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Simple communication complexity separation from quantum state antidistinguishability
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A set of n pure quantum states is called antidististinguishable if there exists an n-outcome measurement that
never outputs the outcome ‘k’ on the kth quantum state. We describe sets of quantum states for which any subset
of three states is antidistinguishable and use this to produce a two-player communication task that can be solved
with log d qubits, but requires one-way communication of at least log(4/3)(d − 1) − 1 ≈ 0.415(d − 1) − 1
classical bits. The advantages of the approach are that the proof is simple and self-contained – not needing,
for example, to rely on hard-to-establish prior results in combinatorics – and that with slight modifications,
nontrivial bounds can be established in any dimension � 3. The task can be framed in terms of the separated
parties solving a relation. We show, however, that for this particular task, the separation disappears if two-way
classical communication is allowed, or if the task need only be solved with bounded error. Finally, we state a
conjecture regarding antidistinguishability of sets of states, and provide some supporting numerical evidence.
If the conjecture holds, then there is a two-player communication task that can be solved with log d qubits, but
requires exact one-way communication of �(d log d ) classical bits.
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I. INTRODUCTION

How difficult is it to communicate classically the identity
of a quantum state in an entanglement-unassisted scenario?
Specifying a pure state of a qubit requires two real numbers,
so communicating its identity seemingly needs an infinite
amount of classical information [1]. This suspicion is con-
firmed by the results of Ref. [2], which show that if the two
communicating parties do not share random data, then an
unbounded amount of classical communication is needed to
exactly simulate results of quantum experiments. Assuming
shared randomness, however, only two bits suffice to exactly
reproduce results of any projective qubit measurement [3].

Here we derive a lower bound for the classical communi-
cation cost of simulating the transmission of a d-dimensional
quantum state. This is done by describing a communication
problem based on a relation and proving an exponential
separation between the classical and quantum communication
complexities. The proof uses quantum state antidistinguisha-
bility, a concept that has been studied in the foundations
literature [4–8], and lies behind the theorem of Ref. [4], which
rules out �-epistemic ontological models of quantum theory.

It is already well known that there can be exponential
separation between classical and quantum communication
complexities. Reference [9] (see also Ref. [10]), for example,
presents an �(d ) versus O(log d ) separation between classical
and quantum zero-error communication complexities for the
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task of deciding whether two d-bit inputs are either equal or
have Hamming distance d/2. The proof presented involves
a highly nontrivial combinatorial result [11] and results in
a classical lower bound of the form cd , for a constant c =
0.01. (Slightly strengthened, the same proof yields a lower
bound of cd for any c < 0.02, which means that a nontrivial
separation between the number of classical bits that must be
communicated and the number of qubits can be established for
any d � 512.) Subsequent works [12–19] established expo-
nential separations between zero-error quantum and bounded-
error classical protocols. The separations of Refs. [17,18], in
particular, are strong in the sense that the separation holds
between zero-error one-way quantum protocols and bounded-
error classical protocols that allow two-way communication.
In none of Refs. [12–19], however, is a classical lower bound
of �(d ) established: varying separations are presented of
which the strongest is �(

√
d ) vs O(log d ). Reference [20],

by considering a task based on distributed Fourier sampling,
derives an �(d ) versus O(log d ) separation, which is robust
against constant additive error, and which holds when two-
way classical communication is allowed. For a 2010 review,
see Ref. [21].

Montina [22] considers the scenario in which Alice’s input
can be any pure state of a d-dimensional quantum system, and
Bob’s input can be any two-outcome measurement consisting
of a rank 1 projector and the orthogonal projector. Assum-
ing zero-error, one-way classical communication, Montina
derives a classical lower bound of cd , for c ≈ 0.293, where
the proof uses a result concerning volumes of subsets of a
hypersphere due to Raigorodskii [23]. It is also shown that
a classical lower bound of d − 1 follows from (a complex
generalization of) a mathematical conjecture known as the
double cap conjecture.

Finally, other works have had slightly different aims
from that of establishing quantum-classical separations in the
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standard communication complexity setting, but nonetheless
contain techniques related to those that we use. These include
Ref. [24], which presents quantum fingerprinting protocols,
and Refs. [25,26], where the notion of antidistinguishability
is used to give separations between one-way communication
and information complexities in exclusion games. They also
include Ref. [27], where lower bounds on the size of a
classical memory needed to simulate quantum processes are
derived, and applied to the stabilizer subtheory of quantum
theory. Reference [28] defines and studies tasks of commu-
nicating “partial ignorance,” including communication tasks
using antidistinguishable quantum states that are similar to
those used here.

One of the main motivations for our work is to present a
proof of exponential separation between classical and quan-
tum communication complexity that is very simple, and self-
contained. Aside from this, the advantages of the approach
include (i) a lower bound for zero-error one way classical
communication of cd , with c ≈ 0.415, which is the strongest
that we have seen, and (ii) a separation between quantum and
classical one-way communication complexity for any d � 3.
On the negative side, we show that the classical communica-
tion lower bound disappears if two-way classical communica-
tion is allowed. Although the result is robust against a limited
amount of additive noise, the lower bound also disappears if
bounded error classical protocols are allowed.

We use asymptotic O-notation throughout [29]. All loga-
rithms are base 2, [n] denotes the set {1, 2, . . . , n}, and {0, 1}∗
is the set of all finite bit-strings.

