefficient and distinguish between the two types.

The internal friction coefficient can be obtained directly
from dissipated work, as demonstrated by the experiments on
condensed DNA by Murayama et al. [13], and simulations
of polypeptide-stretching by Schulz et al. [15]. Indeed in the
protocol proposed by Netz and coworkers [14,15], the work
required to stretch a macromolecule is separated into two
parts: reversible free energy increase due to the extension of
the molecule, and irreversible work required to overcome rate-
dependent restoring forces arising from solvent and internal
friction. Within this framework, they show that the average
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dissipated work in the limit of ηs → 0 scales with the number
of hydrogen bonds, which are considered to be responsible for
internal friction [15].

Here we propose a novel application of the Jarzynski
equality (JE) [31,32] and show that by focusing on measuring
the dissipation associated with stretching a macromolecule
rather than on obtaining the free-energy difference, a quan-
titative measure of the internal friction can be obtained. The
JE has been routinely employed for reconstructing the free-
energy landscape of biomolecules from experiments [33–35]
and simulations [36,37], while dissipation has largely been
ignored (except for estimating the accuracy of the free-energy
difference [38–40]). In the proposed protocol, multiple real-
izations of the pulling experiment are performed and the JE is
used to extract both the free-energy difference and the average
dissipated work at finite pulling rates,

〈exp[−W/kBT ]〉 = exp[−�A/kBT ];

〈Wdis〉 = 〈W 〉 − �A, (1)

where the 〈. . . 〉 in Eq. (1) represents an average with respect
to the probability distribution of work values. Prior studies
[13–15] estimate �A from the work done in the quasi-static
limit [41] and calculate 〈Wdis〉 at finite pulling rates by sub-
tracting �A from the total work done, rather than estimating
both components of work simultaneously, as is done here.

In essence, the proposed protocol consists of calculating
〈Wdis〉 at fixed values of both the pulling velocity v and
distance d over which the molecule is stretched, but at various
values of ηs. The value in the limit ηs → 0, 〈Wdis〉ηs → 0,
is then obtained by extrapolation. By repeating this pro-
cess for a number of values of v and plotting the ratio
〈Wdis〉ηs → 0/d as a function of v, the internal friction coeffi-
cient can be determined from the slope of the linear region
at sufficiently small velocities. Clearly, dry internal friction
corresponds to cases where 〈Wdis〉ηs → 0 is nonzero, while wet
friction is indicated when it is zero. In the latter case, the
protocol measures the enhancement in friction at any finite
value of ηs.

The validity of the proposed protocol is established for
both types of internal friction using coarse-grained polymer
models. Additionally, since hydrodynamic interactions (HI)
are known to affect the dynamic response of polymers [42,43],
the effect of HI on dissipated work is also examined.

For dry internal friction, a spring-dashpot model
[1,3,44,45] is considered where the molecule is represented as
massless beads connected by a spring and dashpot in parallel
with each other. The spring accounts for entropic elasticity,
while dissipative effects due to internal friction are captured
by the dashpot [46]. The drag on the beads is responsible
for solvent friction. By its very construction, this model
describes dry internal friction, as the dashpot contributes
to dissipation even in the limit of ηs → 0. Within this
framework, two examples are considered. In the first case, the
work distribution for a free-draining Hookean spring-dashpot
model subjected to constant-velocity pulling is analytically
calculated. In the second case, pulling simulations on a
nonlinear-spring-dashpot model with fluctuating HI are
performed using Brownian dynamics (BD). In both these
cases, it is demonstrated that the internal friction coefficient

estimated from 〈Wdis〉 in the limit ηs → 0 is identical to the
damping coefficient of the dashpot, which is a model input
parameter, thereby establishing the validity of the proposed
protocol. It is also shown that HI does not affect 〈Wdis〉.

For wet internal friction, a bead-spring chain with cohesive
interactions between the beads is considered. A similar model
was used by Netz and coworkers [14] to compare simulated
values of internal friction with experimental data on force-
induced unraveling of collapsed DNA [13]. By using Zwanzig
interpretation [25] to estimate energy landscape roughness
due to cohesive interactions, they implicitly assume wet in-
ternal friction. Using our protocol, it is established directly
that the internal friction due to cohesive interactions in this
coarse-grained polymer model is wet in nature. Further, it is
observed that while HI reduces the total resistance to pulling,
the enhancement in the friction coefficient remains unaffected.

The rest of the paper is organized as follows. In Sec. II,
analytical calculations and Brownian dynamics simulations
on a spring-dashpot model are presented. Section III covers
the application of the protocol to pulling simulations on a
single polymer chain with cohesive interactions between the
beads. A discussion of the results and concluding remarks
are provided in Sec. IV. Appendix A contains the derivation
of the governing equation of motion for a one-dimensional
Hookean spring-dashpot tethered at one end and pulled at
the other. In Appendix B, additional details pertaining to the
derivation of the moments of the work distribution in the
Hookean spring-dashpot model is presented. In Appendix C,
the derivation of the Fokker-Planck and stochastic differen-
tial equations for a spring-dashpot with a nonlinear force-
extension relation and fluctuating hydrodynamic interactions
is presented, along with the details of the solver algorithm.
In Appendix D, the validation of the code for the dumbbell
case is presented, by comparing the free energy difference
obtained from the Jarzynski equality and that obtained from
direct numerical integration. In Appendix E, the probability
of the work distribution determined numerically for a Rouse
chain tethered at one end and subjected to constant-velocity
pulling is compared against the analytical results derived by
Dhar [47], thereby validating the code for the single chain
case.

II. DRY INTERNAL FRICTION

A. One-dimensional free-draining Hookean spring-dashpot

The simple analytically tractable dumbbell model is shown
in Fig. 1, with one bead, at r1, fixed at the origin (r1 = 0), and
the other bead, at r2, connected to a bead at χ which is indica-
tive of the cantilever of an atomic force microscope (AFM),
or the location of the optical trap. The dumbbell is suspended
in an incompressible, Newtonian solvent of viscosity ηs. The
bead radius is taken to be a, and its associated friction co-
efficient given by ζ = 6πηsa. The bead at χ is manipulated
using a predetermined protocol, given by χ = χ (t ). All the
springs considered in the present model are Hookean: the
spring in parallel with the dashpot has a spring constant of
H , whereas the spring connecting the spring-dashpot setup
to the driven bead has a spring constant of c2H , where c2 is
an arbitrary positive constant. The damping coefficient of the
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FIG. 1. Schematic of a one-dimensional polymer model sub-
jected to pulling. (a) A cartoon depicting a single polymer strand that
is tethered to a surface at one end, and attached to a bead at the other
end. The bead is under the influence of an optical tweezer whose
position is varied in time according to a deterministic protocol.
(b) Representation of the polymer as a single-mode spring-dashpot,
connected to a bead that is manipulated by a predetermined protocol,
χ (t ). Internal friction is modeled using the dashpot, whose damping
coefficient is K . The Hookean spring constant associated with the
spring of the polymer is H and that associated with the trap is c2H .

dashpot is denoted by K . It is evident that the only degree
of freedom in the system is r2, which is allowed to execute
stochastic motion. The Hamiltonian of the system is then
written as

H = H

2
r2

2 + c2H

2
[r2 − χ (t )]2. (2)

For ease of algebra, it is convenient to work with nondi-
mensional variables until the need for dimensional variables
arises. Using lH ≡ √

kBT/H and λH ≡ ζ/4H as the length-
and time-scales, respectively, and denoting dimensionless
quantities using an asterisk as superscript, the governing
stochastic differential equation can be derived to be

dr∗
2

dt∗ = −E r∗
2

θ
+ c2 χ∗(t∗)

4θ
+ 1

θ
ξ (t∗), (3)

where E = [(c2+1)/4], θ = [1+(K/ζ )], and the noise term,
ξ (t∗), obeys 〈ξ (t∗)〉 = 0 and 〈ξ (t∗)ξ (t∗

1 )〉 = (θ/2)δ(t∗ − t∗
1 ).

The steps for the derivation of Eq. (3) have been detailed in
Appendix A. The solution to Eq. (3) can be written as

r∗
2 (t∗) = r∗

2 (0)G(t∗) + 1

θ

∫ t∗

0
dt∗

1 G(t∗ − t∗
1 )

×
(

c2χ
∗(t∗

1 )

4
+ ξ (t∗

1 )

)
, (4)

where G(t∗) = e−Et∗/θ .

The work done during one realization of the pulling per-
formed in the interval [0, τ ] is [37,48]

W =
∫ τ

0

∂H
∂t

dt =
∫ τ

0

∂H
∂χ

χ̇ dt

=
∫ τ

0
c2 H (χ (t ) − r2)χ̇ (t ) dt

= kBT

[
c2

∫ τ ∗

0
(χ∗(t∗) − r∗

2 )χ̇∗(t∗) dt∗
]

(5)

and the dimensionless work, W ∗ = W/kBT , is then

W ∗ = c2

2
[χ2∗(τ ∗) − χ2∗(0)] − c2

∫ τ ∗

0
dt∗χ̇∗(t∗) r∗

2 . (6)

Upon substituting the expression for r∗
2 from Eq. (4) into

Eq. (6), one obtains the complete expression for W ∗. It is clear
that the distribution of W ∗ ought also be Gaussian, since W ∗ is
linear in r∗

2 (0) and ξ (t∗), both of which are Gaussian variables.
It therefore suffices to evaluate the mean and variance of W ∗ in
order to completely determine the distribution. There is only
one bead that is allowed to move freely in this problem, and
as a result, the dimensionless free-energy, A∗ = − ln Z∗, can
be obtained once the dimensionless partition function, Z∗ is
known. Details of all the intermediate steps in the calculation
of 〈W ∗〉, 〈(W ∗ − 〈W ∗〉)2〉 and A∗ are given in Appendix B.
For ease of exposition, only the salient results are reproduced
below.

The dimensionless free-energy can be shown to be given
by the expression,

A∗(χ∗) =
[

c2

2(c2 + 1)

]
χ2∗, (7)

while the expression for the average work is

〈W ∗〉 = �A∗ + c2
2

c2 + 1

∫ τ ∗

0
dt∗

∫ t∗

0
dt∗

1 [χ̇∗(t∗)

× G(t∗ − t∗
1 )χ̇∗(t∗

1 )], (8)

where �A∗ ≡ A∗[χ∗(τ ∗)] − A∗[χ∗(0)]. The variance of the
work distribution, σ 2 ≡ 〈(W ∗ − 〈W ∗〉)2〉, can be shown to be

σ 2 = 2c2
2

(c2 + 1)

∫ τ ∗

0
dt∗

∫ t∗

0
dt∗

1 χ̇∗(t∗)G(t∗ − t∗
1 )χ̇∗(t∗

1 ). (9)

From Eqs. (8) and (9), it is readily seen that

〈W ∗〉 = �A∗ + σ 2

2
(10)

and the average dissipated work is given by

〈W ∗
dis〉 ≡ 〈W ∗〉 − �A∗ = σ 2

2
. (11)

It follows that the probability distribution of work is given by

P∗(W ∗) = 1√
2πσ 2

exp

[
− (W ∗ − 〈W ∗〉)2

2σ 2

]
. (12)

The quantities 〈W ∗〉, �A∗, and〈W ∗
dis〉 have been calculated

analytically without explicit recourse to the Jarzynski equal-
ity. This is a consequence of the governing equation being
linear in the position variable and the noise term, resulting in
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a Gaussian distribution of the work trajectories. The Jarzynski
equality is satisfied trivially for such systems, since