II. COMMUNICATION COMPLEXITY

Communication complexity studies the amount of commu-
nication needed to solve distributed computational problems
[30–33]. In a two-party relational task, Alice and Bob get
inputs x ∈ X and y ∈ Y , respectively, for finite sets X,Y , and
do not see the other’s input. The aim is for Bob to output
z ∈ Z , such that (x, y, z) ∈ R for a relation R ⊆ X × Y × Z .
Both parties can use unlimited computational power and ex-
change messages following a shared communication protocol.
In this work, we allow shared randomness, meaning that Alice
and Bob share a random string s ∈ {0, 1}∗ sampled from a
distribution P(s). On any run of the protocol, the classical
(quantum) communication cost is the number of transmitted
bits (qubits). In general, this can depend on both the input and
the value of s. The notion of communication complexity we
use is the communication cost in the best possible protocol,
where the communication cost is averaged over the shared
random data, and evaluated on the worst-case input. Note
that with this definition, the communication complexity with
shared random data can be smaller than the deterministic com-
munication complexity (where no randomness is permitted),
even for zero error protocols [32]. The communication cost for
the worst-case value of s is always larger than that averaged
over s, hence our lower bounds for classical communication
complexity still apply if communication complexity is defined
with respect to the worst-case value of s. One-way commu-
nication complexity assumes a protocol in which Alice is
only allowed to send a single message to Bob, after which
he announces the result.

III. ANTIDISTINGUISHABILITY

The quantum protocol that we will describe relies on an-
tidistinguishable sets of quantum states. A set of n pure quan-
tum states |ρ1〉, |ρ2〉, . . . , |ρn〉 is antidistinguishable if there
exists an n-outcome (in general positive operator-valued)
measurement �′ = {�′

z | z ∈ [n]} that never outputs the out-
come z on the quantum state |ρz〉, i.e.,

�′
z|ρz〉 = 0, ∀ z ∈ [n]. (1)

A sufficient condition for three pure quantum states
|ρ j〉, |ρk〉, |ρm〉 to be antidistinguishable with a projective
measurement is if there exist orthogonal states | j〉, |k〉, |m〉,
such that

|ρ j〉 = cos θi|k〉 + eiφi sin θi|m〉,
|ρk〉 = cos θ j |m〉 + eiφ j sin θ j | j〉,
|ρm〉 = cos θk| j〉 + eiφk sin θk|k〉, (2)

for some θz, φz ∈ R, z ∈ { j, k, m}. The notion of antidistin-
guishability was introduced by Caves, Fuchs and Schack in
Ref. [5], where it is shown that that such a basis can be found
iff for

a = |〈ρ j |ρk〉|2, b = |〈ρ j |ρm〉|2, c = |〈ρm|ρk〉|2,
the following holds [34]:

a + b + c < 1, (1 − a − b − c)2 � 4abc.

As a simple corollary, any triple of pure quantum states is
antidistinguishable if

a, b, c � 1
4 . (3)

Now consider a finite set S of pure states |ρ1〉, |ρ2〉, . . . ,
|ρ|S|〉, for which

|〈ρi|ρ j〉| � δ; ∀ i �= j,

where δ ∈ [0, 1). Such sets are called complex spherical
codes, and have been much studied, with applications in
classical signal processing, error correction, and quantum
information [24,35–41]. Our results will be obtained from the
following simple observation:

Claim 1. Any triple of states drawn from a complex spher-
ical code S with δ � 1/2 is antidistinguishable.

IV. SEPARATIONS

The separation between classical and quantum commu-
nication complexities that we establish is for solution of a
relational task, as follows. For a d-dimensional Hilbert space,
let S be a complex spherical code S = {|ρ1〉, |ρ2〉, . . . |ρ|S|〉},
with δ = 1/2. Alice’s input is an integer i ∈ [|S|]. Bob’s input
is a set of three integers j, k, m ∈ [|S|]. Bob must output one
of the integers j, k, m, under the constraint that his output
must not be equal to Alice’s input. Setting X = Z = [|S|], and
Y = {T |T ⊆ S, |T | = 3}, the relation is thus given by

R ⊆ X × Y × Z:

(i, { j, k, m}, z) ∈ R iff z ∈ { j, k, m} and z �= i. (4)

The quantum solution is straightforward (see Fig. 1).
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FIG. 1. A quantum protocol. Alice gets an integer i ∈ [|S|],
and Bob gets three integers j, k, m ∈ [|S|]. Alice sends a quantum
system in the state |ρi〉 to Bob. Bob performs an antidistinguishing
measurement for the states |ρ j〉, |ρk〉, |ρm〉, and outputs the outcome.

(1) Given input i, Alice prepares a quantum system in the
state |ρi〉 ∈ S and sends it to Bob.

(2) Given input { j, k, m}, Bob performs an antidistinguish-
ing measurement for the three states |ρ j〉, |ρk〉, |ρm〉 on the
system he receives from Alice. Label the three outcomes
�′

z, for z ∈ { j, k, m}, such that �′
z|ρz〉 = 0. If Bob obtains

outcome �′
z, then he outputs z. (This means that Bob never

outputs an outcome “i.”)
The communication complexity is the number of qubits

transmitted, which is �log d. A classical protocol is illus-
trated in Fig. 2.

Claim 2. The zero-error one-way classical communication
complexity of the task is at least �log |S| − 1.