〈exp(−W ∗)〉 =
∫ +∞

−∞
exp(−W ∗)P∗(W ∗)dW ∗

= exp(−�A∗), (13)

which has also been reported previously [31,49].
The development so far is applicable to any arbitrary

pulling protocol, χ∗(t∗). The particular value of the average
dissipation is dependent on the protocol used to transition the
system between its initial and final states. We focus attention
on the special case of a constant-velocity pulling protocol
commonly encountered in single-molecule force spectroscopy
[34,35]. Within this framework, χ∗(t∗) = χ (i)∗ + (d∗t∗/τ ∗),
implying that the last bead is moved across a distance d∗
over a time τ ∗, with a dimensionless pulling velocity given
by χ̇∗(t∗) = v∗ = d∗/τ ∗. χ (i)∗ and χ (f)∗ represent the position
of the last bead at t∗ = 0 and t∗ = τ ∗, respectively. Under this
protocol, the free-energy difference �A∗ is given by

�A∗ = c2

2(c2 + 1)
[(χ (f)∗)2 − (χ (i)∗)2], (14)

and the average dissipated work can be evaluated to be

〈W ∗
dis〉 = 4

(
c2

c2 + 1

)2

θ v∗d∗ + 16

(
c2

2

(c2 + 1)3

)
θ2v∗2

×
[

exp

(
− (c2 + 1)d∗

4v∗θ

)
− 1

]
(15)

It is now appropriate to obtain the expression for the average
dissipated work in the limit of zero solvent friction. Since the
solvent friction is absorbed into the definition of the timescale,
it is first necessary to convert all quantities in Eq. (15) to their
dimensional form, before taking the limit. Using the nondi-
mensionalization scheme discussed previously, we obtain

〈W 〉dis =
(

c2

c2 + 1

)2

(ζ + K )vd + c2
2

(c2 + 1)3

(ζ + K )2v2

H

×
[

exp

(
− H (c2 + 1)d

(ζ + K )v

)
− 1

]
. (16)

In the extrapolated limit of zero solvent friction, ζ → 0 by
definition of the bead-friction coefficient. Upon taking this
limit in Eq. (16),

〈W 〉dis, ηs→0 =
(

c2

c2 + 1

)2

Kvd + c2
2

(c2 + 1)3

K2v2

H

×
[

exp

(
− H (c2 + 1)d

Kv

)
− 1

]
. (17)

In the limit of high pulling trap stiffness (c2 
 1), the second
term on the right-hand side (RHS) of Eq. (17) vanishes, and
the parenthesized prefactor in the first term asymptotically
tends to unity, leading to

〈W 〉dis, ηs→0

d
= Kv. (18)

Clearly, the proposed protocol for determining the internal
friction coefficient based on the Jarzynski equality recovers

FIG. 2. Schematic of the proposed simulation/experiment.
(a) Schematic diagram of the coarse-grained polymer model en-
trapped between two optical tweezers. The spring connecting the
two beads is finitely extensible, upto a length Q0. Internal friction
is modelled using the dashpot, whose damping coefficient is K .
The Hookean spring constant associated with the spring is H . The
strengths of the two traps, modelled as Harmonic potential wells, are
H1 = c1H and H2 = c2H . (b) The one-dimensional pulling protocol:
the position of the first trap is taken to be the origin, and remains
stationary throughout the experiment. The second trap is moved from
its initial position, χ

(i)
2x to its final position, χ

(f)
2x , over a time interval

τ , stretching the spring-dashpot setup in the process. The difference
between the initial and the final positions of the mobile trap is d , and
the velocity of pulling is vx .

the damping coefficient K , establishing its validity in the case
of the simple analytical model considered here.

B. Nonlinear spring-dashpot with hydrodynamic interactions

1. Model description

In the more general case, a dumbbell model with fluc-
tuating internal friction and hydrodynamic interactions is
considered, as shown in Fig. 2(a). The beads, each of radius
a, are joined by a spring, with maximum stretchability Q0

and a Hookean spring constant H , in parallel with a dashpot
of damping coefficient K . The Marko-Siggia force expres-
sion [50], widely employed to model the force-extension
relationship in synthetic polymer molecules [51], as well
as biopolymers [52–55], is used to describe the entropic
elasticity in the dumbbell. The positions of the two beads
are r1 and r2, the connector vector joining the two beads is
denoted by Q ≡ r2 − r1, and the position of the center of mass
by R ≡ (1/2)(r1 + r2). Note that while the bead coordinates
are allowed to sample the entirety of the three-dimensional
coordinate space, the pulling is restricted to the x axis alone.
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An alternative protocol in which the pulling direction is also
in general three-dimensional space can be implemented, but
this would not alter the analysis and arguments presented
here. The positions of the two beads can be manipulated using
optical traps, modelled here as harmonic potential wells. The
trap stiffnesses are denoted by H1 = c1H , and H2 = c2H (in
units of the dumbbell spring constant), and the coordinates
of the minimum of the wells are represented by χ1 and χ2,
respectively. A temperature of T = 300 K is considered in
all our simulations, as a matter of convenience. The viscos-
ity of the solvent at this temperature is taken to be ηs,0 =
0.001 kg m−1 s−1, which is close to the viscosity of water at
room temperature. In this protocol, values of solvent viscosity
which are multiples of ηs,0 will be considered.

The finite extensibility parameter b is defined as b ≡
Q2

0/l2
H. The internal friction parameter, ϕ (:=2K/ζ ), is defined

as the ratio of the internal friction coefficient to the bead
friction coefficient. The hydrodynamic interaction parameter
is given by h∗ = a/

√
π lH, and h∗ = 0 corresponds to the

free-draining case.
In Fig. 2(b), the pulling protocol employed in this study

is depicted. Without any loss of generality, χ1 is chosen as
the origin of our frame of reference. In all pulling simu-
lations throughout this work, the first trap is held station-
ary, and the second trap is moved from its initial position,
χ

(i)
2 ≡ (χ (i)

2x , 0, 0), to its final position, χ
(f)
2 ≡ (χ (f)

2x , 0, 0). The
notation “χ (i)

2x → χ
(f)
2x ” represents such a pulling event. The

stretching distance is denoted by d ≡ [χ (f)
2x − χ

(i)
2x ], the time

interval for stretching by τ , and the pulling velocity by v ≡
(vx, 0, 0), where vx = d/τ .

In the more general case, the Hamiltonian H of the system
for any value of the trap position χ2 is given by

H = UMS(Q) + H1

2
r2

1 + H2

2
(r2 − χ2)2, (19)

where UMS(Q) represents the potential energy in the Marko-
Siggia spring. The generalized Jarzynski work correspond-
ing to the pulling protocol discussed above is, in this case,
given by

W =
∫ τ

0

(
∂H
∂χ2

)
· v dt (20)

where v = dχ2/dt . The average dissipation associated with
the stretching process is calculated using Jarzynski equality
as shown in Eq. (1).

2. Simulation details

The system of stochastic differential equations governing
the time evolution of the nondimensional connector vector Q∗

and center of mass coordinates R∗, subjected to the pulling
protocol depicted in Fig. 2, can be derived as shown in
Appendix C. Brownian dynamics simulations are used here to
solve these equations. To begin with, the initial values of Q∗
and R∗ are picked from a Gaussian distribution of zero mean
and unit variance. With the first trap held at the origin, and the
second at χ

(i)∗
2 = (χ (i)∗

2x , 0, 0), the dumbbell is equilibrated for
a duration of fifty-five dimensionless times. Equilibration is
ascertained by checking that 〈Q∗2〉 has reached a steady value
with respect to time. Then, the pulling is commenced (at t∗ =

0), by varying the position of the second trap linearly, as χ∗
2x =

χ
(i)∗
2x + v∗

x t∗, till t∗ = τ ∗. The window [0, τ ∗] is uniformly
divided into Nt intervals, such that �t∗

j ≡ t∗
j − t∗

j−1 = τ ∗/Nt,
where j = 1, 2, . . . , (Nt + 1).

The dimensionless equivalent of the work done by the
mobile trap during one realization of the pulling event is
calculated using a simple rectangular quadrature as follows:

W ∗ = c2

Nt∑
j=1

(χ∗
2x − r∗

2x ) jv
∗
x �t∗

j (21)

where the subscript j on the first term indicates that it is
evaluated at time, t∗

j , and r∗
2x refers to the x coordinate of

the position of the dumbbell bead subjected to pulling. For
representative values of the molecular and control parameters,
which are discussed in more detail in the next subsection,
the average dissipated work is computed using the time-step
widths �t∗ = {10−5, 10−4, 10−3}. The values of the average
work calculated at all the time-steps concur within statistical
error bars of the simulation, and the largest of the three
time-step widths, i.e; �t∗ = 1 × 10−3, is used for all the cases
where c2 = 1000. For c2 = 100, �t∗ = 1 × 10−2 is found to
suffice, whereas c2 = 10000 requires �t∗ = 1 × 10−4. The
choice of the time-step width is also affected by the values
of the internal friction and the finite extensibility parameter as
higher values of the former and/or lower values of the latter
parameter necessitate the use of smaller time-steps.

The protocol proposed here involves pulling the molecule
over a predetermined distance at the same dimensional ve-
locity but different solvent viscosities. In this context, it is
essential to note that the timescale varies linearly with the
solvent viscosity, λH ∝ ηs. In order to maintain the same
dimensional pulling time (τ = τ ∗λH) across simulations with
differing solvent viscosity, the dimensionless pulling time (τ ∗)
is scaled by 1/ηs as the solvent viscosity is increased.

3. Molecular and control parameters

The parameters used in the present work are broadly
classified into molecular and control parameters. Molecular
parameters pertain to the polymer that is being stretched,
whereas control parameters are set by the experiments or the
simulations used in the study of stretching the molecule.

The choice of molecular parameters is based on the
λ-phage DNA (48.5 kbp) used in Murayama et al. [13] work,
which has a contour length, Lc, of 16.5 μm, and Kuhn segment
length, bK, of approximately 88 nm. In order to model this
molecule as a dumbbell, the model parameters, b, and lH, are
chosen such that the contour length and the radius of gyration
of the model and the DNA molecule are the same. Following
the procedure for parameter selection described in detail in
Ref. [54], we obtain b = 811.25 and lH = 580.95 nm. We
round down both these values, and use b = 800 and lH =
500 nm as the parameters to model λ-phage DNA.

The Hookean spring constant of the model, H , is then
found using

H = kBT

l2
H

= 4.142 pN nm

(500)2(nm)2 = 1.657 × 10−5 pN/nm.
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FIG. 3. Trap stiffness determines the distribution of bead posi-
tions. An x-y projection of the equilibrated positions of the beads, for
an ensemble of free-draining dumbbells (N = 1 × 104), for different
values of the trap stiffness. From left to right, the solid vertical line,
the dash-dotted vertical line, and the dashed vertical line represent
the positions of the first trap (χ∗

1 ), the initial position of the sec-
ond trap (χ(i)∗

2 ), and the final position of the second trap (χ(f)∗
2 ),

respectively. From left to right, data points in cyan, close to the solid
vertical line, correspond to the positions of the first bead with the
corresponding trap at the origin, those in blue denote the positions
of the second bead when the trap position is at χ

(i)
2 = (5 lH, 0, 0),

and those in red represent the positions of the second bead when the
trap is located at χ

(f)
2 = (7 lH, 0, 0). The data sets have been shifted

vertically for clarity, and the offsets for each of the shifted cases are
indicated in the figure.

The choice of the bead radius, a, is motivated by
Alexander-Katz et al. [14] work, where it is suggested that
the monomeric radius may be taken as the persistence length
of the molecule. We choose a = 30 nm, which is identical to
the choice made by Alexander-Katz et al. [14] for comparing
the results of BD simulations against experiments on DNA.

Other values of b and lH, of the same order-of-magnitude
as obtained for the λ-phage DNA case, have been used in
this study and in addition to a = 30 nm, bead radii of 80 and
100 nm have also been used.

Figure 3 provides a snapshot of the x-y projection of the
positions of an ensemble of beads of the dumbbell, obtained
after an equilibration of fifty-five dimensionless times at the
initial trap positions χ∗

1 = (0, 0, 0), χ
(i)∗
2 = (5, 0, 0) and final

trap states χ∗
1 = (0, 0, 0), χ

(f)∗
2 = (7, 0, 0) as a function of the

optical trap stiffness. It is clearly seen that the strength of the
trap (c1 or c2) determines its ability to confine the bead near
the position of its minimum. Since it is intended to hold the
position of the first bead fixed at the origin, a trap strength of
c1 = 1000 is used throughout our simulations.

In Fig. 4, the effect of the mobile trap stiffness (c2) on
the dissipation is shown for a fixed value of the stationary
trap stiffness, for freely draining dumbbells. In Fig. 4(a), the

(a)

(b)

FIG. 4. Comparison of the average dissipation from BD sim-
ulations against analytical results. Plots of average dissipation for
the pulling protocol 5 lH → 7 lH, as a function of (a) mobile trap
stiffness, for a fixed value of the pulling velocity, v∗ = 0.02, and
(b) pulling velocity, at three different values of the mobile trap
stiffness. The lines indicate analytical value of the average dissipa-
tion for a freely draining Hookean spring-dashpot [Eq. (15)] plotted
for the parameter values indicated in the figure. The symbols are
results from BD simulations on a freely draining spring-dashpot with
Marko-Siggia force law, and b = 800.

average dissipation as the dumbbell is pulled at a constant
velocity and a fixed pulled distance, is plotted as a function of
the mobile trap stiffness. It is seen that the dissipation reaches
a plateau at c2 ≈ 100. This behavior is in agreement with
the dissipation calculated for the analytical model [Eq. (15)],
which reaches ≈98% of its asymptotic value at c2 ≈ 100. In
all our simulations, we set c1 = c2 = 1000 (unless specified
otherwise), in order to operate in a regime where the dissipa-
tion is independent of the trap stiffness.

In Fig. 4(b), the average dissipation is plotted as a function
of the pulling velocity, over the same fixed distance, for
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three different values of the mobile trap stiffness. At lower
values of the trap stiffness, the dissipation grows linearly
before scaling sublinearly with the velocity. The onset of the
nonlinear regime is pushed to higher velocities as the trap
stiffness is increased. In the asymptotic limit of high trap
stiffness, the nonlinear regime vanishes, and a linear scaling
of the dissipation with the pulling velocity is observed for over
two orders of magnitude in the velocity. There is a good agree-
ment between the trends predicted by the simple analytical
model using a Hookean spring-dashpot discussed in Sec. II A
and BD simulations on a model with a nonlinear force law.
Remarkably, the effect of the nonlinear force law is more
perceptible at lower trap stiffnesses, vanishing as the mobile
trap stiffness is increased, until a quantitative agreement is
obtained between the simulation and the analytical results.

The Marko-Siggia force expression is linear at low values
of the extension of the molecule, and diverges as the fractional
extension approaches unity. For initial extensions in the linear
regime of the force-extension profile, a trap stiffness of c2 =
1000 is sufficient to make the bead track the position of the
trap, as shown in Fig. 3. Higher trap stiffnesses are found to
be required for operating in the nonlinear regime of the force-
extension curve.

The Jarzynski equality is strictly exact only in the limit
of an infinite number of work trajectories, N → ∞. In ap-
plications of the JE, the number of trajectories required
to accurately recover the free-energy difference increases
with average dissipated work in the process, as discussed in
Refs. [38–40].

In Fig. 5, the effect of internal friction and pulling ve-
locity on the probability distribution of the work trajectories
is plotted for freely draining dumbbells. The vertical green
lines in the figures indicate the free-energy difference �A∗,
obtained by taking an error-weighted mean of the values of
the free-energy difference obtained at dimensionless pulling
velocities v∗ � 0.02. Interestingly the work-distributions are
normally distributed, as seen by the good agreement between
the histogram data and the Gaussian fit. That it is so, despite
the equations of motion for the system being nonlinear, is an
observation previously made by Speck and Seifert [49]. The
Gaussianity of the distribution is attributed to the slow rate
of the driving protocol (1/τ ) with respect to the molecular
relaxation rate (1/λH). For all the data-sets plotted in Fig. 5,
the driving rate is at least five times slower than the molecular
relaxation rate.

From Fig. 5(a), it is seen that increasing the pulling velocity
at a fixed value of the internal friction parameter increases
the average dissipated work, and the width of the distribution.
An identical trend is observed in Fig. 5(b), where an increase
in the internal friction parameter at a fixed pulling velocity
causes the work distribution to shift rightwards, and results in
an increased dissipation. Thus the dissipation in our model is
directly correlated with the pulling velocity, and the internal
friction in the system. Under such conditions of high dissipa-
tion, the estimates for �A are dominated by rare realizations
that occur near the tail of the work distribution, necessitating
the use of a larger number of trajectories to obtain an accurate
estimate of the free-energy difference.

In Fig. 6, we illustrate the above point using an alternative
representation. Without prior knowledge of the ensemble size

FIG. 5. Pulling velocity and internal friction broaden the proba-
bility density of work. Probability densities of the work done over
105 realizations of the pulling protocol for (a) a fixed value of the
internal friction parameter and three different values of the pulling
velocity, and (b) a fixed pulling velocity and three different values of
the internal friction parameter. The green vertical line represents the
free-energy difference obtained by taking an error-weighted mean of
the values of the free-energy difference obtained at pulling velocities
v∗ � 0.02 using Jarzynski equality. The solid lines are Gaussian fits
to the data.

required for the simulations, an initial guess of N = 1 × 104

was chosen. The green horizontal line represents the free-
energy difference obtained by taking an error-weighted mean
of the values of the free-energy difference obtained at pulling
velocities v∗ � 0.02 using Jarzynski equality. An ensemble
size of N = 1 × 104 is sufficient for an accurate estimation
of the free-energy difference at lower velocities (dissipa-
tion), but is found to become inadequate at v∗ � 0.04. Upon
increasing the ensemble size for the higher velocity cases em-
pirically, the accuracy of the estimated free-energy difference
improves. The ensemble size is plotted as a function of the
average dissipated work in the inset of Fig. 6, which shows
that the choice of the pulling velocity and the ensemble size
are mutually related.

In Fig. 7, the average dissipated work (scaled by the
thermal energy kBT ) calculated for a variety of molecular
and control parameters is plotted against the magnitude of
the dimensionless pulling velocity, v∗. It is seen that the
average dissipated work varies linearly over the entire range
of the pulling velocity, v∗ = 0.001–0.1. The velocity range in
dimensional units would depend on the molecular parameters.

The experimental feasibility of the proposed protocol can
be discussed in the context of the molecular parameters used
for the dataset represented by filled circles in Fig. 7. For these
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FIG. 6. Dissipation dictates ensemble size for the application of
Jarzynski equality. Free-energy difference as a function of pulling
velocity, for a representative case. Inset shows the empirically chosen
ensemble size as a function of the average dissipated work. The
numbers next to the data points indicate the corresponding values of
the dimensionless pulling velocity. Trap stiffness used is c1 = c2 =
1000.

set of parameters, the pulling velocities explored in Fig. 7 vary
from v = 29.3 nm/s (v∗ = 0.001) to v = 2.93 μm/s (v∗ =
0.1). The molecule is stretched over a distance of 1 μm.
The stiffness of this molecule is H = 1.657 × 10−5 pN/nm.
In order to operate in a regime where the dissipated work
is independent of the trap strength, as discussed earlier, the
stiffness of the trap must be at least a hundred times that of the
molecule, which implies Htrap,min = 1.657 × 10−3 pN/nm.

In Table I, based on a survey of the literature, the range
of trap stiffnesses, pulling velocities, and stretching distances
typically accessible by optical tweezers is given. Additionally,
the position and force resolution limits of optical traps are in-
versely correlated: stiffer traps improve the spatial resolution
but also introduce large fluctuations in the measured force.
A rough estimate of these resolution limits may be obtained
using the equipartition theorem, as explained in Refs. [57,58].
Most commercial optical tweezer setups are equipped with
filtering mechanisms that aid in improving the precision in
the measurements, by reducing the resolution limits [35].
A detailed discussion of the resolution offered by optical
tweezers can be found in Refs. [57,58].

From Table I, it is clear that the values of v, d , and Htrap,min

for the representative case lie well within the range of values
explored experimentally.

Ritort et al. [38] have established from computer simula-
tions of mechanical unfolding that the number of trajectories
required to obtain estimates for free-energy difference within
an error of O(kBT ) increases exponentially with the aver-
age dissipation associated with the unfolding process. They

FIG. 7. Linearity between dissipation and pulling velocity deter-
mines regime of operation. Average dissipated work as a function of
the dimensionless pulling velocity, for various molecular and control
parameters. Except when mentioned otherwise, an ensemble size
of N = 1 × 104 is used for all the data points. Symbols indicating
datasets with fluctuating hydrodynamic interactions have been en-
larged for the sake of clarity. The boxed region indicates the regime
of operation for the simulation results reported in this section.

predict that for dissipation less than 4kBT , around 100 trajec-
tories would suffice, and for a dissipation of 5kBT , about 1000
trajectories would be required. These predictions agree well
with the average dissipation and ensemble sizes encountered
in optical-tweezer-based pulling experiments. For example,
Liphardt et al. [33] stretch RNA hairpins using optical tweez-
ers, and estimate 〈Wdis〉 = 2–3 kBT with N = 47. Similarly,
for pulling experiments on DNA hairpins performed by Gupta
et al. [35], 〈Wdis〉 = 1.1 ± 0.7kBT for N = 99, and 〈Wdis〉 =
4.9 ± 0.3kBT for N = 1293.

For simulations on the single-mode spring dashpot, the
statistical error in the free-energy difference is maintained to
be ∼O(0.01kBT ), in order to obtain a sufficiently accurate
estimate of the average dissipated work that enables the inter-
nal friction coefficient to be extracted reliably. By restricting
the regime of operation to the boxed region in Fig. 7, with
v∗ � 0.02 and 〈Wdis〉 ∼ kBT , it is found that N = 1 × 104

trajectories are sufficient to obtain the free-energy differ-
ence within the desired error limits. It is possible to operate
at higher values of dissipation, outside the boxed regime,

TABLE I. Typically observed lower and upper bounds on optical
tweezer parameters.

Parameter Lower bound Upper bound

Trap stiffness (pN/nm) 0.0002 (Ref. [51]) 0.9 (Ref. [35])
Pulling velocity (nm/s) 10 (Ref. [35]) 13560 (Ref. [56])
Stretching distance (nm) 10 (Ref. [35]) 8000 (Ref. [13])
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TABLE II. Internal friction coefficients estimated using the protocol described in Fig. 8, for various values of the molecular, and control
parameters. The error associated with the protocol is calculated as, % error = 100 × |(KBD − K )/K|. An ensemble size of N = 1 × 104 and a
time-step width of �t∗ = 1 × 10−3 was used to obtain the results. For the K = 100.0 × 10−9 kg/s case (Marko-Siggia), a smaller time-step,
�t∗ = 1 × 10−4, was used. For the K = 4.0 × 10−9 kg/s case (FENE), a larger ensemble, N = 1 × 105, was used.

Spring force law: Marko-Siggia

Input, h∗ = 0.0 h∗ > 0.0

Parameters K (×109 kg/s) KBD(×109 kg/s) % error h∗ KBD(×109 kg/s) % error

b = 200, lH = 150 nm, 2 lH → 3 lH 1.0 1.04 ± 0.01 4.42 0.3 0.97 ± 0.02 3.11
b = 400, lH = 350 nm, 4 lH → 6 lH 1.0 0.99 ± 0.03 1.36 0.16 1.04 ± 0.02 4.29
b = 200, lH = 150 nm, 2 lH → 3 lH 10.0 10.04 ± 0.05 0.47 0.3 9.87 ± 0.09 1.24
b = 400, lH = 350 nm, 4 lH → 6 lH 10.0 9.922 ± 0.008 0.78 0.16 9.95 ± 0.09 0.52
b = 800, lH = 500 nm, 5 lH → 7 lH 3.0 2.95 ± 0.02 1.74 − − −
b = 800, lH = 500 nm, 5 lH → 7 lH 6.0 6.00 ± 0.07 0.11 − − −
b = 800, lH = 500 nm, 5 lH → 7 lH 100.0 97.4 ± 1.4 2.56 − − −

Spring force law: FENE

Input, h∗ = 0.0 h∗ > 0.0

Parameters K (×109 kg/s) KBD(×109 kg/s) % error h∗ KBD(×109 kg/s) % error

b = 400, lH = 350 nm, 2 lH → 3 lH 2.0 − − 0.23 1.993 ± 0.009 0.35
b = 600, lH = 250 nm, 3 lH → 4 lH 3.0 − − 0.09 2.985 ± 0.009 0.50
b = 800, lH = 500 nm, 3 lH → 5 lH 4.0 3.992 ± 0.007 0.18 − − −
b = 800, lH = 500 nm, 3 lH → 5 lH 6.0 6.02 ± 0.02 0.23 − − −

provided that the ensemble size is suitably increased, as shown
in the inset of Fig. 6.