Proof. To establish the claim, consider first deterministic
protocols, in which the message that Alice sends to Bob is a
function of her input, and Bob’s output is a function of his
input and the message. Suppose that there are three distinct
values of Alice’s input, |ρ j〉, |ρk〉, |ρm〉, such that the same
message λ is sent for each of them. If Bob receives λ, and his
input is the triple { j, k, m}, then there is no output he can give
that will not sometimes generate an error. Therefore, Alice
needs at least a distinct message per two states of S. This gives

|
| � |S|
2

, (5)

where 
 is the set of possible values of Alice’s message. It
follows that on the worst case input, Alice needs to send at
least �log |S| − 1 bits.

In the presence of shared randomness s, each value of s
defines a deterministic protocol, which in the zero-error case
must respect the relation. If communication complexity is
evaluated as the communication cost on the worst case values
of s, then this concludes the proof. With communication
complexity given by the communication cost averaged over s,
and evaluated on the worst case input, the following standard
manoeuvre (Yao’s minimax principle) [32] suffices. For any
probability distribution Q over input pairs, the communication

FIG. 2. A classical protocol. Alice gets an integer i ∈ [|S|], and
Bob gets three integers j, k, m ∈ [|S|]. Alice sends a message λ, after
which Bob outputs z ∈ { j, k, m}. The classical strategy can use a
shared random string s, drawn according to a probability distribution
P(s).

complexity is lower bounded by the communication cost, av-
eraged both over values of s and over inputs drawn according
to the distribution Q. This is in turn lower bounded by the
communication cost, averaged over inputs drawn according to
the distribution Q, of the deterministic protocol that achieves
the lowest value for this cost. Choosing Q as the uniform dis-
tribution over all input pairs, the argument above establishes
that the lower bound of �log |S| − 1 bits still holds. �

We remark that the lower bound derived in Claim 2 also
straightforwardly applies to multiplicative error sampling. Let
S be the set of states defined in Claim 1 and let �′ = {�′

z |z ∈
{ j, k, m}} be a measurement antidistinguishing a triple of
states {|ρ j〉, |ρk〉, |ρm〉} ⊆ S, chosen such that �′

z|ρz〉 = 0 for
all z ∈ { j, k, m}. Let p(z |�′, |ρi〉) denote the probability of
measuring an outcome “z” by applying �′ to |ρi〉. A ε-
multiplicative sampling protocol samples from a distribution
p̃(z |�′, |ρi〉), such that

| p̃(z |�′, |ρi〉) − p(z |�′, |ρi〉)| � ε p(z |�′, |ρi〉), (6)

for some ε � 0 and all inputs. Notice that

p(z| �′, |ρi〉) = 0 ⇒ p̃(z| �′, |ρi〉) = 0 (7)

holds for arbitrary ε. Even as ε → ∞, the mutliplicative
error simulation protocol cannot output an outcome that is
assigned zero probability in the exact case and hence also
solves the relation R defined in Eq. (4). This means that
classical protocols for the sampling task are subject to the
same classical lower bounds as the zero-error protocol for R.

The lower bound of Claim 2 is determined by |S|, the size
of the spherical code S. In contrast, for a fixed dimension d ,
regardless of the size of |S|, the quantum protocol uses only
�log d qubits. This gives a communication advantage when-
ever |S| > 2d . For the best separation, the problem becomes:
how large can a complex spherical code in d dimensions be,
with δ = 1/2?

In d = 3, the largest such set is given by an equiangular
complex spherical code, otherwise known as a symmetric,
informationally complete set (SIC) [42–45]. A SIC in dimen-
sion 3 consists of 9 unit vectors, such that

|〈ρi|ρ j〉|2 = 1
4 , ∀ i �= j. (8)

That a larger set cannot be found follows from the Welch
bound [35], which states that

max
i �= j

|〈ρi|ρ j〉|2 � |S| − d

d (|S| − 1)
, (9)

for any set of d-dimensional pure states S = {|ρ1〉,
|ρ2〉, . . . |ρ|S|〉}. This shows that Alice needs to send at least
a 5-valued message versus a 3-dimensional quantum system,
or in terms of whole numbers of bits and qubits, at least 3 bits
versus 2 qubits.

In d � 4, mutually unbiased bases (MUBs) yield larger
sets than SICs. It is known that for d power prime, there exist
d + 1 distinct MUBs [46], which satisfy |〈ρi|ρ j〉|2 � 1/d .
Taking S as the union of the vectors in the MUBs gives
|S| = d (d + 1), hence a �log(d2 + d ) − 1 lower bound on
classical communication. In d = 4, Alice needs to send at
least a 10-valued message versus a 4-dimensional quantum
system, or in terms of whole numbers of bits and qubits,
at least 4 bits versus 2 qubits. A bound due to Levenshtein
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[36,37,40] implies that in d = 4, the 20-element set of vectors
given by MUBs is the largest that can be achieved with δ =
1/2. In d � 5, larger sets than those given by MUBs have been
found numerically [40,41].

For general d , the following supplies a classical lower
bound of �log(4/3)(d − 1) − 1 ≈ 0.415(d − 1) − 1 bits.

Claim 3. For any d , there exists a complex spherical code,
with δ = 1/2, such that |S| � ( 4

3 )
d−1

.
Proof. The claim is established by generalizing a well

known result of Chabauty, Shannon and Wyner [47–50] to
the case of complex vector spaces. Consider, for each vector
|e〉 ∈ S, the complex spherical cap Ad

θ , defined as the set of all
vectors |ψ〉 in the Hilbert space satisfying |〈e|ψ〉|2 � cos2 θ ,
for some 0 � θ � π/2. If S is as large as possible under the
constraint δ = 1/2, then for θ = π/3, these caps must cover
the whole of the complex unit sphere—otherwise, there is
room to add another vector to S. Therefore, a simple lower
bound on the achievable |S| is given by

|S| � V d

V d
π/3

, (10)

where V d
θ is the volume of a spherical cap Ad

θ , and V d = V d
π/2

is the volume of the unit sphere in d complex dimensions,
volumes being evaluated according to some suitable measure.

The following calculation (with different θ , in the con-
text of a different method for establishing a communication
complexity separation) appears in Ref. [22]. In keeping with
our main motivation of providing a simple and self-contained
proof of exponential separation, we reproduce the reasoning
here.

The points of the unit sphere in d complex dimensions are
in 1 − 1 correspondence with the points of the unit sphere
in 2d real dimensions, under the obvious mapping that takes
the real and imaginary parts of each complex coordinate to
two independent classical coordinates. Volumes of subsets
of the complex unit sphere can therefore be defined as the
volumes of the corresponding subsets of the real unit sphere in
2d dimensions. Letting |e〉 = (1, 0, . . . , 0) ∈ Cd , the complex
spherical cap Ad

θ maps to the set of real vectors of the form

cos φ û1 + sin φ û2, (11)

where û1 ∈ R2d is a unit vector in the subspace spanned by
(1, 0, 0, . . . , 0) and (0, 1, 0, . . . , 0), û2 is a unit vector in the
orthogonal subspace, and 0 � φ � θ . The volume of this set
is given by

V d
θ =

∫ θ

0
2π cos φ Ṽ 2d−2(sin φ) dφ, (12)

where Ṽ 2d−2(sin φ) is the volume of a (2d − 3)-sphere in
(2d − 2) real dimensions of radius sin φ. Combining Eqs. (10)
and (12), with θ = π/3, yields

|S| � (
4
3

)d−1
.

�
An alternative proof that there exist sets S with |S| expo-

nentially large, which results in a worse bound, but which
some may find even simpler, is given in Refs. [24,51], and
reproduced in the Appendix.

V. TWO-WAY CLASSICAL COMMUNICATION

Claim 4. Assuming |S| = 2q, for integer q, the two-
way classical communication complexity of R is at most
�log log |S| + 1 bits.

Proof. The assumption that |S| = 2q is not essential, but
allows a short statement of the proof. The protocol has two
rounds and starts with a message from Bob to Alice. Let
Bob’s input be { j, k, m}, and assume without loss of generality
that j < k < m. Bob determines the largest integer r � q =
log |S|, such that for some integer s � 0, either

s 2r < j, k � (s + 1) 2r and

(s + 1) 2r < m � (s + 2) 2r (13)

or

s 2r < j � (s + 1) 2r and

(s + 1)2r < k, m � (s + 2)2r . (14)

Bob sends r to Alice using �log log |S| bits. Note that r
determines a subset Yr ⊆ Y of Bob’s possible inputs. For input
i ∈ [|S|], Alice computes the parity p of � i

2r , and sends it to
Bob. Note that the set X of Alice’s inputs is partitioned by p
and r into subsets Xr,p ⊆ X . By Eqs. (13) and (14), at least
one of j, k, m is not in Xr,p. Bob chooses such a value for his
output. Communicating �log log |S| + 1 bits hence suffices
in the two-way scenario. Figure 3 illustrates the protocol for
|S| = 8. �

Claim 4 implies that the exponential complexity gap van-
ishes if we allow interactive protocols.

VI. BOUNDED ERROR

The separation almost trivially disappears if the classical
players need only solve the relation with bounded error.
We show this by reduction to equality testing. Suppose that
Alice’s input was i and Bob’s input was { j, k, m}. The par-
ties repeat the following in several runs: they generate a
uniformly random shared string s ∈ {0, 1}|S|. Alice computes
the parity pi of

∑|S|
r=1 irsr , where ir, sr are the rth bits of

her input and shared randomness, respectively. She sends
pi to Bob. Bob similarly computes parities p j, pk, pm of∑|S|

r=1 jrsr,
∑|S|

r=1 krsr and
∑|S|

r=1 mrsr . Without loss of gen-
erality, suppose that i = j. Then p j = pi with certainty, and
pk = pi with probability 1/2 (similarly pm = pi with proba-
bility 1/2), as s was chosen uniformly at random. If the parties
repeat this �log(1/ε) times, then Bob concludes that i = j
with probability greater than 1 − ε. In this case, he outputs m
or k, making a mistake with probability less than ε. However,
if i is not equal to any of j, k, m, then Bob can output any of
j, k, m without error.