All the results prior to Fig. 7 have been presented for the
case of freely draining dumbbells. In Fig. 7, it is observed that
the inclusion of fluctuating HI does not affect the dissipated
work values in a single-mode spring dashpot. Speck and
coworkers [59] have shown in the context of colloidal sus-
pensions that the inclusion of hydrodynamic interactions does
not alter the dissipation along a single trajectory. The effect
of fluctuating hydrodynamic interactions on the dissipation is
markedly different in the case of wet internal friction, as will
be discussed in greater detail in Sec. III D.

4. Dry friction in equals dry friction out

The methodology to extract the internal friction coefficient
is illustrated using a molecule with parameters b = 800, lH =
500 nm, K = 3.0 × 10−9 kg/s, and h∗ = 0.0 as an example.
An ensemble of such molecules is pulled from an initial trap
position of χ

(i)
2x = 5 lH to a final trap position of χ

(f)
2x = 7 lH

at different pulling velocities. At each value of the pulling
velocity, the average dissipated work is calculated at several
values of the solvent viscosity in the range, ηs = ηs,0 to
ηs = 10 ηs,0. In an experimental setting with water as the
solvent, suitable viscogens, such as glucose or sucrose, may
be added to the solvent in order to realize an approximately
fourfold increase in its viscosity [8,21]. In experiments that
study the kinetics of intrachain contact formation in polypep-
tides [60] suspended in a solvent mixture of ethanol and
glycerol, the solvent viscosity was varied over two orders
of magnitude by adjusting the proportion of glycerol in the
mixture.

As shown in Fig. 8(a), for each value of the pulling
velocity used, the average dissipated work in the hypothetical

limit of zero solvent viscosity, 〈Wdis〉ηs → 0, is obtained from
a linear fit to the average dissipated work at finite solvent
viscosities. Since the extrapolated value is finite, it is a clear
signature of the presence of dry internal friction. In Fig. 8(b),
the extrapolated values of the average dissipated work in
the limit of zero solvent viscosity (divided by the stretching
distance d), is plotted against the pulling velocity. The slope
of the graph (KBD) represents the internal friction coefficient
extracted from simulations.

Table II shows a comparison between the value of the
internal friction coefficient used as an input parameter in
the Brownian dynamics simulations, and the corresponding
value extracted from the dissipated work using the protocol
proposed here, for various molecular and control parameters.
Our protocol recovers the input internal friction coefficient
to within 5% accuracy, and is insensitive to the choice of
the spring-force law, as shown for the Marko-Siggia and the
FENE force laws in Table II. Further, values of KBD, for
models with and without HI, lie close to each other, indicating
that HI does not affect the dissipated work due to dry internal
friction.

The validity of the proposed protocol for the extraction of
the dry internal friction coefficient has thus been established.
In the next section, the application of the protocol to a
model with wet internal friction is discussed, in the context
of a coarse-grained polymer model with cohesive intrachain
interactions.

III. WET INTERNAL FRICTION

In this section, the case of wet internal friction is investi-
gated in the context of the force-induced unraveling of a coiled
globule which has previously been studied experimentally by
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(a)

(b)

FIG. 8. Protocol for the extraction of the internal friction co-
efficient. (a) Average dissipated work as a function of the sol-
vent viscosity, for molecules with the parameters b = 800, lH =
500 nm, and K = 3.0 × 10−9 kg/s, subjected to pulling denoted
by 5 lH → 7 lH at various values of the pulling velocity, v, for
an ensemble size, N = 1 × 104. (b) The extrapolated values of
〈Wdis〉 in the hypothetical limit of zero solvent viscosity, divided
by the stretching distance, as a function of the pulling velocity.
The slope of the graph, KBD, is an estimate of the internal friction
coefficient.

Murayama et al. [13] and with simulations by Alexander-Katz
et al. [14]. The problem is revisited here with the goal of

understanding the role of solvent viscosity and HI, both of
which have not been considered previously.

A. Model description

A bead-spring model with Nb beads connected by FENE
springs, each stretchable up to a maximum length of Q0, is
considered. The excluded volume interactions between beads
are modelled using the Soddemann-Dünweg-Kremer (SDK)
potential [61], whose functional form is given by

USDK(r)

kBT
=

⎧⎪⎨
⎪⎩

4
[(

σs
r

)12−(
σs
r

)6+ 1
4

] − ε; r � 21/6σs

ε
2

[
cos

(
m1

(
r
σs

)2+m2
)−1

]
; 21/6σs�r � rc

0; r � rc

.

(22)

The minimum of the potential occurs at at r = 21/6σs, and
the value of the potential at this location is USDK = −ε kBT .
As seen from Eq. (22), the repulsive part of the pair-potential
is modeled after the Weeks-Chandler-Andersen (WCA) po-
tential, while the attractive part is constructed using a cosine
function which smoothly approaches zero at the cutoff dis-
tance, rc. A detailed comparison of the SDK potential with
the Lennard-Jones and the WCA potential has been performed
recently [62]. The parameter values for m1 and m2 depend
on the choice of rc. They have been refined in Ref. [62] in
comparison to the values in the paper by Soddemann et al. [61]
in order to be more applicable to BD simulations, as discussed
below and in Sec. III C. Setting ε = 0 in Eq. (22) leads to
purely repulsive inter-bead interactions, and corresponds to
the athermal limit of solvent quality. Increasing the value of
ε beyond zero results in a decrease in the solvent quality. A
special feature of the SDK potential [62] is that modifying
the value of ε allows one to tune the attractive interactions
selectively, without affecting the repulsive branch of the pair-
potential. This is in stark contrast to the more commonly used
Lennard-Jones (LJ) potential for which changing the well
depth affects both the attractive and the repulsive branches.
Furthermore, the exact truncation of the SDK potential at
the cutoff distance results in an increased computational ef-
ficiency [61] in comparison to the LJ potential whose long
attractive tail approaches zero only asymptotically, at large
inter-bead separations.

The force on the μth bead due to bonded and nonbonded
excluded volume interactions is denoted by F (c)

μ , and F (E)
μ ,

respectively, and the notation Fφ
μ ≡ F (c)

μ + F (E)
μ is used to

denote the total force on a bead due to the FENE and SDK
potentials.

As discussed previously, the terminal beads of the chain
are subjected to harmonic trap potentials. One of the traps
is held fixed at χ1 = (0, 0, 0), and the other is moved from
χ

(i)
2 ≡ (χ (i)

2x , 0, 0), to χ
(f)
2 ≡ (χ (f)

2x , 0, 0) at a constant velocity,
v ≡ (vx, 0, 0).

The hydrodynamic interaction between any pair of beads
μ and ν is accounted for by defining the diffusion tensor
ϒμν = δμνδ + ζ�μν , where δμν is the Kroenecker delta, and
the hydrodynamic interaction tensor, �μν , is approximated
using the Rotne-Prager-Yamakawa expression, as shown in
Eqs. (C6)—(C8). For notational convenience, we define D, a
block matrix of size Nb × Nb, whose each element is the 3 × 3
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matrix, ϒμν . Additionally, the block matrix B is defined as
B · BT = D.

The stochastic differential equation describing the time
evolution of the position of the μth bead is given by

r∗
μ(t∗ + �t∗)

= r∗
μ(t∗) + 1

4

Nb∑
ν=1

[
ϒ∗

μν · F∗(φ)
ν − ϒ∗

1ν
· [c1(r∗

1 − χ∗
1 )]

−ϒ∗
Nb ν · [

c2
(
r∗

Nb
− χ∗

2

)]]
�t∗ + 1√

2

Nb∑
ν=1

B∗
μν · �W∗

ν,

(23)

where B∗
μν is the (μ, ν)th element of B∗, and �W∗ is a

dimensionless Wiener process of zero mean and variance
�t∗. In Fig. 9(a), a schematic representation of the pulling
is shown, and in Fig. 9(b), snapshots from BD simulations on
a ten-bead chain is presented.

B. Simulation details

The stochastic differential equation governing the pulling
of a single polymer chain [Eq. (23)] is solved numerically
using Brownian dynamics simulations. The initial bead po-
sitions are picked from the equilibrium distribution function
corresponding to the FENE force law. The chain is then
equilibrated at the initial state, with χ∗

2x = χ
∗(i)
2x , for fifty

Rouse times. Equilibration is ascertained by checking that the
mean-squared value of the dimensionless radius of gyration,
〈R2∗

g 〉, has reached a steady value with respect to time. Pulling
is then commenced at t∗ = 0, by changing the position of
the mobile trap linearly in time, as χ∗

2x = χ
∗(i)
2x + v∗

x t∗, till
t∗ = τ ∗. The work done in one realization of the pulling event
is given by Eq. (21), with r∗

2x replaced with r∗
Nbx, where r∗

Nbx
refers to the x coordinate of the last bead in the chain, and the
remaining symbols retain their original meaning as defined in
Sec. II B 2. A time step width of �t∗ = 1.0 × 10−4 is used
after ascertaining, for a ten-bead chain with representative
parameter values, that the average work obtained for the
�t∗ = 1.0 × 10−4 and 1.0 × 10−5 cases agree within error
bars. The calculated work is then used to estimate the free-
energy difference and the average dissipation as shown in
Eq. (1).

C. Parameter space specification

A value of b = 50 is used throughout this section for
the dimensionless FENE parameter. For a free chain (with-
out confining potentials acting on the terminal beads), with
this particular value of b, the choice of rc = 1.82σ , m1 =
1.5306333121, and m2 = 1.213115524 have been shown to
lead to the correct scaling predictions in poor, θ , and good
solvent conditions for the radius of gyration with the number
of beads in the chain, as described in detail in Ref. [62], and
hence have been used for all simulations on single chains
discussed in this section. The θ temperature for this system
is observed to be at ε ≈ 0.45, where 〈R2

g〉 ∼ (Nb − 1) and the
second virial coefficient, B2 = 0 [62]. This value of cohesive
strength is denoted as εθ . Poor solvent scaling, namely, 〈R2

g〉 ∼

O χ
(i)
2x χ

(f)
2x

(a)

(b)

FIG. 9. Schematic and snapshot of single chain polymer model
subjected to pulling (a) Schematic representation of a polymer chain
subjected to pulling, (b) snapshots from the BD simulations of a
chain with Nb = 10 and ε = 3.45, pulled with a constant velocity of
v∗ = 0.01. From left to right, the solid vertical line, the dash-dotted
vertical line, and the dashed vertical line represent the positions of
the first trap (χ∗

1 ), the initial position of the second trap (χ(i)∗
2 ), and

the final position of the second trap (χ(f)∗
2 ), respectively.

(Nb − 1)0.67, is observed for ε � 0.55. The bead radius a is
defined on the basis of σs, as a = 0.5σs. We set σs = lH in all
our simulations.

A trap stiffness of c1 = c2 = 1000 is used for both
the stationary and the mobile traps. The initial and final
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FIG. 10. Equivalence between the free-energy difference esti-
mated using the Jarzynski equality and the classical definition. Total
work done as a function of the pulling velocity, for a well depth of
ε = 3.45 and a chain size of ten beads. The open and filled square
symbols indicate the Jarzynski estimate of the free-energy difference
evaluated for models with and without the inclusion of fluctuating
hydrodynamic interactions, respectively.

positions of the mobile traps are chosen as χ
(i)
2x = 0.1 Lc

and χ
(f)
2x = 0.3 Lc, respectively, where Lc ≡ (Nb − 1)Q0 is

the contour length of the chain. A chain size of Nb = 10
has been used for all the simulation results reported in this
section.

D. Globule unraveling is wet

Netz and coworkers [14] have measured the internal fric-
tion associated with collapsed homopolymers by measuring
the work dissipated in the force-induced unfolding of a single
polymer chain. As mentioned previously, they estimate the
free-energy difference, denoted by Weq, as the work done in
the quasi-static pulling limit, that is, Weq(ε) ≡ W (ε, v → 0).
The dissipated work at any finite pulling velocity is then
calculated as the difference between the average work done
at that velocity, and the reversible work. This is exactly the
definition of dissipation that we have adopted throughout this

FIG. 11. Regime of linear dependence between average dissi-
pation and pulling velocity determined by strength of cohesive
interactions. Average dimensionless dissipation, as a function of the
dimensionless pulling velocity. The dashed lines are linear fits to the
data.

(a)

(b)

FIG. 12. Effect of hydrodynamic interactions on the dissipation:
(a) the average dissipation and (b) the enhancement in the average
dissipation (with respect to the dissipation due to solvent) due to
cohesive interactions, plotted as a function of the dimensionless
pulling velocity. Symbols representing the enhancement values for
cases with HI have been enlarged for clarity. The lines in (a) are
linear fits to the data.

paper, as indicated in Eq. (1). However, rather than using the
work done in the quasi-static limit to estimate the free-energy
difference, we use the Jarzynski equality to evaluate the same
quantity.

In Fig. 10, the total dimensionless work done in pulling
a ten-bead chain with a representative set of parameters is
plotted as a function of the dimensionless pulling velocity, for
cases with and without hydrodynamic interactions. Horizontal
lines represent the error-weighted mean of the total work at
the lowest four values of the pulling velocity, and is therefore
a measure of the free-energy difference in the classical sense.
The solid line corresponds to the freely-draining case, while
the dashed line indicates the case with hydrodynamic inter-
actions. It is seen that the free-energy differences for cases
with and without HI concur within 10−1 kBT , in agreement
with the expectation that the free-energy difference, a static
equilibrium property, remains unaffected by hydrodynamic
fluctuations. Furthermore, it is also seen from the figure
that the work done in the quasi-static limit agrees, within
error bars, with the free-energy difference estimated using
the Jarzynski equality (square symbols), thus establishing the
validity of our approach for the estimation of the free-energy
difference and the dissipation.
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FIG. 13. Protocol establishes the presence of wet friction. Aver-
age dissipation as a function of the solvent viscosity for two different
well depths. The extrapolated value in the limit of zero solvent
viscosity is indicated by an upright triangle, and the extrapolated
values for both the cases are found to coincide within error bars of
the simulation.

In Fig. 11, the dimensionless average dissipation is plotted
as a function of the dimensionless pulling velocity. It is seen
that the data for the phantom chain (no excluded volume
interactions), athermal chain (purely repulsive interactions),
and the chain under θ conditions superimpose. This indicates
that for uncollapsed chains, the work dissipated during pulling
is expended entirely against the solvent friction, and there is
no internal friction associated with these cases. Furthermore,
increasing the well depth beyond the θ − point results in an
increased dissipation at a fixed value of the pulling velocity,
which is due to the additional work needed to unravel the glob-
ule as the polymer chain is stretched. The average dissipation
scales linearly with the pulling velocity over the entire range
of the latter quantity.

In the linear regime, for a collapsed globule (ε > εθ ), the
following relationship for the dissipation can be written:

〈Wdis〉 = γGvd, (24)

where γG is the globule friction coefficient. The same expres-
sion is valid in the uncollapsed case, with γG replaced with γs,
the solvent friction coefficient. As ε → εθ , the dissipation is
entirely due to the solvent, and γG → γs.

Figure 12 elucidates the effect of hydrodynamic interac-
tions on the dissipation more clearly. As shown in Fig. 12(a),
for chains under both θ and athermal conditions, the dissipa-
tion due to the solvent decreases identically upon the inclusion
of fluctuating hydrodynamic interactions. In Fig. 12(b), it is
seen that the enhancement in the dissipation due to cohesive
interactions, measured as the difference between the total

FIG. 14. Effect of hydrodynamic interactions on the friction
coefficient. (a) Solvent friction with and without hydrodynamic
interactions, and (b) a comparison between the solvent and globule
friction coefficient, with hydrodynamic interactions, plotted as a
function of solvent viscosity.

dissipation and the dissipation due to solvent alone, remains
practically unaffected by hydrodynamic interactions.

In Fig. 13, the average dissipated work is plotted for two
values of the well depth, for one value of the dimensional
pulling velocity, as a function of the solvent viscosity. At
any finite value of the solvent viscosity, the work dissipated
for the collapsed globule case is greater than that for that
in θ condition. However, in the extrapolated limit ηs →
0, the dissipated work goes to zero. Clearly, this suggest
that the additional dissipation due to cohesive interactions
between the beads corresponds to the case of wet internal
friction, which is not clear a priori, and can only be established
following the protocol proposed here.

In Fig. 14, the friction coefficients calculated using Eq. (24)
have been plotted as a function of the solvent viscosity.
From Fig. 14(a), it is seen that friction coefficient due to
the solvent scales linearly with the solvent viscosity, and that
hydrodynamic interactions reduce the friction coefficient in
comparison to the freely draining case. From Fig. 14(b), it is
seen that the inclusion of cohesive interactions results in an
enhancement in the friction coefficient at all finite values of
the solvent viscosity. In the extrapolated limit of zero solvent
viscosity, however, the friction coefficient is also seen to tend
to zero, as is typical of wet friction.
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FIG. 15. Magnification of internal friction due to cohesive inter-
actions. Rescaled excess contribution to dissipation as a function of
the effective well depth. Solid and dashed lines are used to fit the
data points obtained for cases without and with HI, respectively,
and correspond to Eq. (26) with fitting parameters ωFD = 0.77 and
ωHI = 0.98.

By taking a ratio of the slopes of the dissipation versus
pulling velocity for the collapsed and the uncollpased states,
for identical pulling distances in the linear regime, one gets

〈Wdis〉
〈Wdis〉θ − 1 = γG − γs

γs
. (25)

This quantity represents the rescaled excess contribution to
the dissipation due to internal friction, and enables an inves-
tigation of the relationship between γG and γs, and compar-
ison with Zwanzig prediction [25], as was done previously
by Alexander-Katz et al. [14] in the absence of hydrody-
namic interactions. For a Brownian particle moving in a
corrugated one-dimensional potential of the form U (x) =
(ω/2)(ε − εθ ) sin (πx/a), the effective friction and the sol-
vent friction are related by [14,25]

γG − γs

γs
= I2

0

(
ω(ε − εθ )

2

)
− 1, (26)

where I0(. . . ) is the modified Bessel function of zeroth order
and ω is a fitting parameter.

In Fig. 15, the rescaled excess dissipation due to internal
friction, for models with and without fluctuating hydrody-
namic interactions, is plotted as a function of the well depth
relative to the θ condition. It is seen from the figure that a good
qualitative agreement is observed between the simulation
results and Eq. (26), but with a fitting parameter that depends
on whether hydrodynamic interactions are incorporated in the
simulations. This agreement between simulations and theory,
also observed by Alexander-Katz et al. [14], suggests that
Zwanzig formulation, albeit based on a one-dimensional en-
ergy landscape, satisfactorily captures the scaling of internal
friction with the strength of cohesive interactions in force-
spectroscopy simulations on single molecules. The subject of
diffusion on rugged energy landscapes of dimension higher
than one has been treated rigorously in Refs. [63,64].

IV. CONCLUSIONS

In summary, we have introduced a simple and novel proto-
col based on the Jarzynski equality for determining both dry

and wet internal friction coefficients of macromolecules that
can be implemented experimentally using optical tweezers.
Using Brownian dynamics simulations on a spring-dashpot
model for a polymer, we establish proof-of-principle by re-
covering the dry internal friction coefficient which is used as a
model input, and show that a bead-spring chain with cohesive
interactions is an example of wet friction. It is conceivable
that some real polymer chains might possess both wet and
dry internal friction, and modeling such molecules would
require the use of multi-bead-spring-dashpots with cohesive
interactions. We envisage that the scheme proposed here may
be applicable to a variety of macromolecules, and would
enable a succinct characterization of the dissipative properties
of the molecule.
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APPENDIX A: GOVERNING EQUATION FOR THE
ONE-DIMENSIONAL SPRING-DASHPOT

The Fokker-Planck equation for the configurational dis-
tribution function �(r2, t ) can be derived by following the
procedure commonly used in polymer kinetic theory, i.e., by
combining a force balance on the beads with an equation
of continuity in probability space [46]. The force balance
essentially states that the (i) the internal friction force due
to the dashpot, (ii) the restoring force due to the finitely
extensible spring, (iii) external forces (like the force due to the
optical traps, in the present case), (iv) the random Brownian
force due to bombardment by solvent molecules, and (v)
the hydrodynamic force responsible for the solvent-mediated
propagation of momentum on each bead, must sum up to zero.

The force balance over the free bead may be written as

0 = −ζ �ṙ2� − ∂H
∂r2

− K�ṙ2� − kBT

(
∂ ln �

∂r2

)
. (A1)

Upon simplification,

ζ �ṙ2� = −(c2 + 1)Hr2 + c2Hχ (t )

− K�ṙ2� − kBT

(
∂ ln �

∂r2

)
. (A2)

Grouping together the terms containing �ṙ2�, and defining
θ = [1 + (K/ζ )], where ϕ := 2K/ζ is the internal friction
parameter,

�ṙ2� = − (c2 + 1)H

ζθ
r2 + c2H

ζθ
χ (t ) − kBT

ζθ

(
∂ ln �

∂r2

)
.

(A3)
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The equation of continuity for the probability density,
�(r2, t ), is written as

∂�

∂t
= − ∂

∂r2
(�ṙ2��). (A4)

Substituting the expression for �ṙ2� from Eq. (A3) into
Eq. (A4), one obtains

∂�

∂t
= − ∂

∂r2

{
− (c2 + 1)H

ζθ
r2� + c2H

ζθ
χ (t )�

}

+ kBT

ζθ

∂

∂r2

[(
∂ ln �

∂r2

)
�

]
, (A5)

which can be rewritten as

∂�

∂t
= − ∂

∂r2

{[−(c2 + 1)H

ζθ
r2 + c2H

ζθ
χ (t )

]
�

}
(A6)

+ 1

2

(
2kBT

ζθ

)
∂2�

∂r2
2

.

The stochastic differential equation corresponding to Eq. (A6)
is given by [65]

dr2 =
[−(c2 + 1)H

ζθ
r2 + c2H

ζθ
χ (t )

]
dt +

√
2kBT

ζθ
dWt ,

(A7)

where Wt represents a Wiener process, and has dimensions
of [time]1/2. Equation (A7) can be recast in the Langevin
form as

dr2

dt
= − (c2 + 1)H

ζθ
r2 + c2H

ζθ
χ (t ) +

√
2kBT

ζθ
fB(t ), (A8)

where 〈 fB(t )〉 = 0 and 〈 fB(t ) fB(t ′)〉 = δ(t − t ′), and fB(t ) has
dimensions of [time]−1/2. Setting f ∗

B (t∗) = fB(t )
√

λH, where
〈 f ∗

B (t∗)〉 = 0 and 〈 f ∗
B (t∗) f ∗

B (t∗
1 )〉 = δ(t∗ − t∗

1 ), the variables in
Eq. (A8) are cast into their dimensionless form as(

lH
λH

)
dr∗

2

dt∗ = − (c2 + 1)H

ζθ
r∗

2 lH + c2H

ζθ
χ∗(t∗)lH

+
√

2kBT

ζθ

(
f ∗
B (t∗)√

λH

)
. (A9)

Multiplying Eq. (A9) throughout by (λH/lH), and simplifying,
the dimensionless governing equation is obtained as

dr∗
2

dt∗ = − (c2 + 1)H

4θ
r∗

2 + c2χ
∗(t∗)

4θ
+ 1

θ

√
θ

2
f ∗
B (t∗). (A10)

Equation (A10) is rewritten as Eq. (3), after further
simplification.