VII. ANTIDISTINGUISHABILITY CONJECTURE

Reference [52] considers, among other things, exact clas-
sical simulation of a scenario in which Alice chooses an arbi-
trary quantum pure state, and sends it to Bob who performs an
arbitrary two-outcome von Neumann measurement. A lower
bound of �(d log d ) bits is shown to follow from two math-
ematical conjectures. Such a bound would be asymptotically
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FIG. 3. An illustration of the two-way classical protocol with |S| = 8. Rows correspond to different values of Alice’s input, columns to
different values of Bob’s input. In single run of the protocol, Bob sends an integer r to Alice, and Alice sends an integer p to Bob. Each value
of the conversation (r, p) is compatible with a subset of the joint inputs, where the subset is of the form Xr,p × Yr for Xr,p ⊂ X and Yr ⊂ Y , and
is known as a combinatorial rectangle. In the |S| = 8 example, there are four possible conversations, hence four rectangles, which cover X × Y
as illustrated. No rectangle contains three dots in the same column, which implies that Bob can always produce a suitable output without error.

stronger than all existing established lower bounds. See also
Ref. [53] for an application to the foundations of quantum
theory, in which the conjectured �(d log d ) lower bound is
used to strengthen the theorem of Ref. [4].

Here we observe that the following conjecture concerning
antidistinguishability would also give a separation of log d
qubits versus �(d log d ) bits for exact simulation. Our ar-
gument is very different from those of Ref. [52], and our
conjecture concerning antidistinguishability is very different
from the two conjectures of Ref. [52].

Conjecture 1. Let |ρ1〉, . . . , |ρd〉 be d pure states. If
|〈ρi|ρ j〉| � (d − 2)/(d − 1) for all i �= j, then the states are
antidistinguishable.

The log d versus �(d log d ) separation is established using
Conjecture 1, along with essentially the same proof of zero-
error one-way separation that we have given above. We omit
the details of this step, and instead provide some discussion of
the conjecture itself.

It is obvious that the conjecture holds with d = 2, and it
follows from the results of Ref. [5] that the conjecture holds
with d = 3. To gain some intuition for why the conjecture
might be true in all dimensions, first consider a generic set of
states |ρ1〉, . . . , |ρd〉. Reference [6] shows that if any triple of
the states is antidistinguishable, then it follows that the set of d
states is antidistinguishable. However, it does not follow that
if the set of d states is antidistinguishable, then any triple must
be antidistinguishable. Hence the condition that d states is
antidistinguishable is logically weaker than the condition that
any triple of them is antidistinguishable. If the states satisfy
|〈ρi|ρ j〉| � 1/2 for all i �= j, then the stronger condition holds
[5], hence it is natural to suppose that a similar statement,
with 1/2 on the right-hand side replaced by a larger number,
suffices for the weaker condition.

Second, consider the set of d-dimensional states:

|ρ1〉 = 1√
d − 1

(|e2〉 + |e3〉 + · · · + |ed〉),

|ρ2〉 = 1√
d − 1

(|e1〉 + |e3〉 + · · · + |ed〉),

· · ·
|ρd〉 = 1√

d − 1
(|e1〉 + |e2〉 + · · · + |ed−1〉),

where {|ei〉} is an orthonormal basis. This set is antidis-
tinguishable by construction and satisfies |〈ρi|ρ j〉| = (d −

2)/(d − 1) for all i �= j, which motivates the particular choice
of function on the right-hand side of the conjectured sufficient
condition.

Finally, Fig. 4 displays numerical evidence for Conjecture
1. Note that for a given set of states in d dimensions, determin-
ing whether they are antidistinguishable or not corresponds
to solving a semidefinite program (SDP) [54]. For each d =
2, 3, 4, 5, we generated a set of 1 50 000 sets of d vectors
in d dimensions, where each vector is chosen independently,
and uniformly according to the Haar measure. For each set
of vectors, the SDP is solved, to determine whether the set
is antidistinguishable. For those sets that are not antidistin-
guishable, the quantity α = maxi �= j |〈ρi|ρ j〉| is recorded. The
shaded region of the graph shows, for each dimension, the
minimum value of α obtained, and the dashed line shows
the value of (d − 2)/(d − 1), with lines rather than points
used for clarity. A counterexample to the conjecture would
appear as the dashed line crossing the nonshaded region.
The evidence for the conjecture consists in the fact that the
shaded region cleaves fairly closely to the dashed line, yet no
counterexamples were found.

VIII. CONCLUSION

We have used quantum state antidistinguishability to give
simple proofs of separation between classical and quantum

FIG. 4. Numerical evidence for Conjecture 1.
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zero-error one-way communication complexities. Using SICs
and MUBs, we proved separations in any d � 3. Using a
lower bound on the achievable size of a suitable complex
spherical code, we showed an exponential separation of log d
qubits versus 0.415(d − 1) − 1 bits. For the relation consid-
ered, however, the separation disappears if two-way classical
communication is allowed or if one-way classical communi-
cation is allowed with bounded error.

The results are stated in terms of quantum and classical
players solving a relation, which is defined on finite sets of
possible inputs for Alice and Bob. Seeing as expanding the
sets of inputs can only make things more difficult for classical
players, the lower bounds also apply to the one-way classical
communication cost of simulating an experiment in which
Alice prepares an arbitrary pure state of a d-dimensional
quantum system and sends it to Bob, who performs an arbi-
trary projective measurement. (Naturally, the same can be said
for the results of any of Refs. [9,10,12–20,22].) In this more
general scenario, if error ε is tolerated in the measurement out-
come probabilities in the classical simulation, then it is easy
to see that transmission of O(log(1/ε) d ) classical bits is suf-
ficient, simply by approximating the real and imaginary parts
of the complex entries in the d-dimensional state vector. As
discussed in Ref. [20], this means that the results of Ref. [20]
are asymptotically optimal for bounded error simulation. If
exact simulation is required, however, then Ref. [2] shows that
without shared randomness, bounded classical communica-
tion is insufficient. If exact simulation is required, and shared
random data permitted, then surprisingly little is known apart
from the exponential lower bounds. Ref. [3] shows that for
d = 2, transmission of two bits is sufficient (see also Ref. [1]
which considers positive operator-valued measurements). But
we are unaware of any demonstration, even for d = 3, that
classical simulation of arbitrary preparations and projective
measurements is possible with bounded communication cost,
let alone a demonstration of a specific protocol with bounded
communication, or a finite upper bound. A lower bound of
�(d log d ), as implied by Conjecture 1, would be particu-
larly interesting given the O(log(1/ε)d ) upper bound for the
bounded-error case.

The exponential lower bounds are of interest for the foun-
dations of quantum theory, as well as for communication
complexity per se. As Montanaro writes [20]: “On a fun-
damental, conceptual level, the question asks: Are quantum
states ‘really’ like an exponentially long string of numbers,
or do they have a more efficient representation?” Restated in
different language, any lower bound on the size of the classical
message in a simulation of the transmission of a quantum state
becomes a lower bound on the size of the set of ontic states
that the system must have available to it in an ontological
model for quantum theory [4,55]. For further discussion of the
relevance of communication complexity results to quantum
foundations, see Ref. [56].

The importance of the exponential separation between
quantum and classical communication, both for foundations
and for complexity theory, underpins one of the motivations
of this work, which is to present as simple as possible proof of
this fact, and to obtain as strong a lower bound as possible.
In future work, it would be interesting to prove a stronger
separation, for example by finding a modification of the

presented problem that makes our proof technique work for
bounded error.
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APPENDIX: ALTERNATIVE SIMPLE PROOF FOR THE
EXISTENCE OF EXPONENTIAL-SIZED COMPLEX

SPHERICAL CODES

The following argument, from Refs. [24,51], shows that
complex spherical codes exist that are exponentially large in
the dimension. Take two random d-dimensional pure states:

|v〉 = 1√
d

d∑
i=1

vi|i〉, |w〉 = 1√
d

d∑
i=1

wi|i〉, (A1)

where wi, vi are Rademacher random variables with Pr(vi =
±1) = Pr(wi = ±1) = 1/2. Their inner product is

〈v|w〉 = 1

d

d∑
i=1

viwi = 1

d

d∑
i=1

Xi, (A2)

where Xi is again a Rademacher random variable with Pr(Xi =
±1) = 1/2. The probability that |〈v|w〉| > 1/2 is upper
bounded by the Chernoff-Hoeffding inequality:

Pr

(
|〈v|w〉| >

1

2

)
= Pr

(∣∣∣∣∣
d∑
i

Xi

∣∣∣∣∣ >
d

2

)
� 2e− d

8 . (A3)

The probability that a set S of such random vectors contains
a pair |vi〉, |w j〉 ∈ S, i �= j with overlap greater than 1/2 is
given by

Pr

(
|〈vi|w j〉| >

1

2

)
� 2

(|S|
2

)
e− d

8 < |S|2e− d
8 . (A4)

As soon as this probability falls below 1, there exists a set S
of such random states, so that |〈vi|w j〉| � 1/2 for any pair.
From Eq. (A4), |S| = e

d
16 . Using such a set S for the task

defined in the main text, the classical one-way communication
complexity is at least �0.09 d − 1 bits.

013326-6



SIMPLE COMMUNICATION COMPLEXITY SEPARATION … PHYSICAL REVIEW RESEARCH 2, 013326 (2020)

[1] N. J. Cerf, N. Gisin, and S. Massar, Classical Teleportation of a
Quantum Bit, Phys. Rev. Lett. 84, 2521 (2000).

[2] L. Hardy, Quantum ontological excess baggage, Studies
History Philos. Sci. Part B: Studies History Philos. Modern
Phys. 35, 267 (2004).

[3] B. F. Toner and D. Bacon, Communication Cost of Sim-
ulating Bell Correlations, Phys. Rev. Lett. 91, 187904
(2003).

[4] M. F. Pusey, J. Barrett, and T. Rudolph, On the reality of the
quantum state, Nat. Phys. 8, 476 (2012).

[5] C. M. Caves, C. A. Fuchs, and R. Schack, Conditions for
compatibility of quantum-state assignments, Phys. Rev. A 66,
062111 (2002).

[6] T. Heinosaari and O. Kerppo, Antidistinguishability of
pure quantum states, J. Phys. A: Math. Gen. 51, 365303
(2018).

[7] M. Leifer, Is the quantum state real? An extended review of
ψ-ontology theorems, Quanta 3, 67 (2014).

[8] J. Barrett, E. G. Cavalcanti, R. Lal, and O. J. E. Maroney,
No ψ-Epistemic Model can Fully Explain the Indistinguisha-
bility of Quantum States, Phys. Rev. Lett. 112, 250403
(2014).

[9] H. Buhrman, R. Cleve, and A. Wigderson, Quantum vs classical
communication and computation, in Proceedings of the 30th
Annual ACM Symposium on Theory of Computing (STOC’09)
(ACM, New York, 1998), pp. 63–68.