APPENDIX B: WORK DISTRIBUTION FOR FREELY
DRAINING ONE-DIMENSIONAL HOOKEAN

SPRING-DASHPOT

The intermediate steps in the derivation of the mean and
variance of the probability of work distribution is provided in
this section.

Firstly, the complete expression for the work done during
one realization of pulling is obtained by substituting the

expression for r∗
2 from Eq. (4) into Eq. (6), as

W ∗ = c2

2
[χ2∗(τ ∗) − χ2∗(0)]

− c2

∫ τ ∗

0
dt∗χ̇∗(t∗)

(
r∗

2 (0)G(t∗)

+ c2

4θ

∫ t∗

0
dt∗

1 G(t∗ − t∗
1 )χ∗(t∗

1 )

+ 1

θ

∫ t∗

0
dt∗

1 G(t∗ − t∗
1 )ξ (t∗

1 )

)
(B1)

where the noise term ξ (t∗) obeys 〈ξ (t∗)〉 = 0 and

〈ξ (t∗)ξ (t∗
1 )〉 = θ

2
δ(t∗ − t∗

1 ). (B2)

The dimensionless partition function of the system can be
derived to be,

Z∗ ≡
∫ +∞

−∞
exp

[
− H

kBT

]
dr∗

2

=
√

2π

(c2 + 1)
exp

(
− c2χ

∗2

2(c2 + 1)

)
(B3)

and the dimensionless free energy A∗ = − ln Z∗ is then simply

A∗(χ∗) =
[

c2

2(c2 + 1)

]
χ2∗, (B4)

after ignoring constant prefactors. This equation is reproduced
as Eq. (7) in Sec. II. The probability distribution function for
the position of the bead is given by

�∗(r∗
2 ) ≡ 1

Z∗ exp

[
− H

kBT

]
=

(
c2 + 1

2π

)1/2

exp

{
−1

2
(c2 + 1)

[
r∗

2 −
(

c2χ
∗

c2 + 1

)]2
}

and the moments of the distribution are

〈r∗
2 〉 = c2χ

∗

c2 + 1
, (B5)

〈(r∗
2 − 〈r∗

2 〉)2〉 = 1

c2 + 1
. (B6)

The expression for the average work is obtained by taking an
ensemble average of Eq. (B1),

〈W ∗〉 = c2

2
[χ2∗(τ ∗) − χ2∗(0)]

− c2

∫ τ ∗

0
dt∗χ̇∗(t∗)

[
G(t∗)〈r∗

2 (0)〉

+ c2

4θ

∫ t∗

0
dt∗

1 G(t∗ − t∗
1 )χ∗(t∗

1 )

]
. (B7)

013331-15



KAILASHAM, CHAKRABARTI, AND PRAKASH PHYSICAL REVIEW RESEARCH 2, 013331 (2020)

Substituting Eq. (B5) into the second term on the RHS of Eq. (B7),

〈W ∗〉 = c2

2
[χ2∗(τ ∗) − χ2∗(0)] − c2

2

c2 + 1
χ∗(0)

∫ τ ∗

0
dt∗χ̇∗(t∗)G(t∗) − c2

2

4θ

∫ τ ∗

0
dt∗χ̇∗(t∗)

∫ t∗

0
dt∗

1 G(t∗ − t∗
1 )χ∗(t∗

1 ). (B8)

The underlined term is simplified as∫ t∗

0
dt∗

1 G(t∗ − t∗
1 )χ∗(t∗

1 ) =
∫ t∗

0
dt∗

1 exp

[
−E (t∗ − t∗

1 )

θ

]
χ∗(t∗

1 ) =
∫ t∗

0
dt∗

1 χ∗(t∗
1 )

d

dt∗
1

(
θE−1 exp

[
−E (t∗ − t∗

1 )

θ

])
. (B9)

Integrating expression on the RHS of Eq. (B9) by parts,∫ t∗

0
dt∗

1 G(t∗ − t∗
1 )χ∗(t∗

1 ) =
[
χ∗(t∗

1 )θE−1 exp

[
−E (t∗ − t∗

1 )

θ

]]t∗

0

−
∫ t∗

0
dt∗

1 χ̇∗(t∗
1 )θE−1 exp

[
−E (t∗ − t∗

1 )

θ

]
, (B10)

one obtains∫ t∗

0
dt∗

1 G(t∗ − t∗
1 )χ∗(t∗

1 ) = [χ∗(t∗)θE−1] −
[
χ∗(0)θE−1 exp

[
−Et∗

θ

]]
−

∫ t∗

0
dt∗

1 χ̇∗(t∗
1 )θE−1 exp

[
−E (t∗ − t∗

1 )

θ

]
, (B11)

which can then be written as∫ t∗

0
dt∗

1 G(t∗ − t∗
1 )χ∗(t∗

1 ) = θE−1

{
χ∗(t∗) − χ∗(0)G(t∗) −

∫ t∗

0
dt∗

1 χ̇∗(t∗
1 )G(t∗ − t∗

1 )

}
. (B12)

Substituting Eq. (B12) into Eq. (B8) and simplifying,

〈W ∗〉 = c2

2
[χ2∗(τ ∗) − χ2∗(0)] −

��������������
c2

2

c2 + 1
χ∗(0)

∫ τ ∗

0
dt∗χ̇∗(t∗)G(t∗) − c2

2

c2 + 1

∫ τ ∗

0
dt∗χ̇∗(t∗)χ∗(t∗)

+
��������������

c2
2

c2 + 1
χ∗(0)

∫ τ ∗

0
dt∗χ̇∗(t∗)G(t∗) + c2

2

c2 + 1

∫ τ ∗

0
dt∗

∫ t∗

0
dt∗

1 χ̇∗(t∗)G(t∗ − t∗
1 )χ̇∗(t∗

1 ), (B13)

one obtains

〈W ∗〉 =
(

c2

2(c2 + 1)

)
[χ2∗(τ ∗) − χ2∗(0)] + c2

2

c2 + 1

∫ τ ∗

0
dt∗

∫ t∗

0
dt∗

1 χ̇∗(t∗)G(t∗ − t∗
1 )χ̇∗(t∗

1 ). (B14)

Recognizing that the first term on the RHS of Eq. (B14) is the free-energy difference, �A∗ ≡ A∗[χ∗(τ ∗)] − A∗[χ∗(0)], with A
given by Eq. (B4), the expression for the average work can be rewritten as

〈W ∗〉 = �A∗ + c2
2

c2 + 1

∫ τ ∗

0
dt∗

∫ t∗

0
dt∗

1 [χ̇∗(t∗)G(t∗ − t∗
1 )χ̇∗(t∗

1 )]. (B15)

This equation is reproduced as Eq. (8) in Sec. II. Using Eqs. (B1) and (B7), the variance of the work distribution σ 2 =
〈(W ∗ − 〈W ∗〉)2〉 is written as

σ 2 = c2
2

∫ τ ∗

0
dt∗

∫ τ ∗

0
dt∗

1 χ̇∗(t∗)G(t∗)[〈(r∗
2 (0) − 〈r∗

2 (0)〉)2〉]G(t∗
1 )χ̇∗(t∗

1 )

+ c2
2

θ2

∫ τ ∗

0
dt∗

1

∫ t∗
1

0
dt̃∗

1

∫ τ ∗

0
dt∗

2

∫ t∗
2

0
dt̃∗

2 χ̇∗(t∗
1 )G(t∗

1 − t̃∗
1 )〈ξ (t̃∗

1 )ξ (t̃∗
2 )〉χ̇∗(t∗

2 )G(t∗
2 − t̃∗

2 ). (B16)

Equations (B6) and (B2) can be used to simplify the underlined terms in Eq. (B16), and we obtain

σ 2 = c2
2

c1 + 1

∫ τ ∗

0
dt∗

∫ τ ∗

0
dt∗

1 χ̇∗(t∗)G(t∗)G(t∗
1 )χ̇∗(t∗

1 )

+ c2
2

2θ

∫ τ ∗

0
dt∗

1

∫ t∗
1

0
dt̃∗

1

∫ τ ∗

0
dt∗

2

∫ t∗
2

0
dt̃∗

2 χ̇∗(t∗
1 )G(t∗

1 − t̃∗
1 )δ(t̃∗

1 − t̃∗
2 )χ̇∗(t∗

2 )G(t∗
2 − t̃∗

2 ). (B17)

Subsequent integration over t̃∗
1 in the second integral yields

σ 2 = c2
2

c2 + 1

∫ τ ∗

0
dt∗

∫ τ ∗

0
dt∗

1 χ̇∗(t∗)G(t∗)G(t∗
1 )χ̇∗(t∗

1 ) + c2
2

2θ

∫ τ ∗

0
dt∗

1

∫ τ ∗

0
dt∗

2

∫ t∗
2

0
dt̃∗

2 χ̇∗(t∗
1 )χ̇∗(t∗

2 )G(t∗
1 − t̃∗

2 )G(t∗
2 − t̃∗

2 ).

(B18)
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The following identity∫ t∗
2

0
dt̃∗

2 G(t∗
1 − t̃∗

2 )G(t∗
2 − t̃∗

2 )

=
(

2θ

c2 + 1

)
[G(t∗

1 − t∗
2 ) − G(t∗

1 )G(t∗
2 )] (B19)

can be used used to simplify the second term on the RHS of
Eq. (B18), resulting in

σ 2 = 2c2
2

(c2 + 1)

∫ τ ∗

0
dt∗

∫ t∗

0
dt∗

1 χ̇∗(t∗)G(t∗ − t∗
1 )χ̇∗(t∗

1 ).

(B20)

This equation is reproduced as Eq. (9) in Sec. II.

APPENDIX C: GOVERNING EQUATION AND
SIMULATION DETAILS FOR THE DUMBBELL OBEYING

THE MARKO-SIGGIA FORCE LAW

The dumbbell model described in Sec. II B 1 is suspended
in a fluid where the velocity field at any location rf is given
by vf(rf, t ) ≡ v0 + κ(t ) · rf, where v0 is a constant vector, and
κ ≡ (∇vf )T is the transpose of the velocity gradient tensor.
In the present work, both v0 and κ are set to 0 as the pulling
experiments are simulated in a quiescent fluid. However, these
terms have been included in the governing equations for the
sake of generality. The configurational distribution function,
�(Q, R, t ), denotes the probability of finding the dumbbell
at a position between R and R + dR, with an extension that
lies between Q and Q + dQ, at any time t . The total restoring
force in the connector vector F (c) has contributions from both
the spring F (s) ≡ ∂UMS/∂Q and the dashpot F (d):

F (c) = F (s) + F (d), (C1)

with

F (s) = HQ0

3

[
1

2(1 − Q/Q0)2 − 1

2
+ 2

(
Q

Q0

)]
Q
Q

, (C2)

where the potential energy of the spring UMS is given by

UMS = HQ2
0

3

[
1

2(1 − Q/Q0)
− 1

2

(
Q

Q0

)
+

(
Q

Q0

)2]
,

and

F (d) = K
QQ

Q2 · �Q̇� (C3)

where �Q̇� is the momentum-averaged rate-of-change of the
connector vector, Q.