[10] G. Brassard, R. Cleve, and A. Tapp, Cost of Exactly Simulating
Quantum Entanglement with Classical Communication, Phys.
Rev. Lett. 83, 1874 (1999).

[11] P. Frankl and V. Rödl, Forbidden intersections, Trans. Amer.
Math. Soc. 300, 259 (1987).

[12] R. Raz, Exponential separation of quantum and classical com-
munication complexity, in Proceedings of the 31st Annual ACM
Symposium on Theory of Computing (STOC’99) (ACM, New
York, 1999), pp. 358–367.

[13] A. Ambainis, L. J. Schulman, A. Ta-Shma, U. V. Vazirani,
and A. Wigderson, The quantum communication complexity of
sampling, SIAM J. Comput. 32, 1570 (2003).

[14] Z. Bar-Yossef, T. S. Jayram, and I. Kerenidis. Exponential
separation of quantum and classical one-way communication
complexity, SIAM J. Comput. 38, 366 (2008).

[15] I. Kerenidis and R. Raz, The one-way communication com-
plexity of the Boolean hidden matching problem, arXiv:quant-
ph/0607173.

[16] D. Gavinsky, J. Kempe, I. Kerenidis, R. Raz, and R. de Wolf,
Exponential separations for one-way quantum communication
complexity, with applications to cryptography, in Proceedings
of the 39th Annual ACM Symposium on Theory of Computing
(STOC’07) (ACM, New York, 2007), pp. 516–525.

[17] D. Gavinsky, Classical interaction cannot replace a quantum
message, in Proceedings of the 40th Annual ACM Symposium
on Theory of Computing (STOC’08) (ACM, New York, 2008),
pp. 95–102.

[18] O. Regev and B. Klartag, Quantum one-way communica-
tion can be exponentially stronger than classical communica-
tion, in Proceedings of the 43rd Annual ACM Symposium on
Theory of Computing (STOC’11) (ACM, New York, 2011),
pp. 31–40.

[19] A. Montanaro, A new exponential separation between quantum
and classical one-way communication complexity, Quant. Info.
Comput. 11, 574 (2011).

[20] A. Montanaro, Quantum states cannot be transmitted efficiently
classically, Quantum 3, 154 (2019).

[21] H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Nonlocal-
ity and communication complexity, Rev. Mod. Phys. 82, 665
(2010).

[22] A. Montina, Communication cost of classically simulating a
quantum channel with subsequent rank-1 projective measure-
ment, Phys. Rev. A 84, 060303(R) (2011).

[23] A. M. Raigorodskii, On a bound in borsuk’s problem, Russian
Math. Surveys 54, 453 (1999).

[24] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Quantum
Fingerprinting, Phys. Rev. Lett. 87, 167902 (2001).

[25] C. Perry, R. Jain, and J. Oppenheim, Communication Tasks
with Infinite Quantum-Classical Separation, Phys. Rev. Lett.
115, 030504 (2015).

[26] Z. Liu, C. Perry, Y. Zhu, D. E. Koh, and S. Aaronson, Doubly
infinite separation of quantum information and communication,
Phys. Rev. A 93, 012347 (2016).

[27] A. Karanjai, J. J. Wallman, and S. D. Bartlett, Contextuality
bounds the efficiency of classical simulation of quantum pro-
cesses, arXiv:1802.07744.

[28] T. Heinosaari and O. Kerppo, Communication of partial igno-
rance with qubits, J. Phys. A: Math. Theor. 52, 395301 (2019).

[29] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 3rd ed. (MIT Press, Cambridge,
MA, 2009).

[30] A. Chi-Chih Yao, Some complexity questions related to dis-
tributive computing (preliminary report), in Proceedings of the
11th Annual ACM Symposium on Theory of Computing (ACM,
New York, 1979), pp. 209–213.

[31] A. Chi-Chih Yao, Quantum circuit complexity, in Proceedings
of the IEEE 34th Annual Foundations of Computer Science
(IEEE, New York, 1993), pp. 352–361.

[32] E. Kushilevitz and N. Nisan, Communication Complexity (Cam-
bridge University Press, New York, 1997).

[33] A. Rao and A. Yehudayoff, Communication Complexity and
Applications (Cambridge University Press, Cambridge, 2019).

[34] As also noted in Ref. [45], Ref. [5] contains a minor error,
in which > instead of � appears in the second part of the
condition.

[35] L. Welch, Lower bounds on the maximum cross correlation of
signals, IEEE Trans. Inf. Theory 20, 397 (1974).

[36] G. A. Kabatiansky and V. I. Levenshtein, On bounds for pack-
ings on a sphere and in space, Problems Inform. Transmission
14, 3 (1978).

[37] V. I. Levenshtein, Bounds for packings of metric spaces and
some of their applications, Probl. Kibern. 40, 43 (1983).

[38] J. M. Renes, Frames, designs, and spherical codes in quantum
information theory, Ph.D. thesis, The University of New Mex-
ico, 2004.

[39] A. Roy and S. Suda, Complex spherical designs and codes, J.
Combinat. Designs 22, 105 (2014).

[40] H. Zorlein and M. Bossert, Coherence optimization and best
complex antipodal spherical codes, IEEE Trans. Signal Process.
63, 6606 (2015).

013326-7

https://doi.org/10.1103/PhysRevLett.84.2521
https://doi.org/10.1103/PhysRevLett.84.2521
https://doi.org/10.1103/PhysRevLett.84.2521
https://doi.org/10.1103/PhysRevLett.84.2521
https://doi.org/10.1016/j.shpsb.2003.12.001
https://doi.org/10.1016/j.shpsb.2003.12.001
https://doi.org/10.1016/j.shpsb.2003.12.001
https://doi.org/10.1016/j.shpsb.2003.12.001
https://doi.org/10.1103/PhysRevLett.91.187904
https://doi.org/10.1103/PhysRevLett.91.187904
https://doi.org/10.1103/PhysRevLett.91.187904
https://doi.org/10.1103/PhysRevLett.91.187904
https://doi.org/10.1038/nphys2309
https://doi.org/10.1038/nphys2309
https://doi.org/10.1038/nphys2309
https://doi.org/10.1038/nphys2309
https://doi.org/10.1103/PhysRevA.66.062111
https://doi.org/10.1103/PhysRevA.66.062111
https://doi.org/10.1103/PhysRevA.66.062111
https://doi.org/10.1103/PhysRevA.66.062111
https://doi.org/10.1088/1751-8121/aad1fc
https://doi.org/10.1088/1751-8121/aad1fc
https://doi.org/10.1088/1751-8121/aad1fc
https://doi.org/10.1088/1751-8121/aad1fc
https://doi.org/10.12743/quanta.v3i1.22
https://doi.org/10.12743/quanta.v3i1.22
https://doi.org/10.12743/quanta.v3i1.22
https://doi.org/10.12743/quanta.v3i1.22
https://doi.org/10.1103/PhysRevLett.112.250403
https://doi.org/10.1103/PhysRevLett.112.250403
https://doi.org/10.1103/PhysRevLett.112.250403
https://doi.org/10.1103/PhysRevLett.112.250403
https://doi.org/10.1103/PhysRevLett.83.1874
https://doi.org/10.1103/PhysRevLett.83.1874
https://doi.org/10.1103/PhysRevLett.83.1874
https://doi.org/10.1103/PhysRevLett.83.1874
https://doi.org/10.1090/S0002-9947-1987-0871675-6
https://doi.org/10.1090/S0002-9947-1987-0871675-6
https://doi.org/10.1090/S0002-9947-1987-0871675-6
https://doi.org/10.1090/S0002-9947-1987-0871675-6
https://doi.org/10.1137/S009753979935476
https://doi.org/10.1137/S009753979935476
https://doi.org/10.1137/S009753979935476
https://doi.org/10.1137/S009753979935476
https://doi.org/10.1137/060651835
https://doi.org/10.1137/060651835
https://doi.org/10.1137/060651835
https://doi.org/10.1137/060651835
http://arxiv.org/abs/arXiv:quant-ph/0607173
https://doi.org/10.22331/q-2019-06-28-154
https://doi.org/10.22331/q-2019-06-28-154
https://doi.org/10.22331/q-2019-06-28-154
https://doi.org/10.22331/q-2019-06-28-154
https://doi.org/10.1103/RevModPhys.82.665
https://doi.org/10.1103/RevModPhys.82.665
https://doi.org/10.1103/RevModPhys.82.665
https://doi.org/10.1103/RevModPhys.82.665
https://doi.org/10.1103/PhysRevA.84.060303
https://doi.org/10.1103/PhysRevA.84.060303
https://doi.org/10.1103/PhysRevA.84.060303
https://doi.org/10.1103/PhysRevA.84.060303
https://doi.org/10.1070/RM1999v054n02ABEH000146
https://doi.org/10.1070/RM1999v054n02ABEH000146
https://doi.org/10.1070/RM1999v054n02ABEH000146
https://doi.org/10.1070/RM1999v054n02ABEH000146
https://doi.org/10.1103/PhysRevLett.87.167902
https://doi.org/10.1103/PhysRevLett.87.167902
https://doi.org/10.1103/PhysRevLett.87.167902
https://doi.org/10.1103/PhysRevLett.87.167902
https://doi.org/10.1103/PhysRevLett.115.030504
https://doi.org/10.1103/PhysRevLett.115.030504
https://doi.org/10.1103/PhysRevLett.115.030504
https://doi.org/10.1103/PhysRevLett.115.030504
https://doi.org/10.1103/PhysRevA.93.012347
https://doi.org/10.1103/PhysRevA.93.012347
https://doi.org/10.1103/PhysRevA.93.012347
https://doi.org/10.1103/PhysRevA.93.012347
http://arxiv.org/abs/arXiv:1802.07744
https://doi.org/10.1088/1751-8121/ab3ae4
https://doi.org/10.1088/1751-8121/ab3ae4
https://doi.org/10.1088/1751-8121/ab3ae4
https://doi.org/10.1088/1751-8121/ab3ae4
https://doi.org/10.1109/TIT.1974.1055219
https://doi.org/10.1109/TIT.1974.1055219
https://doi.org/10.1109/TIT.1974.1055219
https://doi.org/10.1109/TIT.1974.1055219
https://doi.org/10.1002/jcd.21379
https://doi.org/10.1002/jcd.21379
https://doi.org/10.1002/jcd.21379
https://doi.org/10.1002/jcd.21379
https://doi.org/10.1109/TSP.2015.2477052
https://doi.org/10.1109/TSP.2015.2477052
https://doi.org/10.1109/TSP.2015.2477052
https://doi.org/10.1109/TSP.2015.2477052
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