The force balance on the beads can be solved to obtain the
following equations of motion for the position vectors of the
beads [42],

�ṙ1� =
[
δ − ϕβ

ϕβ + 2

QQ
Q2

]
·
(

v0 + κ · r1 − 1

2ζ
M · ∂UMS

∂r1

− kBT

2ζ
M · ∂ ln �

∂r1
+ ϕ

4
M · QQ

Q2
· �ṙ2�

− H1

ζ
(r1 − χ1) − � · H2(r2 − χ2)

)
(C4)

and

�ṙ2� =
[
δ − ϕβ

ϕβ + 2

QQ
Q2

]
·
(

v0 + κ · r2 − 1

2ζ
M · ∂UMS

∂r2

− kBT

2ζ
M · ∂ ln �

∂r2
+ ϕ

4
M · QQ

Q2
· �ṙ1�

− H2

ζ
(r2 − χ2) − � · H1(r1 − χ1)

)
, (C5)

where � is the hydrodynamic interaction tensor, defined as

�(Q) = h

ζQ

(
Aδ + B

QQ
Q2

)
(C6)

with h = (3/4)a and M = 2(δ − ζ�). The terms A and B
depend on the choice of the expression for the HI tensor,
as shown in Ref. [42]. Here we choose the Rotne-Prager-
Yamakawa (RPY) expression for the HI tensor [66,67], in
which the variables A and B are defined as follows:

A = 1 + 2

3

(
a

Q

)2

; B = 1 − 2

(
a

Q

)2

for Q � 2a, (C7)

A = 4

3

(
Q

a

)
− 3

8

(
Q

a

)2

; B = 1

8

(
Q

a

)2

for Q < 2a. (C8)

The quantity β that appears in Eqs. (C4) and (C5) is
defined as

β = 1 − h

Q
(A + B). (C9)

Using r1 = R − (1/2)Q ; r2 = R + (1/2)Q, and the chain
rule for partial differentiation to operate on ∂�/∂r1 and
∂�/∂r2, leads to

�ṙ1� = v0 + κ ·
(

R − 1

2
Q

)
+ � ·

(
−kBT

[
1

2

∂ ln �

∂R
+ ∂ ln �

∂Q

]
− ∂UMS

∂r2
− K

QQ
Q2

· �Q̇� − H2

(
R + 1

2
Q − χ2

))

−kBT

ζ

[
1

2

∂ ln �

∂R
− ∂ ln �

∂Q

]
− 1

ζ

∂UMS

∂r1
+ ϕ

2

QQ
Q2

· �Q̇� − H1

ζ

(
R − 1

2
Q − χ1

)
(C10)

and

�ṙ2� = v0 + κ ·
(

R + 1

2
Q

)
+ � ·

(
−kBT

[
1

2

∂ ln �

∂R
− ∂ ln �

∂Q

]
− ∂UMS

∂r1
+ K

QQ
Q2

· �Q̇� − H1

(
R − 1

2
Q − χ1

))

− kBT

ζ

[
1

2

∂ ln �

∂R
+ ∂ ln �

∂Q

]
− 1

ζ

∂UMS

∂r2
+ ϕ

2

QQ
Q2

· �Q̇� − H2

ζ

(
R + 1

2
Q − χ2

)
. (C11)
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By adding and subtracting Eqs. (C10) and (C11) suitably, we obtain

�Ṙ� = v0 + κ · R − kBT

2ζ
(δ + ζ�) · ∂ ln �

∂R
− 1

2ζ
(δ + ζ�) · X , (C12)

�Q̇� =
[
δ − ϕβ

ϕβ + 1

QQ
Q2

]
·
(

κ · Q − kBT

ζ
M · ∂

∂Q
ln � − 1

ζ
M · ∂UMS

∂Q
− 1

2ζ
M · Y

)
, (C13)

where

X = R(H2 + H1) + Q
(

H2 − H1

2

)
− (H2χ2 + H1χ1)

and

Y = R(H2 − H1) + Q
(

H2 + H1

2

)
− (H2χ2 − H1χ1)

and both X and Y have dimensions of force.
The equation of continuity in terms of R and Q is given by [46]

∂�

∂t
= −

(
∂

∂R
· �Ṙ��

)
−

(
∂

∂Q
· �Q̇��

)
. (C14)

Substituting Eqs. (C12) and (C13) into the above expression leads to the Fokker-Planck equation that governs the configurational
distribution function �(Q, R, t ),

∂�

∂t
= − ∂

∂R
·
{[

v0 + κ · R − 1

2ζ
(δ + ζ�) · X

]
�

}
+ kBT

2ζ

∂

∂R
· (δ + ζ�) · ∂�

∂R

− ∂

∂Q
·
{[[

δ − ϕβ

ϕβ + 1

QQ
Q2

]
·
(

κ · Q − 1

ζ
M · ∂UMS

∂Q
− 1

2ζ
M · Y

)]
�

}

+ kBT

ζ

∂

∂Q
·
[(

δ − ϕβ

ϕβ + 1

QQ
Q2

)
· M

]
· ∂�

∂Q
.

(C15)

We define the following dimensionless quantities:

t∗ = t

λH
; Q∗ = Q

lH
; b = Q2

0

l2
H

; κ∗ = λHκ; U ∗
MS = UMS

kBT
; �∗ = �l3

H; X∗ = X√
kBT H

. (C16)

In terms of these nondimensional variables, the Fokker-Planck equation assumes the following form:

∂�∗

∂t∗ = − ∂

∂R∗ ·
{[

v∗
0 + κ∗ · R∗ − 1

8
(δ + ζ �̂) · X∗

]
�∗

}
+ 1

8

∂

∂R
· (δ + ζ �̂) · ∂�∗

∂R∗

− ∂

∂Q∗ ·
{[[

δ − ϕβ∗

ϕβ∗ + 1

Q∗Q∗

Q∗2

]
·
(

κ∗ · Q∗ − 1

4
M∗ · ∂U ∗

MS

∂Q∗ − 1

8
M∗ · Y ∗

)]
�∗

}

+ 1

4

∂

∂Q∗ ·
[(

δ − ϕβ∗

ϕβ∗ + 1

Q∗Q∗

Q∗2

)
· M∗

]
· ∂�∗

∂Q∗ , (C17)

where

�̂(Q∗) = α

ζQ∗

(
A∗δ + B∗ Q∗Q∗

Q∗2

)
(C18)

with α = (3/4)
√

πh∗ and h∗ = a/(
√

π lH). The quantity β∗ is dimensionless and is defined as

β∗ = 1 − α

Q∗ (A∗ + B∗). (C19)

Using the following identity:

∂

∂x
·
[

L · ∂ f

∂x

]
= ∂

∂x
∂

∂x
: [LT f ] − ∂

∂x
·
[

f
∂

∂x
· LT

]
,

where L is a tensor and f is a scalar, the second and fourth terms on the right-hand side of Eq. (C17) can rewritten in a way that
renders the Fokker-Planck equation amenable to Itô interpretation.
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Since �̂(Q∗) is independent of R∗ and

(
δ − ϕβ∗

ϕβ∗ + 1

Q∗Q∗

Q∗2

)
· (δ − ζ �̂) =

(
Q∗ − A∗α

Q∗

)(
δ − g1

Q∗Q∗

Q∗2

)
, (C20)

the Fokker-Planck equation can be rewritten as follows:

∂�∗

∂t∗ = − ∂

∂R∗ ·
{[

v∗
0 + κ∗ · R∗ − 1

8
(δ + ζ �̂) · X∗

]
�∗

}
+ 1

2

∂

∂R∗
∂

∂R∗ :

[
(δ + ζ �̂)

4
�∗

]

− ∂

∂Q∗ ·
{[

g2

2

Q∗

Q∗ +
[
δ − ϕβ∗

ϕβ∗ + 1

Q∗Q∗

Q∗2

]
·
(

κ∗ · Q∗ − 1

4
M∗ · ∂U ∗

MS

∂Q∗ − 1

8
M∗ · Y ∗

)]
�∗

}

+ 1

2

∂

∂Q∗
∂

∂Q∗ :
[(

Q∗ − A∗α
Q∗

)(
δ − g1

Q∗Q∗

Q∗2

)
�∗

]
, (C21)

where

g1 = αB∗Q∗ + ϕ(Q∗ − A∗α)[Q∗ − α(A∗ + B∗)]

(Q∗ − A∗α){Q∗ + ϕ[Q∗ − α(A∗ + B∗)]} ,

g2 = 2αB∗

{Q∗ + ϕ[Q∗ − α(A∗ + B∗)]}2 − 2g1

(
Q∗ − A∗α

Q∗2

)
.

(C22)

The Fokker-Planck equation (Eq. (C21)) can be written in the
following compact form:

∂�∗

∂t∗ = − ∂

∂R∗ · {e�∗} + 1

2

∂

∂R∗
∂

∂R∗ : [ẽ�∗] − ∂

∂Q∗ · {g�∗}

+ 1

2

∂

∂Q∗
∂

∂Q∗ : [g̃�∗], (C23)

where the definitions of the quantities e, ẽ, g and g̃ are clear
by comparison of Eqs. (C21) and (C23).

It is convenient to define a collective variable, C, which
is a six-element vector containing the components of R∗ and
Q∗, such that C ≡ [R∗

x , R∗
y , R∗

z , Q∗
x , Q∗

y , Q∗
z ]. Similarly, a six-

element vector j can be defined, containing the components
of e and g, along with the definition of a 2 × 2 block matrix D,
whose off-diagonal elements are 0, and the diagonal elements
are the matrices ẽ and g̃ (each of size 3 × 3). With these
definitions, the Fokker-Planck equation in Eq. (C23) can be
written as

∂�∗

∂t∗ = − ∂

∂C
· { j�∗} + 1

2

∂

∂C
∂

∂C
: [D�∗]. (C24)

The stochastic differential equation (SDE) corre-
sponding to Eq. (C24) can be obtained using the Itô
interpretation, as

dC = jdt∗ + b̃ · dwt , (C25)

where wt is a Wiener process and b̃ · b̃
T = D. The SDE

[Eq. (C25)] is solved using a semi-implicit predictor-corrector
scheme [65], as discussed in the following section.

1. Solver details

With reference to Eq. (C24), D is a 6 × 6 matrix, and
its square root b̃ j at any time t∗

j is found using Cholesky
decomposition [68]. Although Eq. (C25) is written in terms
of the collective variable C, the equation for R∗ is solved
purely explicitly, whereas the equation in Q∗ is solved by
treating only the spring force term implicitly. For the sake of
clarity, the predictor and corrector equations for R∗ and Q∗ are
presented separately. It is useful to define another six-element
vector �S j as

�S j = b̃ j · �w j, (C26)

where w j is a vector of six independent Wiener processes,
each of mean zero and variance �t∗

j . The first three elements

of �S j , denoted by �S (R)
j , contain the noise contribution to

R∗, and the next three elements, denoted by �S (Q)
j , contribute

to the noise in Q∗. In the following discussion, Eqs. (C27)–
(C34) are in their dimensionless form, but the asterisk has
been dropped from these equations for the sake of notational
simplicity.

2. Predictor step

R̃(t j+1) = R(t j ) + [v0 + κ(t j ) · R(t j ) − X a(t j )]�t j + �S (R)
j , (C27)

Q̃(t j+1) = Q(t j ) +
[
κ(t j ) · Q(t j ) −

(
ϕβ(t j )

ϕβ(t j ) + 1

)[
κ(t j ) :

Q(t j )Q(t j )

Q2(t j )

]
Q(t j )

− f

2

(
β(t j )

ϕβ(t j ) + 1

)
Q(t j )

Q(t j )
+ g2(t j )

2

Q(t j )

Q(t j )
− Y a(t j )

]
�t j + �S (Q)

j , (C28)
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where

X a(t j ) = 1

8
(δ + ζ �̂(Q j )) · X (Q j, R j ),

Y a(t j ) = 1

4

(
δ − ϕβ(t j )

ϕβ(t j ) + 1

Q(t j )Q(t j )

Q2(t j )

)
· (δ − ζ �̂(Q j )) · Y (Q j, R j ),

f (t j ) =
√

b

3

[
1

2(1 − Q(t j )/
√

b)2
− 1

2
+ 2

(
Q(t j )√

b

)]
, (C29)

and the notations Q j and Q(t j ) have been used interchangeably to refer to the same quantity.

3. Corrector step

R(t j+1) = R̃(t j+1) + 1

2
[κ(t j+1) · R̃ j+1 − κ(t j ) · R̃ j − X̃ a(t j+1) + X a(t j )]�t j, (C30)[

1 + f (t j+1)

4Q(t j+1)

(
β̃(t j+1)

ϕβ̃(t j+1) + 1

)
�t j

]
Q(t j+1)

= Q̃(t j+1) + 1

2
[κ(t j+1) · Q̃ j+1 − κ(t j ) · Q̃ j + q̃(t j+1) − q(t j ) − Ỹ a(t j+1) + Y a(t j )]�t j, (C31)

where

X̃ a(t j+1) = 1

8
(δ + ζ �̂(Q̃ j+1)) · X̃ (Q̃ j+1, R̃ j+1),

Ỹ a(t j+1) = 1

4

(
δ − ϕβ̃(t j+1)

ϕβ̃(t j+1) + 1

Q̃(t j+1)Q̃(t j+1)

Q̃2(t j+1)

)
· (δ − ζ �̂(Q̃ j+1)) · Y (Q̃ j+1, R̃ j+1),

f (t j+1) =
√

b

3

[
1

2(1 − Q(t j+1)/
√

b)2
− 1

2
+ 2

(
Q(t j+1)√

b

)]
,

q(t j ) = g2(t j )

2

Q(t j )

Q(t j )
−

(
ϕβ(t j )

ϕβ(t j ) + 1

)[
κ(t j ) :

Q(t j )Q(t j )

Q2(t j )

]
Q(t j ),

q̃(t j+1) = g2(t j+1)

2

Q̃(t j+1)

Q̃(t j+1)
−

(
ϕβ̃(t j+1)

ϕβ̃(t j+1) + 1

)[
κ(t j+1) :

Q̃(t j+1)Q̃(t j+1)

Q̃2(t j+1)

]
Q̃(t j+1). (C32)

By setting the length of the vector on the RHS of Eq. (C31)
to be L, and the length of Q(t j+1) to be �, the following cubic
equation is obtained:

V3 − V2

[
3(3� + 4 + 2�)

2(2� + 3)

]
+ V

[
3(1 + � + 2�)

2� + 3

]

− 3�

2� + 3
= 0 (C33)

where

� =
(

β̃(t j+1)

ϕβ̃(t j+1) + 1

)
�t j

4
; V = �√

b
; � = L√

b
(C34)

Equation (C33) has three roots—two complex and one real—
and the real root is obtained using the Newton-Raphson
scheme [68]. Note that the equations are solved in their dimen-
sionless form, and the dimensional quantities are obtained by
a suitable multiplication with the scaling factors, as explained
in the discussion surrounding Eq. (C16).

APPENDIX D: CODE VALIDATION FOR
THE DUMBBELL CASE

The total Hamiltonian of the dumbbell and trap system is
written as

H∗ ≡ H
kBT

= U ∗
MS + c1

2
(r∗

1 − χ∗
1 )2 + c2

2
(r∗

2 − χ∗
2 )2. (D1)

The expression for H∗ can be rewritten in terms of Q∗ and
R∗ as

H∗ = b

3

[
1

2(1 − Q∗/
√

b)
− 1

2

(
Q∗
√

b

)
+

(
Q∗
√

b

)2
]

− R∗ · (c1χ
∗
1 + c2χ

∗
2 ) + c1χ

∗2
1 + c2χ

∗2
2

2

+ Q∗

2
· (c1χ

∗
1 − c2χ

∗
2 ) −

(
c1 − c2

2

)
Q∗ · R∗ + R∗2

×
(

c1 + c2

2

)
+ Q∗2

4

(
c1 + c2

2

)
. (D2)
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The steady-state configurational distribution function can be
written as

�∗(Q∗, R∗) = 1

Z exp[−H∗], (D3)

where Z is the partition function of the system, given by

Z =
∫∫

exp[−H∗]dR∗dQ∗. (D4)

Substituiting the definition of H∗ from Eq. (D2) into Eq. (D4)
yields the following equation:

Z =
∫ [ ∫

exp[−c(R∗ · R∗) − m(R∗ · l )]dR∗
]

exp [�]dQ∗,

(D5)

where

c = c1 + c2

2
; m = 1;

l = −
[

c1χ
∗
1 + c2χ

∗
2 +

(
c1 − c2

2

)
Q∗

]
,

� = −Q∗2

4

(
c1 + c2

2

)
− Q∗

2
· (c1χ

∗
1 − c2χ

∗
2 )

− c1χ
∗2
1 + c2χ

∗2
2

2
− U ∗

MS. (D6)

The inner integral in Eq. (D5) can be evaluated using the
following identity [46] for Gaussian integrals:∫

exp[−c(u · u) − m(u · j)]du =
(π

c

)3/2
exp

[
m2

4c
( j · j)

]
(D7)

resulting in

Z =
(

2π

c1 + c2

)3/2 ∫
exp

[
l · l
4c

+ �

]
dQ∗. (D8)

Upon simplification, one obtains

Z =
(

2π

c1 + c2

)3/2 ∫
exp{−k[Q∗ − s∗]2 − U ∗

MS}dQ∗, (D9)

where k = (c1c2)/2(c1 + c2), and s∗ = χ∗
2 − χ∗

1. The inte-
gral in Eq. (D9) can be evaluated by converting to spheri-
cal coordinates, recognizing that Q∗

x = Q∗ sin θ cos φ, Q∗
y =

Q∗ sin θ sin φ, Q∗
z = Q∗ cos θ . Therefore

Z =
(

2π

c1 + c2

)3/2 ∫ √
b

Q∗=0

∫ π

θ=0

∫ 2π

φ=0

[
exp(−k[Q∗

x − s∗
x ]2)

× exp(−k[Q∗
y − s∗

y ]2) exp(−k[Q∗
z − s∗

z ]2)

× exp

{
b

3

[
1

2

(
Q∗
√

b

)
− 1

2(1 − Q∗/
√

b)
−

(
Q∗
√

b

)2]}]

× Q∗2dQ∗ sin θdθdφ. (D10)

The integral in Eq. (D10) does not have an analytically closed-
form solution, and is evaluated numerically using MATLAB.
The free-energy difference in going from the initial state to

FIG. 16. Validation of the code for pulling a single-mode spring-
dashpot. Comparison of the numerically calculated free-energy dif-
ferences (indicated by horizontal lines) against that calculated using
the JE, for two different parameter sets shown in Table III.

the final state is then given by

�A∗
num = ln

[
Z

(
χ∗

2 = χ
(i)∗
2

)
Z

(
χ∗

2 = χ
(f)∗
2

)
]
, (D11)

where the subscript “num” indicates that the free-energy
difference has been calculated numerically.

Figure 16 shows a comparison between the free-energy
difference obtained from Brownian dynamics simulations of
N = 1 × 105 trajectories using Jarzynski equality, and that
obtained from Eq. (D11), for the two parameter sets indicated
in Table III. In Table IV, a comparison of the free-energy
differences obtained from Eq. (D11) and BD simulations is
provided, along with the relative error in the free-energy
difference obtained over a range of pulling velocities.

APPENDIX E: CODE VALIDATION FOR
THE SINGLE CHAIN CASE

A chain of Nb beads connected by Ns springs is considered,
with the stiffness of each spring denoted by H . The first bead

TABLE III. Parameter values for the two representative cases
for which the free-energy differences are evaluated using Jarzynski
equality and numerical integration.

Parameter sets
1 2

b 50 80
c1 20 15
c2 1 15
χ∗

1 (0, 0, 0) (0, 0, 0)

χ
(i)∗
2 (1, 0, 0) (4, 0, 0)

χ
(f)∗
2 (3, 0, 0) (5, 0, 0)
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TABLE IV. A comparison of the free-energy differences calcu-
lated using numerical integration [Eq. (D11)], and BD simulations
using Jarzynski equality [Eq. (1)], over N = 1 × 105 trajectories.
Simulation data reported for freely draining dumbbells with no
internal friction [h∗ = 0.0, ϕ = 0.0]. The error is quantified as,
% error = 100 × |(�A∗ − �A∗

num)/�A∗
num|.

Parameter set 1 : �A∗
num = 2.11504

v∗ �A∗ % error 〈W ∗
dis〉

0.001 2.1151 ± 0.0002 0.0006 0.0017 ± 0.0003
0.005 2.1149 ± 0.0004 0.008 0.0084 ± 0.0006
0.01 2.1147 ± 0.0006 0.02 0.0169 ± 0.008
0.02 2.1144 ± 0.0008 0.03 0.033 ± 0.001
0.05 2.116 ± 0.001 0.04 0.081 ± 0.002
0.1 2.114 ± 0.002 0.06 0.155 ± 0.003
0.2 2.116 ± 0.003 0.05 0.281 ± 0.004
0.5 2.116 ± 0.004 0.04 0.508 ± 0.005
1.0 2.115 ± 0.005 0.01 0.673 ± 0.006

Parameter set 2 : �A∗
num = 5.55479

v∗ �A∗ % error 〈W ∗
dis〉

0.001 5.5551 ± 0.0002 0.005 0.0031 ± 0.0004
0.005 5.5559 ± 0.0006 0.02 0.0156 ± 0.0008
0.01 5.5546 ± 0.0008 0.003 0.031 ± 0.001
0.02 5.553 ± 0.001 0.02 0.063 ± 0.002
0.05 5.554 ± 0.002 0.01 0.155 ± 0.003
0.1 5.551 ± 0.003 0.07 0.306 ± 0.004
0.2 5.549 ± 0.005 0.08 0.593 ± 0.006
0.5 5.54 ± 0.01 0.26 1.38 ± 0.01
1.0 5.50 ± 0.03 0.95 2.42 ± 0.03

is held fixed at the origin, and the last bead is subjected to
a harmonic trap of stiffness c2H . The trap is moved from an
initial position of χ (i) to a final position of χ (f), over a time τ .
The distance traveled by the trap is denoted by d ≡ χ (f) − χ (i),
and the pulling velocity v given by v = d/τ .

By following the procedure proposed by Dhar [47], and
using the nondimensionalization scheme introduced in this
paper [see Eq. (C16), for example], the free-energy dif-
ference associated with the stretching process is evaluated
to be

�A∗ = c2

2(c2Ns + 1)
[(χ (f)∗)2 − (χ (i)∗)2], (E1)

and P∗(W ∗) is found to be a Gaussian of the form

P∗(W ∗) = 1√
2πσ 2

exp

[
− (W ∗ − 〈W ∗〉)2

2σ 2

]
, (E2)

FIG. 17. Validation of the code for single chain pulling. Com-
parison of the analytical probability distribution function of the work
trajectories, against that computed by binning the work trajectories
obtained in pulling simulations on Hookean chains. The lines cor-
respond to the Gaussian probability distribution given by Eq. (E2),
with variance and mean defined in Eqs. (E3) and (E4), respectively.

whose variance and mean are given by

σ 2 = c2
2v

∗d∗

2τ ∗

{
E−2 + 1

τ ∗ E−3(e−Eτ ∗ − 1)

}
NsNs

≡ 2〈W ∗
dis〉,

(E3)

〈W ∗〉 = �A∗ + σ 2

2
(E4)

where the notation {. . . }i j refers to the (i j)th matrix element,
and E is a symmetric, tridiagonal Ns × Ns matrix of the
following form:

Ei j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 ; i = j �= Ns

− 1
4 ; |i − j| = 1

(c2+1)
4 ; i = j = Ns

0; otherwise

. (E5)

The pulling of Hookean chains was simulated using Brow-
nian dynamics, with an ensemble size of O(105). The first
bead was held fixed at the origin by means of a stiff har-
monic trap of strength c1 = 1000. In Fig. 17, the probability
distribution of work values obtained from BD simulations is
compared against the analytical solution for two sample cases.
The good agreement between the two suggests the validity of
the code.
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